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Abstract

In this paper we develop a novel nonparametric framework to test the
independence of two random variables X and Y with unknown respective
marginals H(dx) and G(dy) and joint distribution F (dxdy), based on
Receiver Operating Characteristic (ROC) analysis and bipartite ranking.
The rationale behind our approach relies on the fact that, the indepen-
dence hypothesis H0 is necessarily false as soon as the optimal scoring
function related to the pair of distributions (H ⊗ G, F ), obtained from
a bipartite ranking algorithm, has a ROC curve that deviates from the
main diagonal of the unit square. We consider a wide class of rank statis-
tics encompassing many ways of deviating from the diagonal in the ROC
space to build tests of independence. Beyond its great flexibility, this new
method has theoretical properties that far surpass those of its competitors.
Nonasymptotic bounds for the two types of testing errors are established.
From an empirical perspective, the novel procedure we promote in this
paper exhibits a remarkable ability to detect small departures, of various
types, from the null assumption H0, even in high dimension, as supported
by the numerical experiments presented here.

1 INTRODUCTION

Let (X1, Y1), . . . , (XN , YN ) be N ≥ 1 independent and identically dis-
tributed (i.i.d.) random pairs, defined on a space (Ω, F , P) and valued in the
product space X ×Y, copies of the generic random pair (X, Y). An important
problem, occurring in many applications, consists in testing the independence
of the two r.v.’s X and Y based on the observation of the (Xi, Yi)’s. It is con-
sidered here from a nonparametric perspective, meaning that no assumptions
are made about the distribution F (dxdy) of the pair (X, Y), nor about the
marginal distributions H(dx) and G(dy) of X and Y. The goal is to test the
composite hypothesis:

H0 : F = H ⊗G versus H1 : F ̸= H ⊗G . (1)
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The problem thus consists in testing whether two probability distributions on
the product space X × Y are equal or not. Under additional (parametric) as-
sumptions on the distribution F (e.g. discreteness, Gaussianity), various mea-
sures of dependence can be classically used to build pivotal test statistics (e.g.
chi-square statistic, empirical linear correlation). In the nonparametric case,
most techniques consists in computing a statistical version of a (pseudo-) dis-
tance between F and H ⊗G (e.g. integral probability metrics, see [45]). Refer
to e.g. [55, 56] for covariance-based distances, generalized to metric spaces in
[43, 32]. [21, 24, 19] introduced kernel-based extensions relying on the Hilbert-
Schmidt Independence Criterion (HSIC), where the covariance distance being
shown to be a specific instance of the class of HSIC-type measures of dependence
in [53]. Other measures for testing independence have been recently proposed,
see in particular, [3, 18] using the notion of mutual information, [23, 29] based
on partitioning techniques, and [48, 50, 49] considering use of the maximal in-
formation criterion.

Rank statistics for testing independence. The approach developed here,
of completely different nature, is inspired by rank-based methods ([26] or [34],
[35] or [36]) tailored to the situations where X = Y = R and H0 is tested
against specific alternatives of positive (regression) dependence1. Assuming
in addition that X and Y are continuous r.v.’s, a natural strategy (see [37])
consists in ranking the pairs (Xi, Yi) according to increasing values of the
Xi’s: (Xσ(1), Yσ(1)), . . . , (Xσ(N), Yσ(N)), where σ is the permutation of
the index set {1, . . . , N} (i.e. the element of the symmetric group SN )
s.t. Xσ(1) < . . . < Xσ(N) and analyzing the ranks of the Yσ(i)’s through
the rank correlation coefficient, see e.g. Chapter 6 in [40]: conditioned upon
(Xσ(1), . . . , Xσ(N)), the latter being uniformly random under H0, while the
rank of Yσ(i) among the Yσ(j)’s exhibits an ‘upward trend’ under the positive
dependence alternative (i.e. it is stochastically increasing with i). The ap-
proach to independence testing based on statistical learning we propose shares
similarities with such rank-based techniques, it also consists ranking pairs in
X × Y. Extension of rank-based techniques for independence testing to multi-
variate data has been recently the subject of much attention in the literature.
The sole approach enjoying distribution-freeness under nonparametric assump-
tions so far, is based on the notion of center-outward ranks/signs in [27]. It
is used in [54] to build generalized symmetric (test) statistics: it boils down to
plugging into classic statistics, e.g. the distance covariance measure for inde-
pendence testing, a center-outward generalization of rank statistics by mapping
any absolute continuous distribution to the spherical uniform distribution on the
d-dimensional unit ball, solution of the related optimal transport formulation,
see [28]. This encompasses the main modern rank-based and distance-based
methods for testing the hypothesis of independence, see e.g. [14, 41]. While
these methods have appealing theoretical properties, see [54], they are limited
by the strong negative impact of d of the feature on their power, studied for
kernel and distance based techniques, see section 3 in [47]. As shown in [31],
this is caused by the dependence of the kernel of the U -statistic of degree two
w.r.t. the dimension d.

1Two real-valued r.v.’s X and Y defined on the same space exhibit positive dependence iff
P (X > x, Y > y) ≥ P (X > x)× P (Y > y) for any (x, y) ∈ R2.
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Our contributions. The nature of our approach is quite different. It involves
a preliminary statistical learning step, namely bipartite ranking on X ×Y, and
relies on Receiver Operating Characteristic (ROC) analysis. The ROC curve
is the gold standard to differentiate between two univariate distributions. The
rationale behind our methodology lies in the fact that, under the null hypothesis
H0, the optimal ROC curve related to the bipartite ranking defined by the pair
(H ⊗ G, F ) of distributions on X × Y, is known and coincides with the main
diagonal of [0, 1]2. It is thus natural to quantify the departure from H0, by
the deviations of the optimal ROC curve from the diagonal. The latter can be
summarized by appropriate two-sample (linear) rank statistics, whose concen-
tration properties have been investigated in [8]. Since the optimal ROC curve is
unknown in practice, a bipartite ranking task on the product space X ×Y must
be completed first to rank the pairs. Our method is implemented in three steps:
after splitting the sample in two parts (2-split trick) and shuffling the pairs, a
first part of the sample is used to train a bipartite ranking function to output
a scoring function. The second part is then ranked using the scoring function
previously learned so as to compute a test statistic assessing the possible depar-
ture from independence. It may be applied in a general multivariate framework
and has considerable advantages in the high-dimension case, compared to all its
competitors, especially those based on probability metrics between statistical
versions of F and H ⊗ G, see e.g. [23]. In contrast, provided that the model
bias (i.e., the error inherent in the choice of the set of ranking functions over
which the learning step is performed) is ‘small’, the power of the test proposed
is possibly affected by the dimension only through the choice of bipartite rank-
ing algorithm. This is supported here by a sound (nonasymptotic) theoretical
analysis based on the concentration results for two-sample R-processes proved
in [8] and promising empirical results. Our method is shown to work well, in
the vicinity of independence especially, surpassing the existing methods.

Connection to the two-sample problem. We point out that the use of (an
estimate of) the optimal ROC curve, on which the novel independence testing
method promoted here relies, has been recently exploited for the purpose of sta-
tistical hypothesis testing in [13] to solve the two-sample problem, i.e. to test
the assumption that two i.i.d. samples share the same distribution. The major
difference naturally lies in the nature of the alternatives to the null assumption,
i.e. departure from independence vs. departure from homogeneity, but also
in the statistical framework/analysis: whereas independent observations drawn
from each of the two distributions to be tested equal are supposedly available
in the two-sample problem, no sample of the distribution H ⊗ G is directly
available under H1 in independence testing. A shuffling procedure (i.e. a ran-
dom permutation of parts of the indices {1, . . . , N}), that aims at building
independent observations drawn from H ⊗ G, is key in the testing method we
propose and analyze here. To summarize, for the method proposed here, new
to the literature, we show that: 1) the test statistic is distribution-free resulting
in the exact computation of the testing threshold, 2) a nearly optimal control of
the type-II error with explicit parameters can be obtained for all types of alter-
native, 3) the method depends on the dimension of the underlying spaces only
through the bipartite ranking algorithm, importantly avoiding any mispessifica-
tion of the asymptotic distribution ([31]) and harmfull high-dimensional setting.
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The article is organized as follows. Section 2 recalls key notions pertaining to
ROC analysis and bipartite ranking, providing an insight into the rationale of
the method. It is described and theoretically analyzed from a nonparametric
and nonasymptotic perspective in section 3. Numerical results are displayed in
section 4, while concluding remarks are collected in section 5. Due to space
constraints, some properties related to ROC analysis and bipartite ranking, all
technical details and proofs, as well as additional numerical experiments, are
postponed to the Supplementary Material.

2 PRELIMINARIES

We first briefly recall the main concepts related to ROC analysis and bipartite
ranking, involved in the methodology subsequently proposed and analyzed. The
rationale behind the latter is next explained. Here and throughout, by I{E} is
meant the indicator function of any event E , by δa the Dirac mass at any point a,
byW−1(u) = inf{t ∈ (−∞, +∞] : W (t) ≥ u}, u ∈ [0, 1] the generalized inverse
of any cumulative distribution functionW (t) on R∪{+∞}. The floor and ceiling
functions are denoted by u ∈ R 7→ ⌊u⌋ and by u ∈ R 7→ ⌈u⌉ respectively. For
any bounded function ψ : (0, 1) → R, we also set ||ψ||∞ = supu∈(0,1) |ψ(u)|. We
consider r.v. denoted in bold symbols as valued in a multivariate space Z, e.g.
subset of Rd, with d ≥ 2.

