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Abstract. Whereas the Mohr-Coulomb criterion is widely used in geotechnics, the Drucker-

Prager is common in Finite Element Methods software. Another smooth criterion developed in

soil mechanics is the Matsuoka-Nakai criterion, which is also a linear function of mean stress.

Parameters of the Coulomb criterion are meaningful to engineers and their determination in

laboratory is well known. In this paper, we present a method to measure differences between

Mohr-Coulomb and "Coulomb" fitting by Drucker-Prager or Matsuoka Nakai.

Using some properties of the stress space and of the deviatoric plane, we are able to measure

discrepancies between Coulomb and other criteria. We provides results as discrepancies on the

friction angle allowing a quick evaluation of the error.
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Stress sign convention Traction stresses are positive, and the principal stresses ordered as
follow : σI ≥ σII ≥ σIII .

1 INTRODUCTION

The Mohr-Coulomb criterion is the most common failure criterion encountered in geotech-
nical engineering. It is robust, and parameters are easily deduced from tests and are meaningful
for engineers. However the presence of corners makes it less straightforward to implement.
Whereas the Drucker-Prager is easy to implement and allows a fast computation of plastic
strain, it is widely criticized from a physical point of view. So others criteria, like Matsuoka-
Nakai, have been developed, that fit well the laboratory data and are smooth in the deviatoric
plane.

Our aim is to measure discrepancies between Mohr-Coulomb and other geotechnical laws.
We kept in mind two goals while developing this methodology. We wanted first to give a
precise measurement of the discrepancies. We also wanted to provide clear results that can be
understood at a glance by an engineer. So we choose to use the friction angle φ as the variable
of measure.

2 DIFFERENT CRITERIA FOR A SAME MATERIAL BEHAVIOR

2.1 Criteria

2.1.1 Mohr-Coulomb

(a) Stress space repre-
sentation

(b) Deviatoric plane

Figure 1: Mohr-Coulomb criterion

Mohr-Coulomb is certainly the oldest and most notorious geotechnical criterion. It is defined
as the equation of an intrisic curve in the Mohr plane. Parameters (cohesion c, and friction φ)
are meaningful and easy to deduce from laboratory tests.

τ = c + σn tan φ (1)

The corresponding yield function can be expressed as a function of the principal stresses :

f
(

σ
)

= (σI − σIII) + (σI + σIII) sin φ − 2C cos φ (2)

In the stress space (or Haigh-Westergaard space), the Mohr-Coulomb yield surface is a conical
prism. Its deviatoric shape is an irregular hexagon
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2.1.2 Drucker-Prager

(a) Stress space (b) Deviatoric plane

Figure 2: Drucker-Prager

Drucker-Prager [3] is a pressure dependant function of the second invariant of the deviatoric
stress

(

J2 = 1
2
Tr
(

s2
))

. The Drucker-Prager yield surface is a cone in the stress space. In the
deviatoric plane, it is a circular criterion.

f
(

σ
)

= 3α (σm − H) +
√

J2 (3)

σm being the mean stress.

2.1.3 Matsuoka-Nakai

(a) Stress space (b) Deviatoric plane

Figure 3: Matsuoka-Nakai

Matsuoka-Nakai [9] was developed initially for cohesionless material, but can be adapted to
be used with material with cohesion[5]. The Matsuoka-Nakai yield function is a function of the
polynomial invariants of the stress tensor :

f
(

σ
)

= k1IIII − I1III (4)

Où :

II = σI + σII + σIII

III = σIσII + σIIσIII + σIIIσI

IIII = det σ = σIσIIσIII

The deviatoric shape of Matsuoka-Nakai is smooth but non circular.
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compression

extension

Figure 4: Physical meaning of the deviatoric shape

2.2 Extension ratio

The deviatoric shape of Mohr-Coulomb (irregular) or Matsuoka-Nakai (non circular) has a
physical meaning. For a given mean stres, one can observe a significant difference (figure 4) for
J2, depending if we consider a compresion configuration (σI = σII > σIII) (configuration of
the classical triaxial test and compressive test) or an extension configuration (σI > σII = σIII)
(extension triaxial test (inverse triaxial test) and traction test)

We can define the extension ratio LS:

LS =

√
J2

(

θ = −π
6

)

√
J2

(

θ = π
6

) =
(σI − σIII) (extension)

(σI − σIII) (compression)
(5)

With θ the Lode angle defined at section 3 on the following page.
LS belongs to

[

1
2
, 1
]

:

• A value of one corresponds to a circle (Von Mises, Drucker-Prager) or a regular hexagon
(Tresca). While theorically possible, a value of LS greater than one would mean that the
traction behaviour would be better than the compressive one.

