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Simulation of 3D elasto-acoustic wave propagation based on a
Discontinuous Galerkin Spectral Element method*
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Abstract

In this paper we present a numerical discretization of the coupled elasto-acoustic wave
propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) ap-
proach in a three-dimensional setting. The unknowns of the coupled problem are the
displacement field and the velocity potential, in the elastic and the acoustic domains,
respectively, thereby resulting in a symmetric formulation. After stating the main the-
oretical results, we assess the performance of the method by convergence tests carried
out on both matching and non-matching grids, and we simulate realistic scenarios where
elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves, the
scattering of elastic waves by an underground acoustic cavity, and a problem of marine
seismic exploration. Numerical simulations are carried out by means of the code SPEED,
available at http://speed.mox.polimi.it.
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Introduction

The main goal of this work is to simulate three-dimensional scenarios of elasto-acoustic cou-
pling via a Discontinuous Galerkin Spectral Element (DGSE) discretization (see, in particular,
[1] for a comprehensive introduction of the method in the case of elastodynamics). Coupled
elasto-acoustic wave propagation arises in several scientific and engineering contexts. In a
geophysical framework, a first example one can think of is given by seismic events occurring
near coastal environments; another relevant situation where such a problem plays a major role
is the detection of underground cavities [2—4]. Elasto-acoustic coupling occurs in structural
acoustics as well, when sensing or actuation devices are immersed in an acoustic fluid [5], and
also in medical ultrasonics [6, 7].
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Typically, an elasto-acoustic coupling arises in the following framework: a space region made
up by two subregions, one occupied by a solid (elastic) medium, the other by a fluid (acoustic)
one, with suitable transmission conditions imposed at the interface between the two. The aim
of such conditions is to account for the following physical properties: (i) the normal component
of the velocity field is continuous at the interface; (ii) a pressure load is exerted by the fluid
body on the solid one through the interface. In a geophysics context, when a seismic event
occurs near a coastal environment, both pressure (P) and shear (S) waves are generated.
However, only P-waves (i.e., whose direction of propagation is aligned with the displacement
of the medium) are able to travel through both solid and fluid media, unlike S-waves (i.e.,
whose direction of propagation is orthogonal to the displacement of the medium), which can
travel only through solids. This explains the reason for considering the first interface condition.
On the other hand, the second one accounts for the fact that an acoustic wave propagating in
a fluid domain gives rise to an acoustic pressure exerted on the solid via the interface.

Numerical simulation of elasto-acoustic coupling scenarios has been the subject of a very broad
literature. We give below a brief (and by far non-exhaustive) overview of some of the research
works carried out so far in this field. Bathe et al. [8] and Bermudez et al. [9] considered
a displacement-based formulation in both subdomains. Komatitsch et al. [10] introduced a
Spectral Element method for modeling wave propagation in media with both fluid (acoustic)
and solid (elastic) regions. The employed formulation is symmetric (i.e., it is made in terms
of displacement in elastic regions and velocity potential in acoustic regions), and matching
between domains is implemented based on an interface integral in the framework of an explicit
prediction-multicorrection staggered time scheme. Bermudez et al. [11] considered a Finite
Element approach to the problem based on a pressure formulation in the acoustic domain.
Chaljub et al. [12] studied a Spectral Element approach for modeling elastic wave propagation
in a solid-fluid sphere by taking into account the local effects of gravity, employing a symmetric
formulation, as here. Flemisch et al. |5 devised a numerical treatment based on two inde-
pendent triangulations on the elastic and acoustic domains with Finite Elements. Due to the
flexible construction of both grids, the finite element nodes on the elastic and acoustic bound-
ary on the interface may, in general, not coincide, so as to allow as much flexibility as possible;
as a result, non-conforming grids appear at the interface of the two subdomains. Késer and
Dumbser [13] considered a numerical scheme suited for unstructured 2D and 3D meshes based
on a Discontinuous Galerkin approach to simulate seismic wave propagation in heterogeneous
media containing fluid-solid interfaces, using a formulation in terms of a first-order hyperbolic
system in velocity-stress unknowns. The solution across element interfaces is handled by Rie-
mann solvers or numerical fluxes. De Basabe and Sen [14] investigated the stability of the
Spectral Element method and the Interior Penalty Discontinuous Galerkin method, consider-
ing the Lax-Wendroff method for time stepping and showing that it allows for a larger time
step than the usual leap-frog finite difference method, with higher-order accuracy. Wilcox et
al. |15] studied a high-order Discontinuous Galerkin scheme for the three-dimensional prob-
lem based on a velocity-strain formulation, allowing for the solution of the acoustic and elastic
wave equations within the same unified framework, based on a first-order system of hyperbolic
equations. Soares [16] considered a stabilized time-domain Boundary Element method to dis-
cretize each sub-domain. Bottero et al. [17] used a time-domain Spectral Element method for
simulations of wave propagation in the framework of ocean acoustics. Terrana et al. [18] stud-
ied a high-order hybridizable Discontinuous Galerkin Spectral Element method, again based
on a first-order hyperbolic velocity-strain formulation of the wave equations written in con-



servative form. Very recently, Appel6 and Wang [19] devised an energy-based Discontinuous
Galerkin approach, again using a symmetric formulation. Finally, a detailed hp-convergence
analysis of a Discontinuous Galerkin method on polytopal meshes has been presented and
validated in a two-dimensional setting in [20], wherein also a well-posedness result has been
obtained by a semigroup-based approach.

