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A Haptic Training Simulator for Maxillofacial Surgery
Un Simulateur Haptique pour ’Entrainement a la Chirurgie Maxillofaciale
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Traditionally surgeons have trained directly on patients with mentoring. To improve their training, surgery simulators have been developed,
from tangible replicas to more complex virtual reality and haptics-based simulators. Yet, these existing solutions either do not provide
realistic feedback, are not reusable and do not enable modifiable patient specificity, or they do but tend to be complex and expensive, thus
limiting adoption. Thus, to increase adoption, gesture training simulators still need a haptic technology with a trade-off between feedback
fidelity and cost, i.e. a technology that can render kinesthetic feedback with sufficient force while being compact, safe and preferably low-
cost. Therefore, we propose a hybrid maxillofacial surgery simulator relying on a tangible replica and with embedded novel ultrasonic haptic
brakes. This simulator can render customizable feedback, both vibrotactile and force feedbacks, and can reach forces up to 4.5N. This
simulator enables the training on the first step of an Epker osteotomy, i.e. a jawbone drilling procedure.

CCS CONCEPTS « Human-centered computing = Haptic devices « Human-centered computing = User studies

Hardware 2 Sensors and actuators

Additional Keywords and Phrases: Active lubrication, haptic brake, kinesthetic feedback, medical training, vibrotactile
feedback

Traditionnellement, les chirurgiens se forment directement sur les patients au cours du mentorat. Pour améliorer leur formation, des
simulateurs de chirurgie ont été développés, allant de répliques tangibles a des simulateurs de réalité virtuelle et haptiques plus complexes.
Pourtant, ces solutions existantes, soit ne fournissent pas de retour réaliste, ne sont pas réutilisables et ne permettent pas de modifier la
spécificité du patient simulé, soit elles le font mais ont tendance a étre complexes et coliteuses, limitant ainsi leur adoption. Ainsi, pour
accroitre I'adoption, les simulateurs de formation gestuelle ont encore besoin d'une technologie haptique avec un compromis entre la fidélité
du retour et le cott, c'est-a-dire une technologie capable de restituer un retour kinesthésique avec une force suffisante tout en étant compacte,
sécurisée et de préférence peu colteuse. Par conséquent, nous proposons un simulateur hybride de chirurgie maxillo-faciale s’appuyant sur
une réplique tangible et intégrant de nouveaux freins haptiques ultrasoniques. Ce simulateur peut restituer un retour personnalisable, a la
fois vibrotactile et de force, et peut atteindre des forces allant jusqu'a 4,5N. Ce simulateur permet de s'entrainer a la premiére étape d'une
ostéotomie d’Epker, c'est-a-dire une procédure de forage de la machoire.

Mots-clés additionnels : Lubrification active, frein haptique, retour kinesthésique, entrainement médical, retour vibrotactile
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1 INTRODUCTION

Learning motor skills is a slow process that needs many training sessions [15], yet crucial for surgeons as mistakes can have
dire consequences on the patient. Traditionally, surgeons have practiced on cadavers and animals or directly on the patient.
However, it can be complicated or inappropriate due to issues of availability, cost, ethics, limited resemblance between
animals or cadavers and live surgery, and most of all, non-reusability in the long term [4,5,17,19]. In fact, in the domain of
maxillofacial surgery, undergraduate surgeons often feel insufficiently trained [16]. To overcome this general issue,
technological solutions have been developed relying on the use of physical models (i.e. tangible replicas) or simulators in
virtual reality (VR) [4], as they aim to ensure countless training sessions, repeatability, flexibility and a certain level of realism
[5].

