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Abstract

We address the spatial discretization of an evolution problem arising from the coupling of elastic
and acoustic wave propagation phenomena by employing a discontinuous Galerkin scheme on
polygonal and polyhedral meshes. The coupled nature of the problem is ascribed to suitable
transmission conditions imposed at the interface between the solid (elastic) and fluid (acoustic)
domains. We state and prove a well-posedness result for the strong formulation of the problem,
present a stability analysis for the semi-discrete formulation, and finally prove an a priori hp-
version error estimate for the resulting formulation in a suitable (mesh-dependent) energy norm.
We also discuss the time integration scheme employed to obtain the fully discrete system. The
convergence results are validated by numerical experiments carried out in a two-dimensional
setting.

Keywords: discontinuous Galerkin methods, elastodynamics, acoustics, wave propagation,
polygonal and polyhedral grids
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1. Introduction

This work is devoted to the development and analysis of a discontinuous Galerkin (dG)
method [1, 2, 3, 4] on polygonal and polyhedral grids for an evolution problem modeling cou-
pled (visco)elastic-acoustic wave propagation. Coupled elasto-acoustic wave propagation arises
in several scientific and engineering contexts. In a geophysics framework, on which we focus
here, a first example one can think of is given by seismic events occurring near coastal environ-
ments; another relevant situation where such a problem plays a major role is the detection of
underground cavities [5, 6, 7|. Other contexts in which this problem plays a major role are the
modeling of sensing or actuation devices immersed in an acoustic fluid [8], as well as medical
ultrasonics [9].

From the numerical viewpoint, a discretization scheme employed for simulating seismic wave
propagation scenarios has to satisfy the following requirements: accuracy, geometric flexibility,
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and scalability. To be accurate, the numerical method must keep dissipative and dispersive
errors low. Geometric flexibility is necessary since the computational domain usually features
complicated geometrical shapes as well as sharp discontinuities of mechanical properties. Fi-
nally, ground-motion scenarios are typically characterized by domains whose dimension, ranging
from hundreds to thousands square kilometers, is very large compared with the wavelengths of
interest. This typically leads to a discrete problem featuring several millions of unknowns. As a
consequence, parallel algorithms must be scalable in order to efficiently exploit high performance
computers.

In particular, given the underlying complex geometry one has to deal with, considering
a conforming triangulation would therefore be computationally very expensive. We are thus
led to consider a space discretization method capable to reproduce the geometrical constraints
under consideration to a reasonable extent of accuracy, without being at the same time too
much demanding. Such a discretization is then performed using general polygonal or polyhedral
(briefly, polytopic) elements, with no restriction on the number of faces each element can pos-
sess, and possibly allowing for face degeneration in mesh refinement. The dG method has been
recently proven to successfully support polygonal/polyhedral meshes: we refer the reader, e.g.,
to [10, 11, 12, 13, 14, 15, 16, 17, 18], as well as to the comprehensive research monograph by
Cangiani et al. [19]. Because of their local nature, dG methods are particularly suited to treat
highly heterogeneous and soil-structure interaction problems, where local refinements are needed
to resolve the different spatial scales, as well as to satisfy the above-mentioned accuracy and scal-
ability requirements for a numerical scheme that is well-suited for wave propagation phenomena.
In addition to the dG method, several other methods are capable to support polytopic meshes,
such as the Polygonal Finite Element method [20, 21, 22, 23], the Mimetic Finite Difference
method [24, 25, 26, 27, 28], the Virtual Element method [29, 30, 31, 32, 33|, the Hybridizable
Discontinuous Galerkin method [34, 35, 36|, and the Hybrid High-Order method [37, 38, 39].

An elasto-acoustic coupling typically occurs in the following framework: a domain made up
by two subdomains, one occupied by a solid (elastic) body, the other by a fluid (acoustic) one,
with suitable transmission conditions imposed at the interface between the two. The aim of
such conditions is to account for the following physical properties: (i) the normal component
of the velocity field is continuous at the interface; (ii) a pressure load is exerted by the fluid
body on the solid one through the interface. In this paper, the unknowns of the problem are the
displacement field in the solid domain and the acoustic potential in the fluid domain; the latter,
say ¢, is defined in terms of the acoustic velocity field v, in such a way that v, = —V . However,
other formulations are possible; for instance, one can consider a pressure-based formulation in
the acoustic subdomain [9], or a displacement-based formulation in both subdomains [40].