More generally, concerning the capability of handling nonmatching grids, Bielak et al. [21] pre-
sented an octree-based Finite Element approach for simulating large-scale earthquake ground
motion in realistic basins, combining the low memory per node and good cache performance of
finite difference methods with the spatial adaptivity to local seismic wavelengths characteristic
of unstructured finite element methods. Tabarrei and Sukumar et al. [22] used the quadtree
data structure and conforming polygonal interpolants to develop an h-adaptive finite element
method. The same authors [23] presented an extended Finite Element method on polygonal
and quadtree meshes. Solin et al. [24] developed an automatic adaptivity algorithm for the
hp-Finite Element method which is based on arbitrary-level hanging nodes and local element
projections. Gravenkamp et al. [25] applied a combination of the transient Scaled Boundary
Finite Element Method (SBFEM) and quadtree-based discretization to model wave propa-
gation problems at high frequencies. The SBFEM requires more degrees of freedom than a
corresponding spectral element discretization for smooth problems on regular domains, thus
the efficiency of the method is improved by proposing a novel approach to reduce the number
of auxiliary variables for transient analyses.

In this paper, the unknowns of the problem are the displacement field in the solid domain
and the velocity potential in the fluid domain, i.e., we employ a symmetric formulation. The
latter, say ¢, is defined in terms of the acoustic velocity field v, in such a way that v, = —V .
Also, the acoustic pressure p, in the fluid region is given by p, = pgp, with ¢ the first time
derivative of the velocity potential.

In the context of earthquake ground motion simulations, the numerical scheme employed has
to satisfy the following requirements: accuracy, geometric flexibility, and scalability. To be
accurate, the numerical method must keep dissipative and dispersive errors low. Geometric
flexibility is required since the computational domain usually features complicated geometrical
shapes as well as sharp discontinuities of mechanical properties. Finally, real-life seismic
scenarios are typically characterized by domains whose dimension, ranging from hundreds to
thousands square kilometers, is very large compared with the wavelengths of interest. This
typically leads to a discrete problem featuring several millions of unknowns. As a consequence,
parallel algorithms must be scalable in order to efficiently exploit high performance computers.

To comply with these requirements, we employ a Discontinuous Galerkin Spectral Element
(DGSE) approach based on a domain decomposition paradigm, which was introduced in [26].
More precisely, the discontinuities are imposed only at the interfaces between suitable non-
conforming macroregions, so that the flexibility of the DG methods is preserved while keeping
the accuracy and efficiency of Spectral Element (SE) methods and avoiding the proliferation
of degrees of freedom that characterize DG methods. We refer to [27] for a more detailed and
comprehensive review of discretization methods for seismic wave propagation problems.

The rest of the paper is organized as follows. In Section 1 we give the formulation of the
problem and recall the well-posedness result proven in [20] under suitable hypotheses on
source terms and initial values. In Section 2 we introduce the DGSE method and present the



formulation of the semi-discrete problem, also recalling a stability result for its formulation in
a suitable energy norm, as well as hp-convergence results (with h and p denoting the meshsize
and the polynomial approximation degree, respectively) for the error in the same norm; a
discussion of the fully discrete formulation of the problem is presented as well. Finally, in
Section 3, we present several numerical experiments carried out in a three-dimensional setting,
with the two-fold aim of verifying the theoretical results and simulating test cases of physical
interest. In particular, we verify the convergence rate of the method in Section 3.1 for different
kind of meshes. In Section 3.2 we consider the case of Scholte waves. In Section 3.3, we simulate
the scattering of elastic waves by an underground acoustic cavity. Finally, in Section 3.4, we
consider a problem of marine seismic exploration similar to what was proposed by Késer and
Dumbser in [13].

Throughout the paper, we will use standard notation for Sobolev spaces [28]. The Sobolev
spaces of vector-valued functions are denoted by H™(Q) = [H™(Q)]? and their norms by
|m.0, where © = R? is an open bounded domain of R%, d € {2,3}. We will use the symbol
(-,-)q and ||-|q to denote the standard inner product and norm in the space H°(Q) = L?(Q),
respectively. We also use the abridged notation z < y in place of x < Cy, for C > 0
independent of the discretization parameters (polynomial degree and meshsize), but possibly
depending on the material properties of the media under consideration.

1 Problem statement

In this section, we recall the formulation of the elasto-acoustic problem in its symmetric form,
i.e., written in terms of the displacement field u and the velocity potential ¢, defined such
that the velocity field in the acoustic domain v, is given by v, = —V¢ (see [20]). Let
Q=Q. U, c R denote an open bounded domain with Lipschitz boundary, given by
the union of two open disjoint bounded subdomains €2, and 2, representing the elastic and
acoustic regions in their reference configurations, respectively. We denote by I't = 0€2. n 0€,
the interface between the two domains. Thus, given a body force f. and a scalar volume
acoustic source f, as well as a final time T > 0, the strong formulation of the problem reads

( peil —divo(u) = £, in Q¢ x (0,71,

o(u)n, = —pyPn, on I't x (0,77,

1
¢ 2p — —div (pa V) = fa in Q, x (0,77,
Pa

dp/0n, = —u-n, on I't x (0,77,

\
coupled with suitable boundary and initial conditions that are detailed below.

Here, pe € L*(Q), pe > 0, is the mass density of the elastic region Q.; o(u) = Ce(u) =
A(tre(u))I + 2ue(u) is the Cauchy stress tensor; C is the uniformly elliptic and symmetric
fourth-order elasticity tensor, representing a linearly elastic isotropic behavior, with p and
A the Lamé parameters; e(u) = sym (Vu) = 1 (Vu+ Vu”) is the strain tensor. Also, we
denote by p, € L*(Q4), pa > 0, the density of the acoustic region Q, and by ¢ > 0 the speed
of the acoustic wave.