• A value of 1
2

corresponds to a triangle in the deviatoric plane. A smaller value would
means the criterion is not convex.

0 10 20 30 40 50 60 70 80 φ

0.50.60.70.80.91.LS

Figure 5: Extension ratio, function of friction angle

The main concern with Drucker-Prager is the value of LS equal to one. Experimental results
better agree with values of Matsuoka-Nakai or Mohr-Coulomb. For the latter, the extension
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ratio is a function of the friction angle (figure 5) :

LS =
3 − sin φ

3 + sin φ
(6)

2.3 Choice of the suited criterion

Mohr-Coulomb is the oldest and most used criterion. Parameters are easy to deduce from
standard tests. Moreover, they are really meaningfull for engineers. However, corners make it
less straightforward to implement. The circular shape of Drucker-Prager, even it is a drawback
from a physical point a view, is really a great advantage from a numerical point view. Plastic
strain computations thus go down to to literal expressions [6], known as radial return. Radial
return is both easy to implement and time saving during computations.

Matsuoka-Nakai seems to best fit material behavior, particularly with regard to true triaxial
tests. However, closest point projection method [11], used to compute plastic strain, is more
complex to implement. Works are done to improve this method [2, 4] or use alternative com-
puting method [7].

We want to define a method that can measure discrepancies between criteria. One thus can
evaluate the difference between a model used in a geotechnical sowfware, and the model fitted
in a laboratory. As the results have to be well and immediately understood, we choose to express
discrepancies as variations of the friction angle. We also try to estimate if Matsuoka and Nakai
were right when they affirmed [10], with the introduction of the Spatially Mobilised Plan, their
criterion was corresponding to Mohr-Coulomb the same way Tresca was corresponding to Von
Mises.

3 Polar decomposition of the yield surface

3.1 Principe

σ
+g(θ)

θ

σ+

Figure 6: Polar decomposition of the yield surface in the deviatoric plane

For a given mean stress
(

σm = Trσ/3
)

, the yield surface can be reduced to its cross-sectional
shape on the deviatoric plane, or π plane. A yield surface can be represented in a unique manner
by the mean stress and the deviatoric invariants

(

J2 = 1
2
Tr
(

s2
)

, J3 = 1
3
Tr
(

s3
)

, with s = σ − σm1I
)

,
but it is more practical to replace the third invariant by the Lode angle, to work in the π plane

−
π

6
≤ θ =

1

3
arcsin

(

−3
√

3

2

J3
√

J2
3

)

≤
π

6
(7)
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The set
(√

J2, θ
)

defines polar coordinates on one sixth of the deviatoric plane, which is
sufficient for an isotropic criterion. Zienkiewicz and Pande [12], introduced what can be called
a polar decomposition of the criterion :

√

J2 = σ+gp (θ) (8)

The deviatoric radius : σ+(σm) =
√

J2/θ=π
6

, gives the yield function in the meridional plane
(

σm,
√

J2

)

, for θ = π
6
. This value of the Lode angle corresponds to a classical triaxial test,

or compression triaxial test (σI = σII > σIII). The function gp (θ) is the shape function of the
yield surface in the deviatoric plane. It is normalized

(

gp

(

π
6

)

= 1
)

and gives directly the value
of the extension ratio gp

(

−π
6

)

= LS .