2.1 Bipartite Ranking and ROC Analysis

We explain the connection between bipartite ranking and the quantification of
the discrepancy between two probability distributions on a same space.

ROC analysis. The ROC curve is a gold standard to measure the differ-
ence between two univariate distributions, F1 and F2 say. It is defined by the
Probability-Probability plot t ∈ R 7→ (1−F1(t), 1−F2(t)), connecting possible
jumps by line segments by convention. It can alternatively be seen as the graph
of a càd-làg (i.e. right-continuous and left-limited) non-decreasing mapping de-
fined by u ∈ (0, 1) 7→ ROCF1,F2

(u) := 1−F2 ◦F−1
1 (1− u) at points α such that

F2◦F−1
1 (1−u) = 1−u. The curve ROCF1,F2 coincides with the main diagonal of

[0, 1]2 iff F1 = F2. Hence, the notion of ROC curve offers a visual tool to exam-
ine the differences between two univariate distributions. For instance, the uni-
variate distribution F2 is stochastically larger2 than F1 iff the curve ROCF1,F2

is everywhere above the main diagonal. Of course, the curve ROCF1,F2
is un-

known in practice, just like the Fi’s. Hence, ROC analysis must be based on
independent i.i.d. samples (X1,1, . . . , X1,n1) and (X2,1, . . . , X2,n2) with
distributions F1 and F2 respectively and consists in plotting ROCF̂1,F̂2

, where

F̂i = (1/ni)
∑

k≤ni
δXi,k

is the corresponding empirical counterpart of Fi with
i ∈ {1, 2}. A popular scalar summary is the Area Under the ROC Curve

(AUC), defined by AUC(F1,F2) =
∫ 1

0
ROCF1,F2

(u)du. Its empirical version can
be expressed as an affine transform of a (two-sample linear) rank statistic, the
Mann-Whitney Wilcoxon (MWW) statistic Ŵn1,n2

=
∑

k≤n2
R(X2,k), where

2Recall that F2 is said to be stochastically larger than F1 iff F1(t) ≥ F2(t) for all t ∈ R.
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the ranks R(X2,k) =
∑

l≤n1
I{X1,l ≤ X2,k}+

∑
l≤n2

I{X2,l ≤ X2,k} denotes the
rank of X2,k among the pooled sample:

n1n2AUC(F̂1, F̂2) = Ŵn1,n2
− n2(n2 + 1)

2
. (2)

It is thus a distribution-free statistic (concentrated around the value 1/2) when
F1 = F2, that can be naturally used to test the hypothesis of equality in distri-
bution based on the Xi,k’s with i ∈ {1, 2}.

Bipartite ranking. Consider now two distributions F+ and F− on a gen-
eral measurable space Z, referred to as positive and negative distributions.
Let two independent i.i.d. samples X+,1, . . . , X+,n+ and X−,1, . . . , X−,n−

drawn from F+ and F− respectively. The goal of bipartite ranking is to learn
a scoring function s : Z → (−∞, ∞], based on the two samples, to rank any
new observation without prior knowledge, by inducing a total preorder on Z
statistically ranking the positive instances (+) at the top of the resulting list
compared to the negative ones (−), i.e., ∀(x, x′) ∈ Z2, x ≼s x

′ iff s(x) ≤ s(x′).
Let S be the set of all scoring functions on Z. One evaluates the ranking
performance of a candidate s(z) in S by plotting (a statistical version of) the
ROC curve ROC((Fs,−,Fs,+), α) = ROC(s, α), denoting by Fs,ϵ the pushfor-
ward distribution of Fϵ by the mapping s(z) for ϵ ∈ {−, +}. This defines
a partial preorder on S: for all (s1, s2), s2 is more accurate than s1 when
ROC(s1, ·) ≤ ROC(s2, ·) on [0, 1]. The most accurate scoring functions are in-
creasing transforms of the likelihood ratio Ψ(z) = dFs,+/dFs,−(z), as can be
deduced from a straightforward Neyman-Pearson argument (see e.g. Propo-
sition 4 in [11]): S∗ =

{
s ∈ S,∀(z, z′) ∈ Z2,Ψ(z) < Ψ(z′) ⇒ s∗(z) < s∗(z′)

}
.

For all (s, u) ∈ S × (0, 1), we have: ROC(s, u) ≤ ROC∗(u), where ROC∗(·) =
ROC(Ψ, ·) = ROC(s∗, ·) for any s∗ ∈ S∗. The optimal curve is always concave,
increasing, above the main diagonal of the ROC space consequently, cf [11]. A
key to understanding the method in section 3 is to realize that F+ = F− iff
ROC∗ coincides with the diagonal of [0, 1]2, see subsection 2.2.

ROC curve optimization. From a quantitative perspective, bipartite rank-
ing aims at building a scoring function s(z), based on the Xϵ,k’s with a ROC
curve as close as possible to ROC∗. A typical way of measuring the deviation
between these curves is to consider their distance in sup norm. As ROC∗ is
unknown, just like S∗, no straightforward statistical counterpart of this loss
can be computed. In [11] and [12], it is proved that bipartite ranking can
be viewed as nested cost-sensitive classification tasks. By discretizing them
adaptively, empirical risk minimization can be sequentially applied, with sta-
tistical guarantees in the sup-norm sense at the cost of an approximation bias.
Ranking performance can be also measured by means of the L1-norm in the

ROC space:
∫ 1

0
|ROC(s,u)−ROC∗(u)|du = AUC∗ −AUC(s), where AUC(s) =

AUC(Fs,−,Fs,+) and AUC∗ = AUC(Ψ). The minimization of the L1-distance
to ROC∗ is equivalent to the maximization of the (scalar) AUC criterion. Max-
imizing the latter over a class S0 ⊂ S, of controlled complexity, is a popular
approach to bipartite ranking, and documented in various articles. Refer to e.g.
[1] or [9] for upper confidence bounds for the AUC deficit of scoring rules ob-

tained by solving maxs∈S0
AUC(F̂s,−, F̂s,+), where F̂s,ϵ = (1/nϵ)

∑nϵ

j=1 δs(Xϵ,j)
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for ϵ ∈ {−,+}. As noticed in (2), this boils down to maximizing the rank-sum
criterion: Ŵn−,n+

(s) =
∑n+

i=1R(s(X+,i)), where R(s(X+,i)) = NF̂s,N (s(X+,i))

for i ∈ {1, . . . , n+}, F̂s,N (t) = (1/N)
∑

ϵ∈{−,+}
∑nϵ

i=1 I{s(Xϵ,i) ≤ t} for t ∈ R
and N = n+ + n−. As expected, appropriate ranking performance criteria take
the form of (two-sample linear) rank statistics, see [10]. In [8], the empirical
ranking performance measures

Ŵϕ
n−,n+

(s) =

n+∑
i=1

ϕ

(
R(s(X+,i))

N + 1

)
, (3)

where ϕ : [0, 1] → R is an increasing score-generating function that weights the
positive ranks involved the functional, are considered. For ϕ(v) = v, one recovers
the MWW statistic and the AUC criterion, see (2). If Fs,+ = Fs,−, the ranks of
the ‘positive scores’ are uniformly distributed. The distribution Lϕ

n−,n+
of (3)

is thus independent from the distributions of the Xϵ,i’s, and can be tabulated
by means of elementary combinatorial computations. When n+ = ⌊pN⌋ and
n− = ⌈(1− p)N⌉ for p ∈ (0, 1), the statistic (1/N)Ŵϕ

n−,n+
(s) can be viewed as

an empirical version of Wϕ-ranking performance:

Wϕ(s) = E [(ϕ ◦ Fs)(s(X+))] =
1

p

∫ 1

0

ϕ(v)dv

− 1− p

p

∫ 1

0

ϕ (p(1− ROC(s, α)) + (1− p)(1− u)) du , (4)

where Fs = pFs,+ + (1 − p)Fs,− for any s ∈ S. For any score-generating
function ϕ that rapidly vanishes near 0 and takes much higher values near 1,
such as ϕ(v) = vq with q > 1, the quantity (4) reflects the behavior of the curve
ROC(s, ·) near 0, i.e., the probability that s(X+) takes the highest values in
other words. As stated in Proposition 6 of [8], for any s, s∗ ∈ S × S∗, we
have Wϕ(s) ≤ W ∗

ϕ := Wϕ(dF+/dF−) = Wϕ(s
∗). If ϕ is strictly increasing,

S∗ coincides with the ensemble of maximizers of Wϕ. In [8], bounds for the
maximal deviations between (3) and NWϕ(s) over appropriate classes S0 have
been proved, and generalization results for maximizers of the empirical Wϕ-
ranking performance criterion based on the latter have been established. The
theoretical analysis carried out subsequently relies on these results.

2.2 On Dependence through ROC Analysis

We now go back to the problem recalled in section 1 and explain why the
analysis of ROC curves and their scalar summaries (4) provide natural tools
to test the statistical hypothesis of independence H0. Consider the notations
introduced in section 2.1, and set Z = X × Y, F− = H ⊗G and F+ = F . Our
approach relies on the observation that deviations of the curve ROC∗ from the

main diagonal of [0, 1]2, as well as those of W ∗
ϕ from

∫ 1

0
ϕ(v)dv, for appropriate

score-generating functions ϕ, provide a natural way of measuring the departure
from H0, as revealed by the theorem below.