The transmission conditions on I't take account of the pressure, of magnitude p,|¢|, exterted
by the acoustic region onto the elastic one through the interface, and of the continuity of the
normal component of the velocity field at the interface.

Concerning boundary conditions we assume the following decomposition: 092 = (092w 0Q,)\I'1
where aQe = F€7D U F@,N U Fe,NR U FI and 0Qa = Fa,D U FQVN U FQVNR U F[. We denote by e
and n, the outer unit normal vectors to d€). and 0f),, respectively. Homogeneous Dirichlet
boundary conditions are assigned on I'. p U I'y p, i.e., u = 0 and ¢ = 0. Neumann boundary
conditions on I'. ;y UI', n are prescribed in term of a surface traction g. and a surface acoustic
flux g, as

o(u)n, = g on I'e vy x (0,71,
Op/0ng = ga on 'y v x (0,77

Non-reflecting boundary conditions are imposed on I'c nr U I'g Nr; here, the surface loads are
themselves expressed in terms of the time derivatives of the unknowns. In particular, we set

{ o(un, =g on I'e nr x (0,71,

2
op/on, = g, on 'y nr % (0,77, )

with g% = pe(cp — cg)( - ne)n, + pecstt and gt = ¢ 1 (see e.g. [5, 29, 30]), where cp and
cs are the propagation velocities of P (pressure) and S (shear) waves, respectively, given by

cp = /(A +2u)/pe and cg = A/ p/pe. This is commonly referred to in literature as first order
absorbing boundary condition [31].

Finally, as initial conditions we set u(-,0) = ug and u(-,0) = uy in Q¢ while ¢(-,0) = o and
&(+,0) = ¢1 in Q, for some regular enough functions ug, uy, ¢o, and ¢;.

The well-posedness of the problem (1) in suitable functional spaces was proven in [20] under
suitable regularity assumptions on the data, in the case I'e y UT'q v = & = T'e nr U T NR-

2 Numerical discretization

In this section we present the numerical approximation of the weak formulation of (1) through a
DGSE method coupled with an explicit Newmark predictor-corrector staggered time marching
scheme (see [10]). We first introduce the semi-discrete counterpart of (1), observing that
the solution of (1) satisfies the following weak form: for any ¢t € (0,77, and all (v,%) €
Hp, ,(Q) x Hp, (),

(Pei(t), V)a, + (¢ 2pai(t), ¥)a, + Ac(u(t),v) + Aa(p(t), ¥) + Ze(p(t), v) + Za(a(t), v)
= (fe(t), V)a. + (8e(1), V)r, v + (8c (1), V). np

+ (pafa(t), ¥)a, + (Paga(t), V)1, x + (pagz(t),w)ra,m(, |
3

where
Ae(“v V) = ((CE(U), E(V))Qe, Ie<w7 V) = (Paibney V)Fp
Aa(@? w) = (,OQVSO, Vw)fLm I(z(vv ¢) = (PaV'l'lm w)FI-

We observe that the second evolution equation has been multiplied by p, to ensure (skew)symmetry
of the two interface terms (since n, = —n.).

(4)
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Figure 1: Example of decompositions for the domains €2, and €2,. Interfaces between elastic
regions 2}, 02, and Q3, characterized by different material properties, are highlighted in green,
and the elasto-acoustic interface I't is highlighted in purple.

2.1 Partitions and trace operators

We now consider a decomposition Tq, of €. into L. nonoverlapping polyhedral regions Qg,
¢ e {1,...,L}, such that Q. = |Jf=, Qf, with Q¢ n QY = & for any ¢ # (/. This first
macropartition is introduced to distinguish elastic materials with different properties (density
pe and material moduli A, z). On each Qf, we build a conforming computational mesh T,
of meshsize hy > 0 made of disjoint elements K. ¢, and suppose that each K., < Qg is the
image through an invertible bilinear map F¢ : K — Ke 9 of the unit reference hexahedron
K = (=1,1)% d € {2,3}. Given two adjacent regions Q¢ we define an internal face F' as
the non-empty interior of oI, j+ o+ N GICM , for g g+ € 72 +, et © Q , and collect all the

internal faces in the set .7-"Z . Moreover, we define .7-"h e ]:h o> and Fp NR as the sets of all
boundary faces where dlsplacement tractions, or non- reﬂectlng elastic boundary conditions
are imposed, respectively. We collect all the boundary faces not laying on I't in the set ]-'g o

Remark 2.1 (Partition of €2.). The macro-domains-based partition for the elastic region may
also be prescribed by the geometry of the problem, and not necessarily by the variation of
material properties. This assumption is made for the sake of simplicity to describe the method.

On the other hand, concerning the acoustic domain €2,, since we do not take into account
multi-phase fluids, we introduce a conforming grid 7, of €}, made by disjoint hexahedral
elements K,. As in the elastic case, we suppose that each K., < Q! is the image through an
invertible bilinear map Fj : K — Ky of the unit reference hexahedron K = (—1,1)¢, d € {2, 3}.
Also, we define ]:h o ]-"h o and ]-",lef as the sets of all boundary faces where velocity potential,
fluxes, or non—reﬂectlng acoustic iaoundary conditions are imposed, respectively. We collect
all the boundary faces not laying on I't in the set .7-"}1’7 o

Finally, we collect all faces laying on I't in the set J, r; in this case, F' € Fj, r, is the non-
empty interior of 6@ N 0K,, for given Kee © Qﬁ € To, and K, € 7;*. Implicit in these
definitions is the assumption that each face laying on 0€2. U 0€2, can belong to exactly one of
the sets F}fe, Fhe, fha, F}]Xa, and Fj, 1.