3.2 Application to the criteria

Mohr-Coulomb can be rewritten as a function of Lode angle:

f
(

σ
)

= σm sin φ +
√

J2

(

cos θ −
sin θ sin φ

√
3

)

(9)

We can thus express the deviatoric radius, shape function and extension ratio :

σ+
MC =

2
√

3 sin φ (H − σm)

3 − sin φ
(10)

gMC
p (θ) =

3 − sin φ

2
(√

3 cos θ − sin θ sin φ
) (11)

LMC
S =

3 − sin φ

3 + sin φ
(12)

As Drucker-Prager is circular, it is independant from the Lode angle :

σ+
DP = 3α (H − σm) (13)

gDP
p (θ) = 1 (14)

LDP
S = 1 (15)

It is not possible to get immediately an explicit expression of the shape function of Matsuoka-
Nakai (this will be done when studying the correpondance with Mohr-Coulomb). We can how-
ever rewrite it as e function of the Lode angle:

f
(

σ
)

= −J2 (k1 − 3) σm + (k1 − 9) σ3
m −

2

3

J
3

2

2 sin 3θ
√

3
k1 (16)

We can thus express the deviatoric radius and the extension ratio :

σ+
MN = −

√
3σm

(

k1 + 3
(

−3 +
√

9 − 10k1 + k2
1

))

4k1

(17)

LMN
S =

4k1

2k1 + 3
√

2
√

9 + (k1 − 3)
√

(k1 − 9) (k1 − 1) − 8k1 + k2
1

(18)
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Figure 7: Correspondences between Mohr-Coulomb and Drucker-Prager

3.3 Correspondence between criteria

It is possible to make correspondences between Mohr-Coulomb and the other criteria. The
parameters of the latter have to be rewritten as function of Mohr-Coulomb parameters : cohesion
c and friction angle φ.

3.3.1 Drucker-Prager and Mohr-Coulomb

First step is to use the same cohesive pressure :

H =
C

tan φ
(19)

Three ways can be used to fit Drucker-Prager and Mohr-Coulomb: the two first are corre-
spondences on the corners (compression or extension), the third is an inscribed Drucker-Prager
(meaning a Drucker-Prager yield value always lower or equal than Mohr-Coulomb) :

Compression fit Criteria will be equal in the case of a standard triaxial test and a compressive
test, thus the value of the Lode angle :

θc
c =

π

6
(20)

Drucker-Prager coefficient is then :

αc =
2 sin φ

√
3 (3 − sin φ)

(21)

Extension fit Criteria will be equal during an inverse triaxial test or during a traction test, the
Lode angle of the correspondence is then :

θe
c = −

π

6
(22)

7



S. Maïolino and M.P. Luong

(a) Shape functions (b) Stress space

Figure 8: Matsuoka-Nakai fitted on Mohr-Coulomb (φ = 35)

Drucker-Prager coefficient is then :

αe =
2 sin φ

√
3 (3 + sin φ)

(23)

Inscribed circle fit Drucker-Prager is fitted so that in the deviatoric plane, its circle is in-
scribed in the Mohr-Coulomb hexagon. The value of the Lode angle of the point of coincidence
of criteria depends of the friction angle :

tan θi
c = −

sin φ
√

3
(24)

Drucker-Prager coefficient is then :

αi =
sin φ

√
3
√

3 + sin2 φ
(25)

3.4 Matsuoka-Nakai and Mohr-Coulomb

Matsuoka-Nakai can fit Mohr-Coulomb, on all corners of the hexagon. Thus the criteria are
the same on the extension corner

(

θ = −π
6

)

and on the compression corner
(

θ = π
6

)

. We use
then the following parameter :

k1 =
(3 − sin φ) (3 + sin φ)

(1 − sin φ) (1 + sin φ)
(26)

A consequence of this coincidence on all the corners, is that the deviatoric radius and the
extension ratio are exactly the same as those of Mohr-Coulomb. Moreover Matsuoka-Nakai is
then exactly equal to the general yield function of Maïolino [8] fitting Mohr-Coulomb:

f
(

σ
)

=
3

2

√
3 (1 − LS) J3 +

(

LS
2 + 1 − LS

)

σ+J2 − σ+3
LS

2 (27)