Many simulators and tangible replicas have been created for surgery training [1-4,6-10,12,13,17-22]. Their use has been
reported to help students be more confident, reduce their cognitive load and perform more quickly and accurately than those
without any simulation training [4-6,17,19]. Haptic feedback, especially kinesthetic, not only provides more realism, but is
also crucial in surgeries often relying solely on touch and with limited visibility inside the patient’s body. Moreover, it has
proven to enhance motor skills learning [5,14]. Maxillofacial jawbone drilling is a complex kinesthetic procedure as it
requires high motor precision to avoid irreversible damages, such as the section of nerves [8], rather high forces to drill
through bone and relies on the perception of different haptic feedback from both the different tissues and the interaction
with the surgical drilling tool. However, simulators with haptic feedback for maxillofacial training tend to often lack
reusability and patient specificity (i.e. simulation of different characteristics for a same pathology), realistic force feedback
[17,19], or on the contrary are extremely realistic and reusable but use very expensive and complex parts [8]. To our
knowledge, there are no existing low-cost tangible replicas or simulators offering reusability as well as patient specificity
for this operation. Therefore, we propose a novel hybrid drilling simulator, based on two low-cost and compact ultrasonic
haptic brakes, embedded inside a tangible 3D printed replica. Not only can it render different programmable haptic textures
with both vibrotactile and force feedbacks, but it also offers the advantage of being inherently stable as it can only render

resistive forces.

2 JAWBONE DRILLING

During operations like the Epker osteotomy, which is used to correct the jawbonne alignment of a patient, surgeons need to
drill precisely in the jawbone. It consists in drilling repeatedly along the Epker line (see left of Figure 1) to allow a clean
fracture of the bone so that the surgeons can then move it in the desired position to correct the misalignment. To obtain a
clean fracture, the surgeons need to drill completely in the cortical layer to avoid leaving remaining bone residue. Yet, they
must minimize the penetration in the spongy bone to avoid damaging the alveolar nerve [8]. Therefore, the most critical
task is related to controlling precisely the depth of the drill and thus, feeling the change of layers between cortical and

spongy. Our prototype simulator thus focuses on this step.
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Figure 1: Left: jawbone drilling along the Epker line. Middle: schematic representation of the drilling task with the different layers: a)
cortical sensation, b) transitory sensation, c) spongy sensation. Right: drilling haptic simulator and components.



3 DRILLING TRAINING SIMULATOR

The training module is a 3D printed replica of a drill handle glued to a glass plate. The force needed to move the drill is
controlled by two ultrasonic brakes exerting a modulated friction force on the glass plate. In addition, the device uses two
sensors to create a control loop for the brakes depending on the position and the force of the simulated drill and two power
supplies. Indeed, the position in a layer needs to be monitored in order to convey the corresponding haptic rendering
(typically cortical or spongy). as well as the force applied to match the corresponding drilling vibration [8]. For example, in
the cortical layer, the force resistance applied on the drill by the brake and the frequency of vibration linked to the cutting
head speed are higher than in spongy one. The simulator provides forces between 0 N and 4.5 N after subtracting the weight
of 1.3 N of the drill, which is in the range of the average maximal forces applied by surgeons and measured in simulators
during drilling (i.e. 4 N and 6 N) [8].

The simulated drilling task has two layers: cortical and spongy (see Figure 1). However, we decided to implement three
distinct haptic sensations to better simulate the sensations involved in the drilling, with an additional sensation representing
the state where the drilling head is in between the two layers. The first haptic layer (zone a in Figure 1) simulates the
sensation of cutting in the cortical layer. The second sensation (zone b) simulates the transitory phase between the cortical
and spongy layers. Thus, the depth of the transition layer is about half the diameter of the drill’s cutting head. Indeed, after
this depth the drill head would be exclusively in the spongy layer. The third sensation (zone c) simulates the sensation of
cutting in the spongy bone. Due to the system latency of 0.1s, the depth of each layer is variable, this variation is about 0.1 s
* User Speed. However, in reality this is not an issue as the depth of these layers vary from one person to another and with
the localization in the jaw [11] at a scale of about 1.1 mm. Thus, the transition layer depth stays realistic for a speed under
11 mm/s; as the task is about precision, we assume such high speed will not occur as surgeons speed seems to stay under

5mm/s in other simulators [8].
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