Theorem 1. The following assertions are equivalent.

(i) The hypothesis ‘H0 : H ⊗G = F ’ holds true.
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(ii) The optimal ROC curve relative to the bipartite ranking problem de-
fined by the pair (H ⊗ G,F ) coincides with the diagonal of [0, 1]2: ∀u ∈
(0, 1), ROC∗(u) = u.

(iii) For any function ϕ(v), we have W ∗
ϕ =

∫ 1

0
ϕ(v)dv .

(iv) There exists a strictly increasing score-generating function ϕ(u) s.t.

W ∗
ϕ =

∫ 1

0
ϕ(v)dv.

(v) We have AUC∗ = 1/2.

In addition, we have:

AUC∗ − 1

2
=

∫ ∫ ∣∣∣∣ dF

d(H⊗G)
(x,y)− 1

∣∣∣∣H(dx)G(dy) . (5)

Hence, the optimal curve ROC∗ quantifies the dissimilarity between the
H ⊗G and F , as depicted by Eq. (5).

Example 1. (Multivariate Gaussian Variables) Consider a centered Gaus-
sian r.v. (X, Y) with definite positive covariance Γ, valued in Rq ×Rl. Denote
by ΓX and ΓY the (definite positive) covariance matrices of the components
X and Y. As an increasing transform of the likelihood ratio, the quadratic
scoring function s : z ∈ Rq+l 7→ zt(Γ−1 − diag(Γ−1

X ,Γ−1
Y ))z is optimal. When

Cov(X1, Y k) = ρ, for all k ≤ l, with ρ ∈ [0, 1), and Γi,j = δij otherwise, the
hypothesis H0 is naturally true iff ρ = 0. The optimal ROC curve is plotted in
Fig. 1 for different values of the parameter ρ, such that Γ is positive definite,
and q = l = 5. We further refer to section A.3 for an advanced analysis in light
of the proposed method.

Figure 1: Left: Joint Gaussian density for ρ = 0.20 of (X1, Y 1). Right: Plots
of the optimal ROC curves for two Gaussian vectors with linear correlation
ρ ∈ {0.0, 0.05, 0.10, 0.15, 0.20} and q = l = 5.

Ranking-based rank tests of independence. Theorem 1 shows that the
testing problem (1) can be reformulated in terms of properties of the optimal
ROC curve, related to the bipartite ranking problem (H ⊗ G,F ), as ‘H0 :

AUC∗ = 1/2 vs. H1 : AUC∗ > 1/2’, or, equivalently, as ‘H0 : W ∗
ϕ =

∫ 1

0
ϕ(u)du

vs. H1 : W ∗
ϕ >

∫ 1

0
ϕ(u)du’, for any given strictly increasing score generat-

ing function ϕ(u). It is noteworthy that these formulations are unilateral, the
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optimal ROC curve being necessarily above the diagonal. From a practical per-
spective, the curve ROC∗ as well as its scalar summaries, such as AUC∗ or W ∗

ϕ ,
are unknown. The approach we propose is thus implemented in three steps.
After splitting the samples {(X1,Y1) . . . , (XN ,YN )} into two parts: 1) based
on the first part, build two independent i.i.d. samples with respective distribu-
tions H ⊗G and F , then 2) solve the corresponding bipartite ranking problem
and produce a scoring function ŝ(z), as described above. Finally, 3) perform
a univariate rank-based test based on a statistic of type (3) computed from
the second part of the data, once scored using ŝ, to detect possible statistically
significant deviations between the ROC curve and the diagonal.

The subsequent sections provide both theoretical and empirical evidence
that, beyond the fact that they are nearly unbiased, such testing procedures
permit to detect very small departures, of various types, from the hypothesis of
independence.

3 METHODOLOGY AND THEORY

We now describe at length the testing procedure previously sketched, and next
establish the related theoretical guarantees by proving nonasymptotic bounds
for the two types of testing error. Throughout this section, we set F− = H ⊗G
and F+ = F .

3.1 Ranking-based Rank Test Statistics

Following section 2, two steps are required to implement the procedure pro-
posed. Let n < N be an even integer. Hence, we use a classic two-split trick to
independently divide the original i.i.d. sample {(X1,Y1) . . . , (XN ,YN )} into
two:

Dn := {(Xi,Yi) : i = 1, . . . , n}
D′

n′ := {(Xi,Yi) : i = n+ 1, . . . , N} ,

with n < N and n′ = N − n. Fix p ∈ (0, 1), set n+ = ⌊pn⌋ = n− n− and n′+ =
⌊pn′⌋ = n′ − n′−. Consider two independent random variables σ and σ′, defined
on the same probability space (Ω,F ,P) as the (Xi,Yi)’s and independent of
the latter, uniformly distributed in Sn− and Sn′

−
respectively. From the first

part Dn, one considers the two samples: D−
n−

= {(Xi,Yσ(i))1≤i≤n−}, D+
n+

=
{(Xi,Yi)1+n−≤i≤n}, whereas the samples below are formed from the second
part D′−

n′
−
= {(Xi,Yn+σ′(i−n))1+n≤i≤n+n′

−
}, D′+

n′
+
= {(Xi,Yi)1+n+n′

−≤i≤N}.

Proposition 1. The following assertions hold true.
(i) The samples D−

n−
, D+

n+
, D′−

n′
−
, and D′+

n′
+
are independent.

(ii) For ϵ ∈ {−,+}, Dϵ
nϵ

and D′ϵ
n′
ϵ
are i.i.d. samples with distribution Fϵ.

Now that we are equipped with the two pairs of negative/positive sam-
ples constructed above, the procedure we propose requires two ingredients:
a bipartite ranking algorithm A that permits to construct a scoring function
ŝ = A(D−

n−
,D+

n+
) based on the first part of the data (see the algorithms in e.g.

[16], [46], [52], [51] or [4]) and a strictly increasing score-generating function ϕ.
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As explained in section 2, the independence testing problem (1) for the couple
(H ⊗G,F ) can be expressed as follows:

H0 : W ∗
ϕ =

∫ 1

0

ϕ(u)du vs. H1 : W ∗
ϕ >

∫ 1

0

ϕ(u)du . (6)

Notice that the formulation above is unilateral, the optimal curve ROC∗ being
always above the first diagonal, or equivalently, the pushforward distribution of
F by Ψ(x, y) is always stochastically larger than that of H ⊗G. Relying on (6),
one computes the values taken by the scoring function ŝ(x, y) over the pooled
data set D′−

n′
−
∪ D′+

n′
+
and next the following version of the statistic (3):

Ŵϕ
n′
−,n′

+
(ŝ, σ′) =

N∑
i=1+n+n′

−

ϕ

(
R′

σ′(ŝ(Xi,Yi))

n′ + 1

)
, (7)

where the ranks are defined on D′
n′ by R′

σ′(t) =
∑N

i=1+n+n′
−
I{ŝ(Xi,Yi) ≤

t} +
∑n+n′

−
i=1+n I{ŝ(Xi,Yn+σ′(i−n)) ≤ t}. Under H0, the test statistic (7) has

distribution Lϕ
n′
−,n′

+
, similar to the univariate rank statistic defined in (3) by

Proposition 1. Fix now the desired level α ∈ (0, 1) of the test of indepen-

dence. Consider the (1−α)-quantile qϕn′
−,n′

+
(α) of the pushforward distribution

of Lϕ
n′
−,n′

+
, by the mapping w 7→ (1/n′)w−

∫ 1

0
ϕ(u)du, depending only on ϕ, n′+

and n′−. Proposition 2 proves that constructing a test based on the statistic (7)

and using this (1− α)-quantile qϕn′
−,n′

+
(α) as testing threshold, has exact type-I

error less than α by the bound (9). Figure 2 summarizes the procedure.

Proposition 2. (Type-I Error Bound.) Let α ∈ (0, 1) and let a scoring
function ŝ = A(D−

n−
,D+

n+
). The test statistic for testing (6), based on the

second part of the data D′−
n′
−
∪ D′+

n′
+
, is defined by:

Φϕ
α = I

{
1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′) >

∫ 1

0

ϕ(u)du+ qϕn′
−,n′

+
(α)

}
(8)

Under H0, we have for any pair of distributions (H ⊗ G,F ) and for all 1 ≤
n′− < n′ and 1 ≤ n′+ < n′:

PH0

{
Φϕ

α(D′
n′(ŝ)) = +1

}
≤ α , (9)

where D′
n′(s) denotes the dataset obtained by mapping the observations of D′

n′

by any scoring function s.

The type-I error is exactly controlled, and essentially independent of the
scoring function and holds true for any sample size n′.

3.2 Nonasymptotic Theoretical Guarantees Under the Al-
ternative - Error Bound

We now investigate the theoretical properties of the test procedure previously
described in the specific situation, where the bipartite ranking step is accom-
plished by maximizing, over a class S0 of scoring functions s(x, y) on X × Y,

9



Ranking-based Independence Rank Testing

Input. Collection of N ≥ 1 i.i.d. copies DN = {(X1,Y1) . . . , (XN ,YN )} of
(X,Y); subsample sizes n = n+ + n− < N and n′ = N − n = n′

+ + n′
−; bipartite

ranking A algorithm operating on the class S0 of scoring functions on X × Y; score-
generating function ϕ; target level α ∈ (0, 1); quantile qϕ

n′
−,n′

+
(α).