With LS and σ+ those of Mohr-Coulomb. From those equation, using polar decomposition
properties, we can deduce a third degree equation whose solution is the shape function :

g3
p (θ) sin 3θ (−1 + LS) +

(

1 − LS + LS
2
)

g2
p (θ) − LS

2 = 0 (28)
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Numerically, the shape function of Bigoni and Piccolroaz [1] is solution of this equation,

with β = 0 et γ = cos

(

3 arccos

(

√

3

2
√

1−LS+LS
2

))

:

gp (θ) =
cos
(

β π
6
− arccos(−γ)

3

)

cos
(

β π
6
− arccos(−γ sin 3θ)

3

) (29)

4 Calculating discrepancies

4.1 Method of measure

We can notice that K the slope of the Mohr-Coulomb criterion in the meridian plane
(

σm,
√

J2

)

(standard triaxial test conditions) is a direct function of the friction angle :

K (φ) = −
∂σm

∂
√

J2 θ=π
6

=
σ+

(H − σm)
=

2
√

3 sin φ

3 − sin φ
(30)

This value can be computed for every point on the Mohr-Coulomb yield surface, using the polar
decompostion (8) :

K (φ) =

√
J2

(H − σm) gMC
p (θ)

(31)

For every point
(

θ,
√

J2

)

we can define an instant friction angle φi (and Ki), that is defined
by the Mohr-Coulomb surface this point belongs to (cohesive pressure H , friction angle φi

(associated shape function gMC
pφi

(θ))). If this point is located on a yield surface (deviatoric
radius σ+, shape function gp (θ)), we can use the polar decomposition to introduce those values
in the expression of K :

K (φi) =
σ+gp (θ)

(H − σm) gMC
pφi

(θ)
(32)

We cant then calculate the value of the instant friction angle :

φi (θ) = arcsin

√
3σ+gp (θ) cos θ

3
√

3 (H − σm) + σ+gp (θ) sin θ
(33)

For this given point we can measure the discrepancy between the criterion, and the Mohr-
Coulomb criterion (friction angle φ) it is fitting :

∆φ = φi − φ (34)

We can measure the discrepancies as a variation of the friction angle between the intended
friction angle, and the instant friction angle (that is the real friction angle for a given Lode
angle). This quantity is a function of the Lode angle and of φ.

4.2 Drucker-Prager

We give the value of the instant friction angle for a Drucker-Prager:

φi (θ) = arcsin
3α cos θ

1 +
√

3α sin θ
(35)
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(a) Compression fit : impossible area (sin φi > 1)
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(d) Insrcibed criterion

Figure 9: Discrepancy of the friction angle for Drucker-Prager: (∆φ = φi − φ)
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Figure 10: Discrepancies of the friction angle for Matsuoka-Nakai: (∆φ = φi − φ)

Very important vraitions of the friction angle can be found when the Lode angle is not the
value of fit, as we can see on figure 9 on the previous page. For the compression fit, discrepan-
cies became so important that it cannot be calculated as 3α cos θ

1+
√

3α sin θ
is greater than one. Even for

the incribed fit, that is considered as better, variations of the friction angle can easily be greater
then 10 degrees.

4.3 Matsuoka-Nakai

Matsuoka-Nakai is a good fit of Mohr-Coulomb, because discrepancies of the friction angle
are almost always lower than 5 degrees (maximum being equal to 5.3 degrees).

5 Conclusion

While commonly used for numerical reasons, Drucker-Prager induces too great discrepan-
cies of the friction angle. The overestimation of the friction angle made when using Matsuoka-
Nakai is very small. We can thus say that it is right to affirm that Matsuoka-Nakai is a smooth
Mohr-Coulomb. The same cannot be said about Drucker-Prager, because the friction angle is
the core physical notion of the Mohr-Coulomb criterion. We can just say that Drucker-Prager
is a circular criterion sensitive to mean stress, maybe a pressure sensitive Von Mises . . . Our
results are not only theoretical. They can be useful for field engineers also. Discrepancies on
Drucker-Prager are so important, that we think it cannot be used without an exhaustive analysis
of the Lode angle, to measure and correct the error. Discrepancies on the friction angle induced
by Matsuoka-Nakai are so small, that it can be used with confidence, the numerical error can
easily be integrated in the boundaries of the parametric study of the friction angle.
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