Remark 2.2 (Non-matching grids at the elasto-acoustic interface). Notice that the above-
detailed framework allows to handle the situation of non-matching grids at the interface I'y



between the elastic and the acoustic domains (cf. Figure 1). Meshes can therefore be generated
independently on each of the domains.

We now introduce the following average and jump operators [32, 33| for mesh faces in the
elastic domain. For sufficiently smooth scalar, vector, and tensor fields 1, v, and 7, we define
averages and jumps on an internal face F' € f,il’e, F < oK, o+ 00K, -, with K+ € 7;1;, as

follows: 4 _
[91= 40" +ymn, =3
M=vion'+voon, (vj= "tV
7] = 7nt + 7 =TT

where a ® b denotes the tensor product of a,b € R?; %, vt and 7% are the traces of ¥, v
and 7 on F taken from the interior of X, ¢+, and n¥ is the outer unit normal vector to 0K o+ .
When considering a boundary face F € F _, we set [¢] = ¢mn, [v] = v®n, [7] = n, and
{v} =, {v}=v, {r} =7. Wealso use the shorthand notation

(@, W)r= > (2, V)p,  [Dr=(D,8)F,
FeF

for scalar, vector or tensor fields ® and ¥ and for a given generic collection F of mesh faces.

2.2 Discontinuous Galerkin Spectral Element approximation

First, concerning the elastic domain €, we associate with each subdomain Qf a nonnegative
integer N, > 1, and introduce the finite-dimensional space

V(Q) = (ve CO) : vy, o Fug € [QY (K] VKoo € TE ), (5)

where Qe (16) is the space of polynomials of degree NN, in each coordinate direction on the

unit reference hexahedron K. We then introduce the space V() = X £, V(). Concerning
the acoustic domain €2, we choose a spectral degree N, > 1 and define the following space:

V(Q) = {t € C°(Qa) : Y, © Fo € Q¥ (K) VKq € T (6)
The semi-discrete DGSE approximation of (3) reads then: (uy,¢p) € C3([0,T];V(Qe)) x

C?([0,T];V () such that, for all (vy, 1) € V(Qe) x V(Qy),

(petin(t), vi)a, + (72 pa@n(t), Yn)a, + Aj(Un(t), vi) + Aj(on(t), vn)
+ Zpy(@n(t), vi) + Ty (an(t), ¥n) = L5,(Va) + Lj,(¢n),

with initial conditions (u;(0),14(0)) = (ugp, w1 p) € V() x V(), and (¢x(0), ¢r(0)) =
(@o.n, ¢1,1) € V(Q4) x V(€4), where ug j,, us p, 9o n, and ¢ p, are suitable approximations of

(7)



the initial data. In (7)

Ay = Y (onlw)en(v)or — Hon}h [VDr

f<£[ru]1 CAGHERERCILIN ) vu, v e V(),
A (o, ) = K;(paw, Vg, Vi, v € V (),
(4, V) = {payme, V)g, V(1 v) € V(Q) x V(Q),
Ti(vi) = {pavena, )5, = T, V) V(v, 1) € V() x V(Q),
Lj(v) = QZT (Fe(t), V)ag + (@el(t), VIFn_ + (82 (), V) Vv e V(Q),
Ly () = Ke;:(pafa(t), V)ica + {Pada(t), V)5 + (Paga(t), V) ppm V1 € V(Qa).

(8)

We point out that the fourth identity in (8) holds since n, = —n, on I't. Here we have set,
for any v e V(Q,),

en(v) = = (Vv + Vipvl) | an(v) = Cep(v),

N =

with V7, the usual broken gradient operator. The discontinuity penalization function n: F, }l e
R is defined as follows:

N2\ * .
mr = o{(A +20) %} { (ﬁ) } , FeFhe Fcikep nikey, (9)
14
H

with K, p+ € 77164+ Here, a > 0 is a positive constant to be properly chosen, and {v*}y =

20t v~ /(vt + v7) is the harmonic mean of traces v and v~ of a given scalar field v.

Upon introducing the following norms
VIdee = IC e )IE, + In VI ¥ve Ve,
IVOIZ, = ol @&, + Iv®)lfe. ¥v e CH([0,T]: V() (10)

[@)E, =l p @), + o> VDR, Ve CH0, T V(R)),

it is possible to prove that bilinear forms A7 and Af are continuous and coercive. Con-
sequently, a stability result and an error estimate in the above-defined energy norm for the
semi-discrete solution can be inferred. We recall those results below; for the sake of readibility,
we give a simplified statement of the error estimate (see [20] for a more general framework,
and [34] for the purely elastic case).



Theorem 2.3 (Stability of the semi-discrete formulation). Let (up, ¢p) be the solution of (7).
For a sufficiently large penalty parameter o in (9), the following bound holds:

lun@®lle. + lenB)le. < [un0)le. + [@n(0)]e, +L (Ife(P)le. + 1fa(r) o) d7, e (0,T].
(11)

Remark 2.4 (Stability parameter). The hidden constant in (11) depends on the stability pa-
rameter « in (9) as it is stated in [20, Lemma A.2]. In practice, using a = O(10) leads to a
stable and well-posed problem, see also [34].