1. Splitting and Shuffling. Divide the initial sample into two subsamples DN =
Dn ∪ D′

n′ .

Independently from the (Xi,Yi)
′s, draw uniformly at random two independent

permutations σ and σ′ in Sn− and Sn′
−

respectively, in order to build the inde-

pendent samples: D−
n− = {(Xi,Yσ(i))1≤i≤n−}, D+

n+
= {(Xi,Yi)1+n−≤i≤n},

and D′−
n′
−
= {(Xi,Yn+σ′(i−n))1+n≤i≤n+n′

−
}, D′+

n′
+
= {(Xi,Yi)1+n+n′

−≤i≤N}.

2. Bipartite Ranking. Run the bipartite ranking algorithm A based on the
pooled training dataset Dn = D−

n− ∪D+
n+

built at the previous step, in order to
learn the scoring function ŝ = A(Dn).

3. Scoring and Two-sample Rank Statistic. Build the univari-
ate positive/negative subsamples using the scoring function ŝ learned
at the previous step {ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′

−
,Yn+σ′(n′

−))} and

{ŝ(Xn+n′
−+1,Yn+n′

−+1), . . . , ŝ(XN ,YN )}. Sort them by decreasing order to
compute

Ŵϕ

n′
−,n′

+
(ŝ, σ′) =

N∑
i=1+n+n′

−

ϕ

(
R′

σ′ (ŝ(Xi,Yi))

n′ + 1

)
. (10)

Output. Compute the outcome of the test of level α based on the test statistic
(10), i.e., accept H0 if:

1

n′
+

Ŵϕ

n′
−,n′

+
(ŝ, σ′) ≤

∫ 1

0

ϕ(u)du+ qϕ
n′
−,n′

+
(α) , and reject it otherwise.

Figure 2: Ranking-based independence rank test.

the empirical Wϕ-ranking performance measure computed from D−
n−

∪ D+
n+

:

Ŵϕ
n−,n+

(s, σ) =

n∑
i=1+n−

ϕ

(
Rσ(s(Xi,Yi))

n+ 1

)
, (11)

where Rσ(t) =
∑n

i=1+n−
I{s(Xi,Yi) ≤ t}+

∑n−
i=1 I{s(Xi,Yσ(i)) ≤ t}. We thus

consider
ŝ ∈ argmax

s∈S0

Ŵϕ
n−,n+

(s, σ) . (12)

We focus on establishing a uniform nonasymptotic bound for the type-II error
of the test statistic Φϕ

α. It relies on the generalization properties of (12) w.r.t.
the deficit of Wϕ-ranking performance, investigated at length in [8] (practical
optimization issues are beyond the scope of the present paper, one may refer
to [8] for a dedicated study). The following technical assumptions are required
to apply the related guarantees, and refer to the Suppl. Material for explicit
definitions and details.
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Assumption 1. The score-generating function ϕ : [0, 1] 7→ R, is nondecreasing,
of class C2.

Assumption 2. Let M > 0. For all s ∈ S0, the pushforward distributions of F
and H ⊗ G by the mapping s(x, y) are continuous, with density functions that
are twice differentiable and have Sobolev W2,∞-norms bounded by M < +∞.

Assumption 3. The class of scoring functions S0 is a Vapnik-Chervonenkis
(VC) class of finite VC dimension V <∞.

Considering the quantityW ∗
ϕ −

∫ 1

0
ϕ(u)du to describe the departure from the

null hypothesis H0 (see Theorem 1) and the bias model W ∗
ϕ − sups∈S0

Wϕ(s)
inherent in the bipartite ranking step (when formulated as empiricalWϕ-ranking
performance maximization), we introduce the two (nonparametric) classes of
pairs of probability distributions on X × Y.

Definition 1. Let ε > 0. Denote by H1(ε) the set of alternative hypotheses cor-

responding to all of probability distributions F on X ×Y s.t. W ∗
ϕ −

∫ 1

0
ϕ(u)du ≥

ε , where we recall W ∗
ϕ =Wϕ(s

∗) =W ∗
ϕ (dF/d(H ⊗G)) for any s∗ ∈ S∗.

Definition 2. Let δ > 0, S0 ⊂ S. We denote by B(δ) the set of all pairs
(H⊗G,F ) of probability distributions on X×Y such that W ∗

ϕ−sups∈S0
Wϕ(s) ≤

δ.

The theorem below provides a rate bound for the type-II error of the ranking-
based rank test (8) of size α. It depends on the sample sizes n used for bipartite
ranking, and on n′ = N − n for performing the rank test based on the learned
scoring function, see Fig. 2.

Theorem 2. (Type-II error bound.) Let ϕ(u) be a score-generating func-
tion and ε > δ > 0. Let σ, σ′ two independent permutations drawn resp. from
Sn− and Sn′

−
, independent of the Xis, Yjs. Fix α ∈ (0, 1). Suppose that

Assumptions 1-3 are fulfilled. Let p ∈ (0, 1) such that n ∧ n′ ≥ 1/p. Set
n+ = ⌊pn⌋ and n− = ⌈(1 − p)n⌉ = n − n+, as well as n′+ = ⌊pn′⌋ and
n′− = ⌈(1 − p)n′⌉ = n′ − n′+. Then, there exist constants C1 and C2 ≥ 24,
depending on (ϕ, V), such that the type-II error of the test (8) is uniformly
bounded:

sup
(H⊗G,F )∈H1(ε)∩B(δ)

PH1

{
Φϕ

α = 0
}
≤ 18 exp

(
−Cn

′(ε− δ)2

16

)

+ C2

(
1 +

ε− δ

32C1κp

)−npκp(ε−δ)/(8C2)

(13)

as soon as n′ ≥ 4 log(18/α)/(C(ε−δ)2) and n ≥ 16C2
1/(p(ε−δ)2), with constants

κp = p∧(1−p), C = 8−1 min
(
p/∥ϕ∥2∞, (p∥ϕ′∥2∞)−1, ((1− p)∥ϕ′∥2∞)−1

)
, the Cj’s

are explicitly detailed in the proof.

The first term results from the control of the type-II error of a univariate
rank statistic. The second term relies on Theorem 5 established in [8], inherited
from the learning stage of the scoring function. If the bias δ induced by the
learning step is guaranteed to be smaller that the departure ε from H0, such
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that ε − δ > 0, and if this quantity is kept fixed, then both terms in (13) con-
verge to zero when both n, n′ → ∞. Importantly, the error rate related to
the hypothesis test is independent on the dimensions of the spaces X and Y.
The only term dependent on those dimensions comes from the learning step,
through the choice of bipartite ranking related to the class of scoring functions
S0. Precisely, only the constants C1 and C2 depend on the dimensions of X and
Y as inherited by the VC dimension V of S0. We illustrate this bound and its
parameters (ε, δ) in the context of Example 1 in the Suppl. Material.
This result is important and new to the literature for testing independence un-
der nonparametric alternatives. It is, to the best of our knowledge, the first
finite sample probabilistic uniform control of the type-II error. The power of
test statistics from the literature comparatively suffers from the underlying di-
mensions, see [47]. The estimator of those statistics indeed take the form of U -
statistics based on multivariate observations, for which it has been proved to be
subject to misspecification of the asymptotic distribution under nonparametric
alternatives, see [31]. Hence, our proposed method circumvents this limitation
by computing the test statistic based on univariate samples that are mapped
thanks to the scoring function solution of the bipartite ranking problem.

4 NUMERICAL EXPERIMENTS

This section presents the empirical performance of our proposed method (Fig.
2), by illustrating the theoretical testing guarantees of section 3 through: 1)
high-dimensional settings and non-monotonic class of alternatives, and 2) ap-
plication to fair learning by testing for statistical parity based on real data
published in [33]. We mainly consider synthetic datasets to exactly control
the departure from independence. We refer to the Supp. Material, Section C
for details on the implementation and additional experiments. These experi-
ments can be reproduced using the Python code available at https://github.

com/MyrtoLimnios/independence_ranktest.

Ranking-based independence rank tests. We implemented the Ranking
Forest algorithm (rForest, [7]) to solve Step 2, following the empirical results
in [13]. We selected two score-generating functions to compute the rank statistic
(8) for Step 3 : ϕ(u) = u (rForestMWW , [58]) and ϕ(u) = uI{u ≥ u0} with
u0 ∈ {0.85, 0.90, 0.95} (rForestu0

, [10]) considering only the 1 − u0 higher
ranks in the computation of the statistic corresponding to the beginning of the
ROC curve.

Evaluation criteria and experimental parameters. Once all methods are
calibrated for the range of significance levels α ∈ (0, 1), we compare the graphs
of the rate of rejecting H0 under H1, and also at fixed α = 0.05 exposed in tables
in the Supp. Material. These criteria are computed over B = 100 Monte-Carlo
samplings, with 95% confidence interval, and plotted against the dependence
parameter ρ ∈ R, as function of the departure level ε ∈ (0, 1), see Def. 1.