In a geophysics context, when a seismic event occurs, both pressure (P) and shear (S) waves
are generated. However, only P-waves (i.e., whose direction of propagation is aligned with the
displacement of the medium) are able to travel through both solid and fluid bodies, unlike S-waves
(i.e., whose direction of propagation is orthogonal to the displacement of the medium), which can
travel only through solids. This explains the reason for considering the first interface condition.
On the other hand, the second one accounts for the fact that an acoustic wave propagating in a
fluid domain of density p, gives rise to an acoustic pressure field of magnitude p,|¢|, @ denoting
the first time derivative of the acoustic potential.

Mathematical and numerical aspects of the elasto-acoustic coupling have been the subject
of an extremely broad literature. We give hereinafter a brief overview of some of the research



works carried out so far in this field.

Barucq et al. [41] have characterized the Fréchet differentiability of the elasto-acoustic field
with respect to Lipschitz-continuous deformation of the shape of an elastic scatterer. The same
authors [42] have also proposed a dG method for computing the scattered field from an elas-
tic bounded object immersed in an infinite homogeneous fluid medium, employing high-order
polynomial-shape functions to address the high-frequency propagation regime, and curved bound-
ary edges to provide an accurate representation of the fluid-structure interface. Bermudez et
al. |40] have solved an interior elasto-acoustic problem in a three-dimensional setting, employing
a displacement-based formulation on both the fluid and the solid domains, and a discretization
consisting of linear tetrahedral finite elements for the solid and Raviart—Thomas elements of low-
est order for the fluid; a further unknown is introduced on the interface between solid and fluid to
impose the transmission conditions. Brunner et al. [43]| have treated the case of thin structures
and dense fluids; the structural part is modeled with the finite element method, and the exterior
acoustic problem is efficiently modeled with the Galerkin boundary element method. De Basabe
and Sen [44] have compared Finite Difference and Spectral Element methods for elastic wave
propagation in media with a fluid-solid interface. Fischer and Gaul [45] have proposed a coupling
algorithm based on Lagrange multipliers for the simulation of structure-acoustic interaction; fi-
nite plate elements are coupled with a Galerkin boundary element formulation of the acoustic
domain, and the interface pressure is interpolated as a Lagrange multiplier, thereby allowing
for coupling non-matching grids. Flemisch et al. [8] have considered a numerical scheme based
on two independently generated grids on the elastic and acoustic domains, thereby allowing as
much flexibility as possible, given that the computational grid in one subdomain can in general
be considerably coarser than in the other subdomain. As a result, non-conforming grids appear
at the interface of the two subdomains. Mandel [46] has proposed a parallel iterative method
for the solution of the linear equations resulting from the finite element discretization of the
coupled fluid-solid systems in fluid pressure and solid displacement formulation, in harmonic
regime. Monkola [47] has examined the accuracy and efficiency of the numerical solution based
on high-order discretizations, in the case of transient regime. Spatial discretization is performed
by the Spectral Element method, and three different schemes are compared for time discretiza-
tion. Péron [48| has presented equivalent conditions and asymptotic models for the diffraction
problem of elastic and acoustic waves in a solid medium surrounded by a thin layer of fluid
medium in harmonic regime. Wilcox et al. [49] studied a high-order Discontinuous Galerkin
scheme for the three-dimensional problem based on a velocity-strain formulation, allowing for
the solution of the acoustic and elastic wave equations within the same unified framework, based
on a first-order system of hyperbolic equations. Other noteworthy references in this field are
[50, 51, 52, 53, 54, 55, 56, 57, 58].

At the best of our knowledge, in all of the aforementioned works a well-posedness result for
the mathematical formulation of the coupled problem cannot be found. In this work, the proof
of existence and uniqueness for a strong solution is accomplished in a semigroup framework,
by resorting to the Hille-Yosida theorem |59, Chap. 7|. Notice that a similar abstract setting
wherein semigroup theory on Hilbert spaces can be invoked, was employed in [60]; here, the
problem of acoustic waves scattered by a piezoelectric solid is investigated.

The rest of the paper is organized as follows. In Section 2 we establish the notation employed
throughout the paper. In Section 3 we give the formulation of the problem and prove the existence
and uniqueness of the solution under suitable hypotheses on source terms and initial values. In



Figure 1: Computational domain.