Theorem 2.5 (A priori error estimate in the energy norm). Assume that the exact solution

of problem (1) is such that u € C?([0,T]; H™(Q.)) and ¢ € C*([0,T]; H*(%)), for given

integers m,n = 2. Then, the following error estimate holds:

sup (Jun(t) —u(®)[z, + |en(t) — 0 (®)]Z,)

te[0,T]
Le h2min(m,Ne,g+1)72 thin(n,Na-i-l)—Z
< sup | 3 (812, gy + Il a0 )+ Y Emmr— (el + Il )
tef0,1] \ /=1 NE,’Z’ My%le e KeTe Ng" " "
T / Le h2min(m,Ne,g+1)—2
+] (2 g ([, g + 1017, o + [0l o)
0 \¢=1 el
thin(n,Na7+1)—2
+ ),k (1817 & + 19l7 6 + lelax) |dr

2n—3
KeTp2 Na

Remark 2.6 (Error in the energy norm). If both meshsizes are quasi-uniform, i.e. hy ~ h, ¥/ €
{1,...,Le} and hx ~ h, YK € T,%, if the polynomial degree is uniform over elastic regions
QL e Ney = Ne Vle{l,...,Lc}, and if m > N. + 1 and n > N, + 1, the following error

e’
estimate holds:

- e
Sup (Huh (t) - u(t)ng + ngh (t) - gp(t)Hga) S Cu (T) m_3/2 + C‘P (T) n_3/27
te[0,T] Ne Na

(12)

where Cy(7T") and C,(T') are positive numbers depending on the final time 7" and the exact
solution, along with its time derivatives.

2.3 Fully discrete formulation

Upon fixing polynomial bases for discrete spaces V(€2.) and V(€,), see e.g. [20], the semi-
discrete algebraic formulation of problem (7) reads

{ Meli(£) + Set(t) + Keu(t) + Ced(t) = fe(t), te (0,77, (13)

fe )
Mo (t) + Sad(t) + Kad(t) + Cati(t) = fa(t), te (0,77,

with initial conditions u(0) = u®, a(0) = v, $(0) = ¢°, and $(0) = P°, and where the
vectors u(t) and ¢(t) represent the expansion coefficients of wuy(t) and ¢p(t) in the chosen



bases, respectively. Analogously, M., K., and C. are the matrix representations of the bilin-
ear forms (peu,v)q,, An(u,v) and Zj (1, v), respectively (see (8)). When elastic absorbing
boundary conditions are included in the model, matrix S, takes account of the boundary
term (g2, v)r, yz; otherwise, it is identically equal to zero. On the other hand, Mg, K,, and
C, = —C/ represent the bilinear forms (c™2p,¢,%)q,, A%(p,¥), and T¢(v,), respectively.
When acoustic absorbing boundary conditions are considered, S, represents the boundary
term (pagy, Y)r, ng- Finally, fe(t) and f,(t) are the vector representations of linear functionals

Ly and L}, respectively.

For the time integration of system (13), as in [10], we employ an explicit Newmark predictor-
corrector staggered method [35]; in this case, the scheme is conditionally stable and second-
order accurate. We thus subdivide the time interval [0, 7] into Ny subintervals of amplitude
At = T/Nr and denote by u” ~ u(t,), v? ~ (t,), a ~ ii(t,), ¢" ~ d(t,), V" ~ d(t,), and
all ~ d)(tn) the approximations of u, 4, i, ¢, ¢, and ¢ at time ¢, = nAt, n € {0,..., Nr},
respectively. Then, along the lines of [10], we exploit the fact that mass matrices are diagonal,
and implement an iterative scheme based on a staggered prediction/correction technique. At

each time step, we first compute predictors of the solution in both domains:

2
W =" 4 AN 4 —A; ay, il =y %a’g,
~ At? ~ At (14)
d)nJrl _ d)n'f‘Atlbn‘F 5 ag) .q)n+1:1bn+ ?ag'

Then, we update the solution in the elastic domain by solving the first equation of (13) for
a"*! where the coupling term is evaluated as —CelT)”H, hence using the predictor computed
in the acoustic domain. Next, we compute the solution in the acoustic domain by solving
the second equation of (13) for a”*!, now using the updated solution in the elastic domain to
evaluate the coupling term, which is thus given by —C,v"*!, where v**1 = yn+1 4 %a?“. We
then iterate this algorithm by returning to the first step, this time using the updated solution.

The algorithm is summarized in the following scheme.

Newmark predictor-corrector staggered scheme
Given initial conditions u®, v and ¢?,°:

Meal = f0 — Sv? — Kou® — Cp?,
Mgal = f0 — S % — Kud? — Cov?;

for n=0to Ny —1 do

compute predictors u" 1, v pntl Pt as in (14);

n+1. n+l _ en+l Sn+1 ~nt1 Tn+l.
compute al " Meal ™t =T — Sev — KU — Cp™ 4
update the solution in Qg: u™*! = g+l yntl = gn+l 4 %a?“;

1. 1 _ 1 Tn+1 Tn+1 1.

compute a’tt: Myallt! = o+l — SQLJ‘)"+ — Kot - Covtt
update the solution in Q,: ¢"+1 = gntl, P+l =+l 4 %aﬁ“;

end for

compute a? and a%: {

10



3 Numerical results

3.1 Verification test

In this section we solve problem (1) in the parallelepiped © = (—1,1) x (0,1) x (0,1) on
both matching and non-matching grids (Figure 2), and verify the convergence results shown
in Theorem 2.5. Here 2, = (—1,0) x (0,1) x (0,1) and €, = (0, 1)3; the interface is thus given
by I't = {0} x [0,1] x [0,1]. In all cases we compute the energy norm of the error at time
t = 0.1, cf. (12). For the time discretization we employed the staggered scheme presented
in the previous section. The time step employed is At = 1076, Finally, we choose p, = 2.7,
cp = 6.20, cg = 3.12, p, = 1, and ¢ = 1 (cf. |6, 7]). The analytical expression of the exact

solution is
dmx 4z Az
u(z,y,z;t) = | cos (—), cos (—), cos (—) cos(4rt),
cp cs cs