Probabilistic model and experimental parameters. We continue on Ex.
1 motivated by the results in [31] referred to as model (GL). Consider (X, Y) ∼
N (ed,Γρ), where ed ∈ Rd the null vector, Cov(X1, Y k) = ρ, for all k ≤ l and
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Γρ,i,j = δij otherwise. We implement model (M1) for non-monotonic set of al-
ternatives, wherein X1 = ρ cosΘ+ω1/4, Y

1 = ρ sinΘ+ω2/4, with ρ ∈ {1, 2, 3},
ωi ∼ N (0, 1), i ∈ {1, 2}, and Θ ∼ U([0, 2π]) all variables being independent, and
with d ∈ {4, 10, 26}, N ∈ {500, 2000}. (M1) is extended for high dimension to
both a sparse (M1s) and dense (M1d) models, see the Supp. Material, Section
C therein.

The number of random permutations for our procedure is Kp ∈ {10, 50}
under H1. The pooled sample size N is fixed, with n = 4N/5 and n′ = N/5,
and set q = l = d/2.

Benchmark tests. We implement two state-of-the-art multivariate and non-
parametric tests, namely the unbiased estimator of the Hilbert-Schmidt Inde-
pendence Criterion (HSIC, [22]), with the recommended Gaussian kernel with
bandwidth the median heuristic of the distance between the points in the merged
sample (e.g. [20]), and the centered estimator of the Distance correlation com-
puted with either the L1 or the L2 distances (dCorL1

, dCorL2
, [55]). These

methods require an additional implementation to estimate the null quantile,
e.g. done by a permutation procedure. Due to their high computational com-
plexity (O(N !)), we restricted to a fixed number of permutations K0 = 200.

Results and discussion. We focus on the ability of the ranking-based method
to rejectH0 for small dependence ρ and for increasing dimension d, depending on
the choice of ϕ(u). First, the proposed method is distribution free under H0 for
any bipartite ranking algorithm, hence its calibration only depends on n′−, n

′
+,

ϕ and α. State-of-the-art (SoA) methods do not have this advantage in compar-
ison. Other procedures than the implemented permutation-based one, approxi-
mate the asymptotic null distribution of the related statistics, namely using the
Gamma distribution for the HSIC, see [22] Section 3. However, this method is
proved to be subject to misspecification under nonparametric assumptions, as
proved in [31], resulting in false estimation of the testing threshold and thus in-
correct p-values. Notice that, for the proposed ranking-based tests, the number
of random permutations Kp required to estimate the product of the marginal
distributions, is lower than that for the estimation of the SoA’s null threshold:
we propose to only sample from both Sn− and Sn′

−
, compared to SN . The

experiments show that for a well calibrated ranking-method, one achieves high
empirical power with minimal number of permutations (Kp ∈ {10, 20, 50}), see
Fig. 1 and 3. For small sample sizes, RTB is not competitive as it has lower
power for increasing u0: fewer observations are considered and yielding larger
variance for the estimation of the rank statistic. RTB has, however, experimen-
tally showed higher accuracy for estimating the beginning of the true ROC curve
(ROC∗) in [8]. RTB also achieves competitive rejection rates to MWW for larger
N ,and to SoA for models (GL, M1), see Fig. 1. When the dimension increases
d ∈ {N/10, N/5, N/2}, fixing N , the performance of MWW remains high, e.g. Fig.
1. Notice that the data generating processes are designed not to suffer from
signal-to-noise low ratio, for high dimension d especially. However, there is a
clear difference in the performances depending on the range of that ratio: the
sparser the signal is and the smaller the rejection rates are for the SoA methods.
For (GL), see Fig. 3 (d = 4) and 4 (d = 10) especially, wherein the ratio equals
to resp. 1/4 and 1/10, rForest exhibits higher power for lower departures from
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H0, see also (M1s) Fig. 2 and plots 7, 8. On the contrary, for denser models, e.g.
(M1d) Fig. 2, SoA methods have similar performances with MWW, however RTB
shows no power for small departures ρ. The randomization related to rForest

increases the chances to select important information, whereas for dense mod-
els, it might be ignored, see [6] for further empirical analysis. Lastly, both HSIC

and dCorL2 show similar experimental performances as expected, see [53]. To
conclude, for all ϕ and d, the rejection rates of the ranking-based tests increase
with the departure ε. They empirically outperform the comparative SoA tests,
studied for non-monotonic and sparse high dimensional models.

(a) (GL), ρ = 0.0, d = 4

(b) ρ = 0.2, d = 4

(c) (GL), ρ = 0.4, d = 4

(d) (GL), ρ = 0.3, d = 4

(e) (GL), ρ = 0.5, d = 4

Figure 3: Plots of the rejection rate under H0 (a) and H1 (b-e) against the
significance level α ∈ (0, 1) for (GL) with ϕ(u) = u (rForestMWW ), ρ = 0.0
(a) ρ = 0.2 (b), ρ = 0.3 (c), ρ = 0.4 (d), ρ = 0.5 (e). The parameters are fixed
to N = 1000, d = 4, Kp = 10, K0 = 200, B = 100 for all experiments.

(a) (GL),
ρ = 0.0, d = 10

(b) (GL),
ρ = 0.10, d = 10

(c) (GL),
ρ = 0.15, d = 10

(d) (GL),
ρ = 0.20, d = 10

Figure 4: Plots of the rejection rate under H0 (a) and H1 (b-d) against the
significance level α ∈ (0, 1) for (GL) with ϕ(u) = u (rForestMWW ), ρ = 0.0 (a)
ρ = 0.10 (b), ρ = 0.15 (c), ρ = 0.20 (d). The parameters are fixed to N = 1000,
d = 10, Kp = 10, K0 = 200, B = 100 for all experiments.

14



Interpretation of the null assumption rejection. We recall that certain
bipartite ranking algorithms, such as those proposed in [5] or [7], produce scoring
functions that can be interpreted to a certain extent. As explained in section
5 of [5], the relative importance of each component of the argument (X,Y ) of
a scoring function s(x, y) defined by a ‘ranking tree’ (or by a ‘forest of ranking
trees’) can be easily quantified. When applied to the testing problem considered
here, this interpretability tool may permit to identify the components mainly
responsible for the departure from the independence assumption (or equivalently
the departure of the ROC curve from the diagonal) possibly assessed from the
data by means of the methodology we promote. We further refer to similar
discussions on interpretability of the learned decision rule in the context of
two-sample testing, when formulated as a classification learning problem in e.g.
[42, 39].

Real data experiment: testing for statistical parity. In the context of
‘responsible’ statistical prediction, a significant number of works have studied
fair statistical methods, aiming to be unbiased/fair wrt. protected attributes/
subgroups considered as sensitive. In particular, Statistical parity is achieved
when a decision rule producing a set of outcomes X based on an ensemble of
covariates Z, is independent of a set of protected attributes Y. We propose
to test for statistical parity formulated as a test for independence between X
and Y as in (1). If X is univariate and discrete, typical methods in fairness
propose to learn a classification model to predict X, wherein both (X, Z) are
used, and then to measure or test for statistical independence between the
predicted X and the protected attributes Y, see e.g. [15]. We propose to apply
our proposed method in that context, to assess whether a typical algorithm
learns to predict the outcome under statistical parity, when both outcomes
X and protected variables Y are continuous and valued in spaces of possibly
dimensions q, l > 1. We use the synthetic Bank Account Fraud (BAF) dataset
developed by [33], and generated from real datasets of frauds in anonymized
bank account openings. BAF has 31 explanatory variables plus one indicating
the possible occurrence of fraud. It has unbalanced representation of frauds
and all features can be modeled as continuous observations. We selected three
potentially protected variables related to the personal identity of the clients,
namely the age of the client (Age), an indicator level of similarity between the
name of the client and personal email address (Name), and the number of emails
received for applicants with same date of birth four weeks prior to fraud (Date).
We gather the distributions of the empirical p-values in Fig. 5, based on a 5-
fold cross-validation. For each fold, a Random Forest algorithm is trained to
predict the probability of Fraud X, and our ranking-based procedure (Fig. 2)
is used to estimate the associate p-value of (1). We subsampled at random from
the original data set N = 103 while keeping the proportion of Fraud from the
original dataset fixed. This plot shows that we cannot reject at level α = 0.05
the statistical independence between the predicted probability of fraud and the
protected variables Y.
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Figure 5: Boxplots of the p-values for different sets of protected attributes. The
experimental parameters are fixed to N = 103, Kp = 10, q = 1, l ∈ {2, 3}, 5-fold
cross-validation, 31 features, based on the open-source dataset available [33].

5 CONCLUSION

We have proposed a novel approach, involving a preliminary bipartite ranking
stage, to test independence between random variables in a nonparametric and
possibly high-dimensional setting. Nonasymptotic error bounds have been es-
tablished for this method, and its theoretical optimality properties are confirmed
by numerical experiments, showing that it generally detects small departures
from the independence much better than its competitors and resists to the high
dimension especially in sparse settings.
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[10] S. Clémençon and N. Vayatis. Ranking the best instances. Journal of
Machine Learning Research, 8:2671–2699, 2007.
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[55] G. J. Székely and M. L. Rizzo. Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):2769 – 2794, 2007.

[56] G. J. Székely and M. L. Rizzo. Energy statistics: A class of statistics based
on distances. Journal of Statistical Planning and Inference, 143(8):1249–
1272, 2013.