Section 4 we introduce the discrete setting, with particular reference to the assumptions on
the underlying polytopic mesh. In Section 5 we present the formulation of the semi-discrete
problem. In Section 6 we state a stability result for the semi-discrete formulation in a suitable
(mesh-dependent) energy norm. In Section 7, we present hp-convergence results (with i and p
denoting, as usual, the meshsize and the polynomial degree, respectively) for the error in the
energy norm. In Section 8 we discuss the fully discrete formulation. In Section 9, we present
some numerical experiments carried out in a two-dimensional setting to validate the theoretical
results for benchmark test cases. In Section 10, we simulate two examples of physical interest:
namely, the effects of an acoustic point source near an elastic medium, and the effects of an
elastic point source in the presence of acoustic cavities included in the elastic domain. Finally,
in Section 11 we draw some conclusions. The proofs of the main theoretical results, contained in
Sections 3, 6, and 7, as well as the statements and proofs of two technical lemmas, are postponed
to Appendix A.

2. General notation

In what follows, scalar fields are represented by lightface letters, vector fields by boldface
roman letters, and second-order tensor fields by boldface greek letters. We let Q@ c R, d e {2,3},
denote an open bounded domain with Lipschitz boundary, given by the union of two open
disjoint bounded convex subdomains {2, and €, representing an elastic and an acoustic domain,
respectively (cf. Figure 1). We denote by I't = 0Q, n 0€, the interface between the two domains,
also of Lipschitz regularity and with strictly positive surface measure. We assume that the
following partitions hold: 092, = I'ep U I't and 02, = I'yp U I't, where I'.p and I',p also have
strictly positive surface measure, and I'ep " I't = J = I';p n I'1. We further denote by n.
and n, the outer unit normal vectors to d€2. and 0f),, respectively; thereby, n. = —n, on I'.
For X € Q or X = R we write L?(X) in place of L?(X)?, with scalar product denoted by
(-,+)x and associated norm |-|x. Analogously, we write H!(X) in place of H'(X)¢ for Hilbertian
Sobolev spaces of vector-valued functions with index I > 0, equipped with norm |[-|; x (so that
Ilox = |-|x on H(X) = L?(X)). Given an integer p > 1, &,(X) denotes the space spanned
by polynomials of total degree at most p on X. Given a subdivision T of ) into disjoint open
elements ~ such that Q = User, K> we denote by

Po(Th) ={ve L*(Q): V) € Pp, (k) Vi € Tn}



the space of piecewise polynomial functions on 7y, with p = (pk)ke7;,, Pk = 1 VK € Tp; and by .
Finally, for T' > 0, we let (0,7"] denote a time interval. For the sake of readibility we omit, at
times, the dependence on time t € (0,7']. The first and second time derivatives of a scalar- or
vector-valued function ¥ = ¥(t) are denoted by ¥ and U, respectively.

3. The elasto-acoustic problem

The elasto-acoustic problem is formulated as follows: given a body force f.: Q. x (0, 7] — R3,
an acoustic volume source f,: Qg x (0,7] — R, and initial conditions ug,u;: 2, — R3 and
00, 01: Qo — R, find u: Q. x (0,7] — R3 and ¢: Q, x (0,7] — R such that

(peii + 2p.Cl + poC?u — div o (u) = f, in Q. x (0,7T],
u=20 on I'ep x (0,71,
o(u)n. = —p,pn, on I't x (0,77,
u(+,0) = uy, in Q,
1:1(-,0) = u in Qe;
9 (1)
g — Ly = fa in O x (0,77,
=0 on Typ x (0,77,
Op/Oon, = —u-n, on I't x (0,T7;
90(70) = 0, in (g,
L &(,0) = ¢1 in Q.

Here, the unknowns u and ¢ represent the displacement vector and the acoustic potential,
respectively. Moreover, o(u) = Ce(u) is the Cauchy stress tensor, with C the fourth-order,
symmetric and uniformly elliptic elasticity tensor, i.e.

Cijie = Cjine = Creij = Cijor,  Cijoe € L(Qe), 0,7,k L€ {1,2,3},
CijkEkaXij = @Z |X¢j|2 for all Xij = in eR, €>0, (2>

7:7‘7‘

and e(u) = % (Vu + VuT) is the strain tensor. In the case where €. is occupied by an isotropic
medium, i.e., such that o(u) = 2ue(u) + A(divu)I, p and X being the Lamé coefficients and I
the identity tensor, we denote by cp = /(X + 2u)/pe and cg = +/11/pe the velocities of pressure
and shear waves propagating in {2, respectively. Moreover, we denote by p. the density of the
elastic body €., with 0 < p, < pe < pf < +0 ae. in Q, by p, the density of the acoustic
region Q,, with 0 < p; < ps < pf < +0 a.e. in Q,, and by ¢ > 0 the speed of the acoustic
wave.