4
QO(‘T’ Y,z t) = sin (ﬂ> sin(47rt).
C

(15)

The right-hand sides f. and f, corresponding to this solution are both equal to zero. Grids
are sequentially refined starting from an initial mesh with uniform meshsize h = 0.1 in the
matching case (Figure 2a); on the other hand, in the non-matching case (Figure 2b—2c), the
submeshes of 2, and Q, have, respectively, the two initial respective meshsizes h, = 0.1, hy =
0.2 and h, = 0.1, hy, = 0.15. Finally, we also considered unstructured matching hexahedral
grids, with initial meshsizes h. = h, = 0.2 (Figure 2d). Numerical tests carried out in both
matching (Figure 3), non-matching (Figure 4), and unstructured matching (Figure 5) cases,
show that h- and N-convergence rates match those predicted by (12).

3.2 Scholte waves

Scholte waves are an example of boundary waves, propagating along elasto-acoustic interfaces
(cf. Figure 6). Their amplitude decays exponentially away from the interface. As in [15], we
consider here two half-spaces. The lower half, z < 0, is occupied by an elastic medium, and
the upper half, z > 0, by an acoustic medium.

The derivation of the analytical expressions for Scholte waves was carried out in [36, Sec-
tion 5.2| in the case of a displacement-based formulation in both domains. We recall here-
inafter the essential steps to obtain such expressions. First, in general, the displacement field
in both domains is expressed as the sum of the gradient of a scalar potential ¢, o € {a, e},
and the curl of a vector potential 1/)0“ a € {a,e}. Since shear waves are absent in the acoustic
domain, we have 1,ba = 0 in ),; on the other hand, it is assumed that 1,be is aligned with the
y-axis in €2; also, all the fields do not depend on y. The complex amplitudes of the potentials
are given by

sze(x,y,z) _ B2€kbzpzezkx7 we(x,y,z) _ B3ekbzszezkxey, < 07

) 16
@a(:p’yz Z) = Ble_kblpzelkz, z2>0 ( )

so that exponential decay occurs for |z| — +00. Here, the wavenumber is k = w/cgen, for given
frequency w and Scholte wave speed cs,. The decay rates byp, bap, and by are determined

11



by substituting expressions (16) in suitable Helmholtz equations; one obtains the following
expressions:

C C &
bip=A[1— =D, by = [1— SR by = [1— 5D
& Cp Cg

The displacements in both domains u. and u, and are thus obtained as

uc(w,y, ;1) = Re((VFe + V x ghe)e ™), a7

u.(z,y, 2;t) = Re((V@a)e ™).
In our formulation, the elastic displacement is simply u = u, = (uq,us,us), and the velocity
potential ¢ is obtained by integrating the system of scalar differential equations Vo = —d,u,.
Thus, in the light of (17), one obtains the following expressions. For z < 0 (elastic region),
we have, as in [15],

ui(z,y,z;t) = Re((z’kBgekb2pz — kbgngekaSZ)ei(kx_“Jt)),
UQ(LE;y, Z7t) = Oa (18)
us(z,y,z;t) = Re((kbnggekaPZ + ikBgekaSZ)ei(kx_w”);

and, for z > 0 (acoustic region),
o(x,y, 2;t) = Re(iwB e Fowzeilh—wh)y, (19)

Notice that the source terms f. and f, corresponding to such analytical expressions are
again both equal to zero. In expressions (18)-(19), complex constants B, Bg, and Bs
have to satisfy a suitable eigenvalue problem, say AB = 0 with A a suitable 3 x 3 ma-
trix and B = [B; By Bs]!, stemming from the transmission conditions imposed on T,
ie. o(u)n, = —pg¥m, and dp/dn, = —u-n,. The value of the Scholte wave speed ¢y, is thus
given by the condition det A = 0. One can show that a Scholte wave speed exists for arbitrary
combinations of material parameters. We use a uniform mesh consisting of 2400 elements (cor-
responding to a meshsize h = h, = h, = 0.416) over the domain (—1,1) x (—1,1) x (—20, 20),
and we impose Dirichlet conditions all over the boundary. In the numerical experiments of
this section, we choose w = 1; also, the time step employed is At = 1076,

We first choose with A = p = 1 and p. = 1 for the elastic medium, and ¢ = 1, p, = 1
for the acoustic medium (as in [15]). The ratio of the two compressional wave propagation
speeds is then c¢p/c = 1. Based on these values of the material parameters, we obtain,
analogously to [15], ¢sen = 0.7110017230197, which thus gives k = 1.4064663525, and we
choose By = —0.3594499773037i, By = —0.8194642725978¢, and B3 = 1 as components of a
vector B in the null space of the matrix A.

Then, in order to explore higher velocity contrasts between elastic and acoustic waves, we
select A\ = 20, u = 2.5 for the elastic medium, keeping ¢ = 1 and p, = 1 for the acous-
tic one. This implies that cp/c = 5. This choice of values for the material parameters
yields cgep = 0.9573511944132, so that £ = 1.0445487568570, and we now choose By =
0.0004785577 + 0.4383339278557¢, By = 0.0006276539484 + 0.5748982984510¢, and B3 =
—0.6909081865044 + 0.0007543095055¢.
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Region | Meshsize (m) | Degree | p./q (kg/m*) | ep(m/s) | cg (m/s)
Qe he =20 N, =14 2700 3000 1734
Q, he =5 Ng=6 1024 300 -

Table 1: Test case 3.3. Material properties.