[57] A. van der Vaart and J. Wellner. Weak Convergence and Empirical Pro-
cesses. Springer-Verlag New York, 1996.

[58] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics,
1:80–83, 1945.

20



This material supplements the article On Ranking-based Tests of Indepen-
dence. Section A gathers additional properties on ROC analysis, and on the as-
sumptions required to prove the main Theorem 2, as well as developing Example
1. In Section B, we derive the detailed proofs for all theoretical results stated in
the main corpus of the article. Finally, section C presents additional numerical
experiments on synthetic data. Importantly, we prove the nonasymptotic con-
trol of both type-I and type-II errors formulated as concentration inequalities
and show empirical evidence for the competitiveness of our proposed method.
We first recall the proposed ranking-based rank test of independence procedure
in Figure 6 for the sake of clarity.

A PRELIMINARIES

This subsection gathers additional definitions and properties important to the
main corpus. We first expose results related to ROC analysis. Then, we pro-
vide complementary material to Assumptions (1-3) required to prove the main
Theorem 2, deriving the nonasymptotic uniform bound of the type-II error of
the test statistic based on Eq. (10). We consider same notations as in the main
corpus of the article.

A.1 ROC analysis

Lemma 3. ([11]) Let Z denote either X+ or X−, and define the likelihood ratio
Ψ(z) = dF+/dF−(z). The property below holds true a.s.

Ψ(Z) =
dFΨ,+

dFΨ,−
(Ψ(Z)) ,

where FΨ,+ (resp. FΨ,−) is the pushforward distribution F+ (resp. F−) by the
likelihood ratio.

Proposition 3. ([11]) For any probability distributions F+ and F−, and any
scoring function s : Z → R, the following assertions hold true.

(i) ROC(s, 0) = 0 and ROC(s, 1) = 1.

(ii) The ROC curve is invariant by any nondecreasing transform c : R → R
of a scoring function s(z) on (0, 1): ROC(c ◦ s, ·) = ROC(s, ·).

(iii) Let a scoring function s(z). Suppose both distributions F+ and F− are
continuous. Then, the associated ROC curve of the function s(z) is differ-
entiable iff. the pushforward distributions Fs,+ and Fs,− are continuous.

A.2 Sobolev and VC-classes of functions

Sobolev space of functions. Assumption 2 requires that for all s ∈ S0, the
pushforward distributions of F andH⊗G by the mapping s(x, y) are continuous,
with density functions that are twice differentiable and have Sobolev W2,∞-
norms bounded by a finite constant M > 0.

We recall that the Sobolev space W2,∞ is composed of all Borelian functions
f : R → R, such that f and its first and second order weak derivatives f ′ and
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Ranking-based Independence Testing

Input. Collection of N ≥ 1 i.i.d. copies DN = {(X1,Y1) . . . , (XN ,YN )}
of (X,Y); subsample sizes n = n+ + n− < N and n′ = N − n = n′+ + n′−;
bipartite ranking A algorithm operating on the class S of scoring functions on
X × Y; score-generating function ϕ; target level α ∈ (0, 1); quantile qϕn′

−,n′
+
(α).

1. Splitting and Shuffling. Divide the initial sample into two subsamples
DN = Dn ∪ D′

n′ .

Independently of the (Xi,Yi)
′s, draw uniformly at random two

independent permutations σ and σ′ in Sn− and Sn′
−

respec-

tively, in order to build the independent samples: D−
n−

=

{(Xi,Yσ(i))1≤i≤n−}, D+
n+

= {(Xi,Yi)1+n−≤i≤n}, and D′−
n′
−

=

{(Xi,Yn+σ′(i−n))1+n≤i≤n+n′
−
}, D′+

n′
+
= {(Xi,Yi)1+n+n′

−≤i≤N}.

2. Bipartite Ranking. Run the bipartite ranking algorithm A based on
the pooled training dataset Dn = D−

n−
∪ D+

n+
built at the previous step,

in order to learn the scoring function

ŝ = A(Dn) . (14)

3. Scoring and Two-sample Rank Statistic. Build the univari-
ate positive/negative subsamples using the scoring function ŝ learned
at the previous step {ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′

−
,Yn+σ′(n′

−))} and

{ŝ(Xn+n′
−+1,Yn+n′

−+1), . . . , ŝ(XN ,YN )}. Sort them by decreasing order
to compute

Ŵϕ
n′
−,n′

+
(ŝ, σ′) =

N∑
i=1+n+n′

−

ϕ

(
R′

σ′ (ŝ(Xi,Yi))

n′ + 1

)
, (15)

where

R′
σ′(t) =

N∑
i=1+n+n′

−

I{ŝ(Xi,Yi) ≤ t}+
n+n′

−∑
i=1+n

I{ŝ(Xi,Yn+σ′(i−n)) ≤ t} .

Output. Compute the outcome of the test of level α based on the test
statistic (10): accept the hypothesis H0 of independence if:

1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′) ≤

∫ 1

0

ϕ(u)du+ qϕn′
−,n′

+
(α) , and reject it otherwise.

Figure 6: Ranking-based independence testing.

f ′′ are bounded almost-everywhere. It is a Banach space when equipped with
the norm ||f ||2,∞ = max{||f ||∞, ||f ′||∞, ||f ′′||∞}, where ||.||∞ is the norm of
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the Lebesgue space L∞ of Borelian and essentially bounded functions.

VC-type classes of functions. We recall below the definition of VC-type
class of functions formulated in Assumption 3. We further refer to [57], Chapter
2.6. therein, for additional generalizations, details and examples.

Definition 3. A class F of real-valued functions defined on a measurable space
Z is a bounded VC-type class with parameter (A,V) ∈ (0, +∞)2 and constant
envelope LF > 0 if for all ε ∈ (0, 1):

sup
Q

N(F , L2(Q), εLF ) ≤
(
A

ε

)V

, (16)

where the supremum is taken over all probability measures Q on Z and the
smallest number of L2(Q)-balls of radius less than ε required to cover class F
(i.e. covering number) is meant by N(F , L2(Q), ε).

In particular, a bounded VC class of functions with finite VC dimension V
is of VC-type, with V = 2(V − 1) and A = (cV (16e)V )1/(2(V−1)), where c is a
universal constant, see e.g. [57], Theorem 2.6.7 therein.

A.3 Multivariate Gaussian framework - Example 1 con-
tinued

This section extends Example 1, i.e., for testing independence between two mul-
tivariate Gaussian r.v.. We focus on deriving the explicit constants appearing
in the bound that are related to: (i) the testing problem through the departure
from the null ε > 0, and the bias δ > 0, and (ii) the complexity of the selected
class of scoring functions S0 (Assumption 3).

Framework and procedure. Consider a centered Gaussian r.v. (X, Y) with
definite positive covariance Γ, valued in Rq+l. Denote by ΓX and ΓY the (def-
inite positive) covariance matrices of the components X and Y. The oracle
class of scoring functions S∗ is composed of the increasing transforms of the
likelihood ratio, taking the form of the quadratic scoring function:

s : z ∈ Rq+l 7→ zt(Γ−1 − diag(Γ−1
X ,Γ−1

Y ))z .

and define θ∗ = Γ−1 − diag(Γ−1
X ,Γ−1

Y ). Following the procedure summarized
in Figure 6, we thus propose to solve Step 2 by learning the optimal scoring
function in the class:

S0(Θ) = {sθ : z ∈ Rq+l 7→ ztθz, θ ∈ Θ} ,

where Θ is a subset of real definite positive matrices of size R(q+l)×(q+l). Notice
that, for any r.v. Z drawn either from H⊗G or F , the r.v. sθ(Z) for any θ ∈ Θ,
being a quadratic transform of multivariate Gaussian r.v., is a weighted sum of
χ2(1) r.v..
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VC dimension of S0(Θ). We analyze the VC dimension of the class S0(Θ)
to obtain explicit relations of the constants appearing in Theorem 2 with the
dimensions of the spaces X and Y. Notice that,

S0(Θ) = {sθ : z ∈ Rq+l 7→ ⟨θ, zzt⟩F , θ ∈ Θ}

where ⟨·, ·⟩F is the Frobenius inner product in R(q+l)×(q+l). This yields the
collection of subgraphs taking the form:

{{(z, t) ∈ R(q+l) × R 7→ ⟨θ, zzt⟩F > t}, θ ∈ Θ} .

It is a VC-class of functions by recognizing linear separator for matrix networks
(taking the sign function), where θ is definite positive thus of full rank, the VC
dimension can be upperbounded by c(q + l)2, with c = 2 log(24) constant. We
refer to [38], Theorem 2 therein, stating general upperbounds applied to tensor
networks. Therefore, the constants involved in Definition 3 for the class S0 are:
A = (cV (16e)V )1/(2(V−1)), with V = c(q + l)2. Applying the permanence prop-
erties proved in [8], all resulting classes of functions implied in the analysis of
the R-statistic in Step 2 are therefore VC bounded and of parameters depend-
ing similarly to those of the basis class S0, see Lemma 14,19,20 in particular.
By Proposition 2.1 [17], we can see that the dominant constant C1 appearing in
Theorem 2, as function of the parameters of the class S0, is a linear combination
of V and V 2, while C2 is a linear combination of V and

√
V .

Definition 1: interpretation of the alternative hypothesis H1. Notice
that for any distributionH⊗G and F , i.e. not necessarily Gaussian, choosing the
score-generating function ϕ(u) = u trivially leads to H1(ε) : AUC(s)− 1/2 ≥
ε/(1− p). The deviation from the null hypothesis thus depends linearly on ε.

Definition 2: bipartite ranking bias. In this setting δ = 0 as S0(Θ) ⊂ S∗.

A.4 Nonlinear Dependence - Example 2

[25] proposed a construction of dependent absolute continuous univariate r.v.
that allows for larger class of alternative hypotheses. Let X, Y of resp. distri-
bution functions h(dx) and g(dy), the class of joint distributions indexed by the
dependence parameter ρ ∈ [−1, 1] can be defined by fρ(x, y) = h(x)g(y)(1 +
ρ(2H(x)− 1)(2G(y)− 1)), yielding the explicit oracle class S∗ by noticing that
Ψρ(x, y) = ρ(2H(x)− 1)(2G(y)− 1).

B TECHNICAL PROOFS

B.1 Proof of Theorem 1

The equivalence between assertions (i) and (ii) results from Corollary 7 in [5],
applied to the pair (H ⊗ G, F ) and combined with the equality ROC∗(·) =
ROC(Ψ, ·) = ROC(s∗, ·) for any s∗ ∈ S∗ by Proposition 3. One establishes the
remaining equivalences by using Equation (4).
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B.2 Proof of Proposition 1

Assertions (i) and (ii) are inherent to the construction of the subsamples by
mutual independence of all random pairs (Xi, Yi)s, and their independence
with the permutations σ, σ′ independently drawn at random from Sn− and
Sn′

−
.

B.3 Proof of Proposition 2

Let α ∈ (0, 1), 1 ≤ n′− < n′ and 1 ≤ n′+ < n′. Consider a scoring function ŝ =
A(D−

n−
,D+

n+
) solution of Step 2, see Fig. 6. By Proposition 1, ŝ is independent

of both D
′−
n′
−
and D

′+
n′
+
, hence conditioning on the subsample D−

n−
∪ D+

n+
under

the null hypothesis yields a.s.:

PH0

{
Φϕ

α = +1
∣∣ D−

n−
∪ D+

n+

}
= PH0

{
1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′) >

∫ 1

0

ϕ(u)du

+qϕn′
−,n′

+
(α)

∣∣ D−
n−

∪ D+
n+

}
≤ α ,

where the first equality holds true by definition of the test statistic. The in-
equality results from the definition of the (1 − α)-quantile qϕn′

−,n′
+
(α) of the

pushforward distribution of Lϕ
n′
−,n′

+
, by the mapping w 7→ (1/n′)w−

∫ 1

0
ϕ(u)du,

depending only on ϕ, n′+ and n′−. Then taking the expectation w.r.t. D−
n−

∪D+
n+

concludes the proof.

B.4 Proof of Theorem 2

Let α ∈ (0, 1), ε > 0, δ > 0, and consider a scoring function ŝ = A(D−
n−
,D+

n+
) ∈

S0, solution of the bipartite ranking step (Step 2 ) when formulated as the max-
imization of the empirical Wϕ-performance criterion over the class S0, see Fig.
6. Observe that for all alternatives (H ⊗G, F ) in H1(ε) ∩ B1(δ), the deviation
of the rank statistic from the null decomposes a.s. as:

1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′)−

∫ 1

0

ϕ(u)du =

{
1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′)−Wϕ(ŝ)

}
−
{
W ∗

ϕ −Wϕ(ŝ)
}
+

{
W ∗

ϕ −
∫ 1

0

ϕ(u)du

}
, (17)

and the generalization deviation of the Wϕ-performance criterion satisfies, by
Definition 2:

W ∗
ϕ −Wϕ(ŝ) ≤ 2 sup

s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+(s, σ)−Wϕ(s)

∣∣∣∣+ δ . (18)
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We can bound the type-II error on the samples D
′−
n′
−
∪ D

′+
n′
+
as follows:

PH,G

{
Φϕ

α = 0
}
= PH,G

{
1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′)−

∫ 1

0

ϕ(u)du ≤ qϕn′
−,n′

+
(α)

}
≤ PH,G

{
2 sup
s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+(s, σ)−Wϕ(s)

∣∣∣∣+ ∣∣∣∣ 1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′)−Wϕ(ŝ)

∣∣∣∣
≥ ε− δ −

√
log(18/α)

Cn′

}
(19)

where C = 8−1 min
(
p/∥ϕ∥2∞, (p∥ϕ′∥2∞)−1, ((1− p)∥ϕ′∥2∞)−1

)
and as soon as

n′ ≥ 4 log(18/α)/(C(ε − δ)2). We sequentially used Eq. (17) and (18), and
Proposition 4 to upperbound the quantile applied to samples of sizes n′+, n

′
−,

proved in section B.5.
We now apply Theorem 5 in [8] to bound the uniform deviation of the

Wϕ-ranking performance criterion to its estimator based on the two-samples
D−

n−
∪ D+

n+
, such that for all n ≥ 16C2

1/(p(ε− δ)2):

PH,G

{
2 sup
s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+(s, σ)−Wϕ(s)

∣∣∣∣ ≥ ε− δ

2

}
≤ C2 exp

{
−np(p ∧ (1− p))

4C2
(ε− δ) log

(
1 +

ε− δ

16C1(p ∧ (1− p))

)}
, (20)

as soon as n ≥ 16C2
1/(p(ε− δ)2), constants C1 > 0, C2 ≥ 24 depend on ϕ, V of

values detailed in the dedicated proof, see [8], Appendix section B.3 therein.
We can now upperbound the deviation of the two-sample rank statistic w.r.t.

the Wϕ-ranking performance criterion by conditioning on the first subsample
Dn = D−

n−
∪ D+

n+
and applying the inequality (27), to the two independent

samples:
{ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′

−
,Yn+σ′(n′

−))}

∪{ŝ(Xn+n′
−+1,Yn+n′

−+1), . . . , ŝ(XN ,YN )}

PH,G

{∣∣∣∣ 1

n′+
Ŵϕ

n′
−,n′

+
(ŝ, σ′)−Wϕ(ŝ)

∣∣∣∣ ≥ ε− δ

2
−
√

log(18/α)

Cn′
∣∣ D−

n−
∪ D+

n+

}

≤ 18 exp

{
−Cn

′ (ε− δ)
2

4

}
. (21)

Finally, we obtain the desired bound by taking the expectation on the last
inequality (21) and combining it with Eq. (20) using the union bound.

B.5 A nonasymptotic inequality for the testing threshold

Let {Xε,1, . . . , Xε,nε} with ε ∈ {−,+}, be two independent i.i.d. random
samples, drawn from univariate probability distributions Fε. Recall that the
univariate two-sample linear rank statistic based on these samples is defined by

Ŵϕ
n−,n+

=

n+∑
i=1

ϕ

(
R(X+,i)

n+ 1

)
, (22)
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where the ranks R(X+,i) =
∑

ϵ∈{−,+}
∑nϵ

j=1 I{s(Xϵ,j) ≤ X+,i}, for all i ≤ n+
The proposed class of linear rank statistics is distribution-free under the null,
hence allows for the exact computation of the testing threshold for any sample
sizes. Proposition 4 provides an upperbound for the (1−α)-quantile qϕn−,n+

(α)

of the pushforward distribution of Lϕ
n−,n+

by the mapping w 7→ (1/n)w −∫ 1

0
ϕ(u)du. It proves to be of order OP(n

−1/2) and only depending on ϕ, n+, n−
and α.

Proposition 4. Let p ∈ (0, 1) and n ≥ 1/p. Let the score-generating function
ϕ(u) satisfy Assumption 1. Set n+ = ⌊pn⌋ and n− = ⌈(1 − p)n⌉ = n − n+.
Then, for any α ∈ (0, 1), the (1− α)-quantile satisfies a.s.:

qϕn−,n+
(α) ≤

√
log(18/α)

Cn
, (23)

where C = 8−1 min
(
p/∥ϕ∥2∞, (p∥ϕ′∥2∞)−1, ((1− p)∥ϕ′∥2∞)−1

)
.

Proof. The proof relies on the concentration results established in [8], see Theo-
rem 5 in particular, and builds upon the linearization technique exposed therein.
Define by F = pF+ + (1− p)F− the mixture c.d.f. of the pooled sample and of

empirical estimator F̂n(t) = (1/n)
∑

ε∈{+,−}
∑

i≤nε
I{Xε,i ≤ t}. By considering

ϕ(u) satisfying Assumption 1, writing its Taylor expansion of order 2 evaluated

at nF̂n(X+,i)/(n+1) around F (X+,i) for 1 ≤ i ≤ n+, and summed over i ≤ n+,
results in a a.s. decomposition of the statistic Eq. (3). We refer to Eq. (B.3,4)
in [8] for the detailed arguments.