In both cases, as Figure 7 shows, we obtain an asymptotic exponential convergence rate for
the error in both the energy and L? norms, as expected.

As a final consideration on the accuracy of the proposed method, we show in Figure 8 the
maximum relative misfit with respect to the reference solution for two representative points:
x, = (0,0,0.5) € Q, and x. = (0,0,—0.5) € Q, see [37]. In this example, we consider
N, = N, =4, w = 10 and the same parameters cq, B1, B> and Bs of the previous test case.
As one cas see, for both points the maximum misfit is below 5%. This is in agreement with
the results shown in Figure 7.

3.3 Underground acoustic cavity

As a last test case, we simulate a seismic wave in the presence of an underground spherical
acoustic cavity. A similar problem has been treated in [1, Section 6.1] with a displacement-
based approach and also in [4] in a bidimensional setting. This problem arises in several
applications, the most important one, besides non-destructive testing, is given by near-surface
seismic studies to detect the presence of cavities in the subsoil, which are originated after
underground nuclear explosions, and can give rise to resonance effects when a seismic event
occurs [4]. In particular, the geometry we consider is the following: the acoustic domain is
given by an open ball Q, = {x € R? : |z| < R}, of radius R = 30m, and the elastic one is
Qe = (=Ly, Ly) x (—Ly, Ly) x (=L, L,)\Q, surrounding the cavity, with L, = L, = 600m
and L, = 300m (Figure 9). Non-reflecting boundary conditions are imposed on the external
elastic boundaries, except on the top one, where a free-surface condition is assigned. The
system is excited by a point Ricker wavelet of the following form:

fo(x,t) = f(t)e:d(@ —x0), f(t) = fo (L —2m2f2(t —to)?) e~ fy (t—t0)* (20)

with e, = (0,0, 1), zy = (200,0,300) m, ty = 0.25s, fo = 109N, and peak frequency f,. The
set of data and space discretization parameters is summarized in Table 1, where we write cp for
c in the case of an acoustic wave. Since the wavelength inside the cavity is much smaller than
outside, we are led to choose a finer meshsize inside the cavity, and thus employ the following
values: he = 20m, h, = 5m. Notice that, as explained in [2], meshing a spherical inclusion
inside a box containing hexahedral elements is not a trivial task, given that using non-curved
elements of meshes inside and outside the cavity leads to empty and overlapping regions which
would cause numerical instabilities. We therefore add a small cubic box, with the same elastic
properties as {2., around the spherical cavity, in such a way that non-conforming interfaces
are present between mesh elements in the small box and in the big box (and the displacement
is discontinuous across such interfaces by construction), whereas all interfaces between the
small box and the sphere are conforming, cf. a cross section in Figure 10. We use polynomial
degrees N, = 4 and N, = 6 on the elastic and acoustic domains, respectively, and we set the
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time-step to At = 107°s. The latter value is chosen in order to prevent the time integrator,
described in Section 2.3, from possible numerical instability. Finally, we remark that for all
the cases presented below we choose the penalty paramter « in (9) equal to 10.

We compute the solution wavefield for different values of the peak frequency in the Ricker
signal (20): f, = 11Hz, 22Hz, and 33Hz. Those values guarantee that the ratio between
the diameter of the sphere , and shortest wavelength of (20) is approximately given by
R = 2R/Amin ~ 0.5,1 and 1.5, respectively. Notice that we have considered as a dominant

period of (20) the value Tp = % and the minimal characteristic wave speed cg = 1734 m/s.

Figure 10 shows the z-component wu, of the displacement field in the subsoil and the acoustic
velocity potential ¢ in the spherical cavity at times ¢ = 0.4s and ¢ = 0.5s when R ~ 1,
whereas Figure 11 shows the same quantities when R ~ 0.5. We remark that, in the first
case (Figure 10), the elastic wave detects the acoustic cavity: spherical wavefronts are gener-
ated due to refraction phenomena between the cavity and the subsoil, since the wavelength
corresponding to the value f, = 22Hz is comparable with the diameter of the cavity. On
the other hand, if the peak frequency is reduced by a factor two (Figure 11), we observe that
the interaction of the elastic wave with the cavity is weaker than in the first case, since the
corresponding wavelength is twice as much as in the first case. In both cases, since outside
the sphere the material is stiff, the acoustic wave remains trapped within the cavity over time
and it generates reflection and refraction effects. These phenomena can be better represented
and remarked if the time histories of a number of monitored points in the elastic and acoustic
domains are considered. In particular, we took into account an X-shaped set of points in a
square cross section of the computational domain lying in the xz-plane, centered in the origin,
with side 600 m (Figure 12). Time histories of points in the subsoil and in the underground
cavity are showcased in Figure 13 for the three cases R ~ 0.5,1 and 1.5. In particular, re-
flection phenomena for elastic waves are clearly more remarkable in the last case than in the
first. As expected, point A being the closest one to the location of the seismic source, is the
first to undergo a displacement impulse, which is then delayed for the other points; the same
occurs in the second case. Finally, in all cases, we clearly see that the acoustic wave remains
trapped in cavity over time, due to persistent reflections.