The terms of the resulting expansion of order one are composed of two U -
statistics, for which the Hoeffding decomposition results in the linearization
below:

1

n+
Ŵϕ

n−,n+
−Wϕ = Ŵϕ−Wϕ+

1

n+

(
V̂ +
n+

− E
[
V̂ +
n+

])
+

1

n+

(
V̂ −
n−

− E
[
V̂ −
n−

])
+

1

n+
Rn−,n+ , (24)

where:

Wϕ = E[(ϕ ◦ F ) (X+)] ,

Ŵϕ =
1

n+

n+∑
i=1

(ϕ ◦ F ) (X+,i) ,

V̂ +
n+

=
n+ − 1

n+ 1

n+∑
i=1

∫ +∞

X+,i

(ϕ′ ◦ F )(u)dF+(u) ,

V̂ −
n−

=
n+
n+ 1

n−∑
i=1

∫ +∞

X−,i

(ϕ′ ◦ F )(u)dF+(u) ,

and Rn−,n+ is the sum of the Taylor-Lagrange residual term T̂n−,n+ , and of the
terms of order at most OP(n

−1) inherited from the (two) Hoeffding decompo-
sitions. Precisely, it inherits from the linear statistics of order OP(n

−1) defined

by R̂n−,n+
, and both remainder terms being degenerate U -statistics. We detail
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hereafter the main steps for obtaining a nonasymptotic exponential deviation
bound of the univariate rank statistic (1/n+)Ŵ

ϕ
n−,n+

based on Eq. (24). Fol-

lowing [8], define the (nonsymmetric) bounded kernels defined on R2 by:

k(z, z′) = I{z′ ≤ z}(ϕ′ ◦ F )(z) .

Then

Rn−,n+
= R̂n−,n+

+
n+(n+ − 1)

n+ 1
Un+

(k) +
n+n−
n+ 1

Un−,n+
(k) + T̂n−,n+

,

where Un+(k) is the one-sample degenerate U -statistic of order 2 based on
the positive sample with kernel k, Un−,n+

(k) is the two-sample degenerate U -
statistic of degree (1, 1) based on the two samples {Xε,1, . . . , Xε,nε

}, with
ε ∈ {−,+}, with kernel k.

Noticing that

|Rn−,n+
| ≤ |R̂n−,n+

|+ p2n|Un+
(k)|+ p(1− p)n|Un−,n+

(k)|+ |T̂n−,n+
| ,

one can sequentially upperbounded the tail of each term with threshold t/16,
for any t > 0, in probability using: Hoeffding’s classic exponential bound from
[30] with the union bound to R̂n−,n+ , Lemma 3 in [44] applied to Un+ , Lemma

27 in [8] to Un+,n− , and finally for T̂n−,n+ , one has:

1

n+
|T̂n−,n+ | ≤ ∥ϕ′′∥∞

(
sup
t∈R

(
F̂n(t)− F (t)

)2

+
1

(n+ 1)2

)
≤ 3p2∥ϕ′′∥∞ sup

t∈R

(
F̂n+

(t)− F+(t)
)2

+ 3(1− p)2∥ϕ′′∥∞ sup
t∈R

(
F̂n−(t)− F−(t)

)2

+
13∥ϕ′′∥∞

n2
.

It remains to apply Dvoretzky–Kiefer–Wolfowitz inequality to each of the two
first terms on the right hand side, while the third is negligeable w.r.t. the others.
This concludes to, for all nt ≥ 512∥ϕ′∥2∞/(p∥ϕ′′∥∞):

P
{
|Rn,m| > t

4

}
≤ 12 exp

{
− Nt

48κp∥ϕ′′∥∞

}
, (25)

and otherwise

P
{
|Rn−,n+

| > t

4

}
≤ 12 exp

{
− αpn

2t2

512∥ϕ′∥2∞

}
, (26)

where αp = min(p, 1− p)/(4(1− p)), κp = max(p, 1− p).
It remains to apply Hoeffding exponential inequality to the other terms of

the decomposition Eq. (24) with threshold t/4 as follows:

P
{
|Ŵϕ −Wϕ| >

t

4

}
≤ 2 exp

{
− pnt2

8∥ϕ∥2∞

}
,

P
{

1

n+

∣∣∣V̂ +
n+

− E
[
V̂ +
n+

]∣∣∣ > t

4

}
≤ 2 exp

{
− nt2

8p∥ϕ′∥2∞

}
,

P
{

1

n+

∣∣∣V̂ −
n−

− E
[
V̂ −
n−

]∣∣∣ > t

4

}
≤ 2 exp

{
− nt2

8(1− p)∥ϕ′∥2∞

}
.
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By virtue of the union bound, we obtain

P
{∣∣∣∣ 1

n+
Ŵϕ

n−,n+
−Wϕ

∣∣∣∣ > t

}
≤ 18 exp{−Cnt2} , (27)

where C = 8−1 min
(
p/∥ϕ∥2∞, (p∥ϕ′∥2∞)−1, ((1− p)∥ϕ′∥2∞)−1

)
, concluding the

proof.

C Additional Numerical Experiments

This section details the technicalities related to the experiments exposed in the
main corpus, as well as additional experiments on synthetic data.

Experimental parameters. All results are shown with 95% confidence in-
terval based on B ∈ N∗ Monte-Carlo samplings. The number of random permu-
tations for the benchmark tests is chosen so that the test is calibrated K0 = 200,
the number of random permutations for our proposed procedure is fixed to Kp ∈
{10, 20, 50}. The significance level is chosen equal to α = 0.05. We consider the
pooled sample size N ∈ {500, 1000, 2000}, with n = 4N/5 and n′ = N/5, where
the subsamples are balanced n− = n+ = n/2, n′− = n′+ = n′/2, and denote by
d = 2q = 2l. We choose the RTB parameter u0 ∈ {0.85, 0.90, 0.95}.

Probabilistic models. We first consider different types of independence ac-
cording to the following models. Define X = (X1, X2, . . . , Xq) and Y =
(Y 1, Y 2, . . . , Y l), the first two models sample X and Y according to the multi-
variate Gaussian distribution, in the continuity of Example 1.

(GL) (X, Y) ∼ N (ed, (1/
√
d) × Γρ), where ed ∈ Rd the null vector,

Cov(X1, Y k) = ρ, for all k ≤ l and Γρ,i,j = δij otherwise, d ∈ {4, 10, 26, 50}
for N = 500 and d ∈ {4, 10} for N = 1000.

(GL+) Covariance matrix from model (GL) extended for higher dimen-
sions with Cov(Xu, Y k) = ρ, for all k ≤ l and a u ≤ q only, and with
d ∈ {100, 250, 500}, N = 500.

Also, for (GL), the range of the dependence parameter ρ are chosen such that the
resulting Γρ is positive definite to show directional dependency. The following
data generation distributions model non-monotonic alternative hypothesis. The
first subset of coordinates Xu, Y v’s are drawn according to the models below,
and Xi, Y j , for all i, j ≥ u, v are independently drawn from the Univariate
distribution on [0, 1] and are independent of the first coordinate.

(M1) X1 = ρ cosΘ + ω1/4, Y
1 = ρ sinΘ + ω2/4, with ρ ∈ {1, 2, 3}, ωi ∼

N (0, 1), i ∈ {1, 2}, and Θ ∼ U([0, 2π]) all variables being independent,
and with d ∈ {4, 10, 26}, N ∈ {500, 2000}.

(M1s) Sparse covariance matrix from model (M1) extended for higher
dimensions by generating the Xu, Y v’s, for u, v ≤ q/2, l/2 according to
(M1) and the Xu, Y v, for u, v > q/2, l/2 are drawn from the Univariate
distribution on [0, 1], with d ∈ {100, 250, 500}, N = 500.

29



(M1d) Dense covariance matrix from model (M1) extended for higher di-
mensions with by generating the Xu, Y v, for all coordinates u, v ≤ q, l
according to (M1), with d ∈ {100, 250, 500}, N = 500.

Model (M1) was proposed for both the univariate and bivariate settings by
[3] and further studied by [2] and for very small sample sizes. We compare our
results for models (M1s) and (M1d) to the benchmark tests to see the resistance
to high dimension d.

(a) ρ = 0.0, d = 50

(b) (M1s),
ρ = 0.30, d = 50

(c) (M1d),
ρ = 0.20, d = 50

(d) (M1s),
ρ = 0.40, d = 50

(e) (M1d),
ρ = 0.30, d = 50

(f) (M1s),
ρ = 0.50, d = 50

(g) (M1d),
ρ = 0.40, d = 50

Figure 7: Plots of the rejection rate under H0 (a) and H1 (b-g) against the
significance level α ∈ (0, 1) for (M1s) top row, and (M1d) bottom row, with
ϕ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ ∈ (0.20, 0.50) (b-g). The parameters
are fixed to N = 500, d = 50, Kp = 10, K0 = 200, B = 100 for all experiments.
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(a) ρ = 0.0, d = 100

(b) (M1s),
ρ = 0.30, d = 100

(c) (M1d),
ρ = 0.15, d = 100

(d) (M1s),
ρ = 0.40, d = 100

(e) (M1d),
ρ = 0.20, d = 100

(f) (M1s),
ρ = 0.50, d = 100

(g) (M1d),
ρ = 0.30, d = 100

Figure 8: Plots of the rejection rate under H0 (a) and H1 (b-g) against the
significance level α ∈ (0, 1) for (M1s) top row, and (M1d) bottom row, with
ϕ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ ∈ (0.15, 0.50) (b-g). The parameters
are fixed to N = 500, d = 100, Kp = 10, K0 = 200, B = 100 for all experiments.
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