3.4 Discontinuous sinusoidal bathymetry

To further demonstrate the flexibility and potential of the proposed method, we consider
the following test problem of marine seismic exploration, similarly to what was proposed in
[13]. The computational domain © = (0,3200m) x (0,3200m) x (—2000m,0) includes a
water layer at rest on top of an elastic solid with the fluid-solid interface modeling a compli-
cated bathymetry that has smooth and discontinuous features. The explicit equation for the
xy—dependent elevation z of the acoustic-elastic interface is given by

800m « > 1600m and y > 1600 m,

(21)
500m otherwise,

z(z,y) = Asin(kyz) sin(kyy) — {

with amplitude A = 300m and wavenumbers k, = 8/6400mrm~! and k, = 6/6400m m~".
Note that (21) represents a sinusoidal interface with a jump, as shown in Figure 14. The
model is discretized by 369.892 Hexahedral elements of an average edge length of 60m in
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Region | Meshsize (m) | Degree | p./q (kg/m*) | ep(m/s) | cg (m/s)
Qe he = 60 N, =14 2500 3400 1963
Qq he = 60 N, =14 1020 1500 -

Table 2: Test case 3.4. Material properties.

either the acoustic and elastic domains. The top (acoustic) surface is treated as a free-surface,
whereas the remaing (acoustic and elastic) domain boundaries are absorbing boundaries. The
material parameters are given in Table 2. A compressional point source of a f, = 10 Hz Ricker
wavelet, cf. (20), is used at position x5 = (1600, 1600, —300) m. The computation is carried
out by choosing a polynomial degree N, = N, = 4, leading to approximately 60 million
of degrees of freedom, by fixing the time step At = 107°s and a final time 7' = 2s. The
calculation was performed in approximately 16 hours by using 512 cores of the Marconi-A2
cluster located at CINECA, Italy. Snapshots of the computed elastic velocity wavefield in the
z direction together with the computed acoustic velocity potential are reported in Figure 15.
It is possible to observe the reflected wave at the top surface, the P-to-S converted wave in the
solid, headwaves that follow the smoothly varying fluid-solid interface. Furthermore, the sharp
corner in the middle of the domain, where a discontinuity in the ocean-bottom appears, acts
like a diffractor point, see Figure 15. We point out that the major benefit of this approach is to
produce highly accurate synthetic data-sets for geometrically complex models. These results
can be used in modern geophysical exploration techniques and 3D seismic data-processing
algorithms to reveal, with high precision, geometrically complex subsurface structures.

4 Conclusions and perspectives

We have presented a Discontinuous Galerkin Spectral Element method for the approxima-
tion of the elasto-acoustic evolution problem. Several numerical experiments carried out in
a three-dimensional framework have been discussed, both to verify the theoretical results
and to simulate a scenario of physical interest. Our approach is well-suited to comply with
the requirements for the discretization of heterogeneous seismic wave propagation problems
(geometric flexibility, high-order accuracy, and flexibility); in addition, it allows for the treat-
ment of non-matching grids at the interface between the elastic and the acoustic domains,
which can therefore be generated independently on each of the domains. All numerical
experiments have been carried out using the computer code SPEED [30], freely available at
http://speed.mox.polimi.it.

A future work consists in the extension to general polyhedral meshes in SPEED, in order to
tame the computational cost of mesh generation and enhance the geometrical flexibility of the
numerical discretization.
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Figure 2: Test case 3.1. Computational domain with matching (a), non-matching (b)—(c), and
unstructured matching (d) hexahedral meshes.
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Figure 3: Test case 3.1. Error in the energy norm vs. h (a)-(b) and N (c) at t = 0.1s.
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Figure 6: Test case 3.2. Scholte wave at the interface between an elastic medium and an

acoustic one.
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Figure 8: Test case 3.2. Comparison in time and frequency domain between the analytical
solution (red line) and the numerical one (black line). Relative misfit computed with [37]
for the acoustic velocity potential in & = (0,0,0.5) (a) and for the elastic displacement u,

in z = (0,0,—0.5) (b).

FEM: frequency-dependent envelope misfit; TEM: time-dependent

envelope misfit; TFEM: time-frequency envelope misfit; FPM: frequency-dependent phase
misfit; TPM: time-dependent phase misfit; TFPM: time-frequency phase misfit.
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Vertical point source at o = (200, 0,300) m

Figure 9: Test case 3.3. Geometry of the computational domain for the case of a seismic wave
in the presence of an underground cavity.
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Vertical point source at o = (200,0,300) m

Vertical point source at @y = (200, 0,300) m

Figure 10: Test case 3.3. Displacement along the z-direction and velocity potential at time
t=0.4s (a) and t =0.5s (b) for R ~ 1.
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Vertical point source at @ = (200, 0,300) m

-i-
Vertical point source at xg = (200, 0,300) m = .

Figure 11: Test case 3.3. Displacement along the z-direction and velocity potential at time
t=0.4s (a) and t = 0.5s (b) for R ~ 0.5.
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Vertical point source

600 m

Figure 12: Test case 3.3. Set of monitors in the square cross section of the computational
domain lying in the xz-plane, centered in the origin, with side 600 m.
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0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
t(s) t (s) t(s)

Figure 13: Test case 3.3. Time histories of the computed displacement (resp. velocity potential)
wavefield along the z-direction for the monitored points in the elastic subsoil (red) (resp. the
acoustic cavity (blue)) for the three cases considered R ~ 0.5 (left), R ~ 1 (center) and
R ~ 1.5 (right). For visualization purposes the velocity potential has been multiplied by a
factor 0.01.
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Figure 14: Test case 3.4. Hexahedral discretization of the elastic medium with discontinuous
sinusoidal ocean-bottom topography. The conforming discretization of the above acoustic
domain is not shown so as to make visible the complicated fluid-solid interface.
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Figure 15: Test case 3.4. Snapshots of the computed elastic velocity wavefield in the z direction
together with the computed acoustic velocity potential for time instants (a-b) ¢ = 0.5 s, (c-d)
t =0.6 s and (e-f) t =0.7 s.
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