The damping factor ¢ € L*(Q), ¢ = 0, is a decay factor with the dimension of the inverse
of time. Its role is to model viscoelastic effects without resorting to constitutive laws based
on Prony series, which involve time convolutions to express the stress in terms of the strain
history (see e.g. [61, 62]). The main idea is to regard the sum of (-dependent terms as a viscous



displacement-dependent volume force f,, = —2p.( — p.(?u acting upon a purely elastic body
undergoing a displacement field u (see e.g. [63]). It can be shown that, considering an harmonic
excitation, the solution u obtained by adding the viscous force can be related to the solution u
of the corresponding linear elastic problem by the relation u = e ¢*lii. Hence, every frequency
component of the solution to the linear elastic problem is attenuated by an exponential factor.

Notice that the coupled nature of the problem is to be ascribed to the trasmission conditions
imposed on I't x (0,7"]. The first one takes account of the acoustic pressure exterted by the fluid
onto the elastic body through the interface, whereas the second one expresses the continuity of
the normal component of the velocity field at the interface.

3.1. Existence and uniqueness

The existence and uniqueness of a strong solution to (1) can be inferred in the framework
of the Hille—Yosida theory. To this aim, suitable regularity assumptions are needed on source
terms, as well as on initial and boundary data. Let us first introduce the Hilbertian Sobolev
spaces

HL(Q) = {ve H(Q,):v=0o0nT.p}, HEH(Q) = {ve HY(Q,) :v=0onT,p},
HZ () = {v e L() : divCe(v) e L(Q)}, H(Q) = {v e L*(R) : Av e L2(Q,)}.

For an integer k& > 0 and a generic Hilbert space H, we also adopt the usual notation C*([0,T]; H)
for the space of functions k times continuously differentiable in [0,7"] belonging to H. The
following result can now be stated; its proof is postponed to Section A.1 of Appendix A.

Theorem 3.1 (Existence and uniqueness). Assume that the initial data have the following reg-
ularity:

wp € HZ () n HhH(Q), w e Hh(Q), ¢oe HA(Q) n Hh(), ¢1€ Hh(Q)  (4)
and that the source terms are such that
f. e CH([0, T LA (), fa€ CH([0,T]; L*(Q)). ()
Then, problem (1) admits a unique strong solution (u,p) such that

ue C*([0, T}, L3 (%)) n C1 ([0, T Hp () n CO([0, T]; HE (Qe) 0 Hp (),
(6)
@ e C*([0,T]; L*(4)) n C*([0,T]; Hp(QW)) n C([0,T]; HA (Q4) N Hp ().

Remark 3.2 (Boundary conditions). We consider formulation (1) for ease of presentation, but
more general boundary conditions, such as nonhomogeneous Dirichlet and Neumann conditions,
can be taken into account, provided the data are sufficiently regular. In this case, suitable trace
liftings of boundary data have to be introduced, by resorting to a one-parameter family of static
problems (where the parameter is time). Then, it can be shown that a result analogous to (6)
holds, provided boundary data have C3-regularity in time (see, e.g., [64, Theorem 1.1]).

Remark 3.3 (Convexity). The above result holds without any convexity assumption on the sub-
domains €2, and €2,. However, in view of the forthcoming analysis of the semi-discrete problem



(cf. Section 5), it is convenient to assume that 2. and €, are convex. This is necessary to ensure
that the exact solution (u, ) be (at least) H2-regular, so that both traces of Vu and V¢ on
(d — 1)-dimensional simplices are well defined. The present analysis can be extended to the case
of non-convex domains €. and €, but the semi-discrete formulation (16) has to be replaced by
its not-strongly consistent version based on the lifting operators (see [12] for the purely elastic
case and [65] for a diffusion equation). As a consequence, the analysis gets more involved and is
based on employing Strang’s lemma. For the sake of brevity, we focus here on the case of convex
elastic and acoustic subdomains.

With a view towards introducing the semi-discrete counterpart of (1) and to carry out its
analysis, we observe that the solution (u, ) given by (6) satisfies the following weak form of (1):
for any t € (0,77, and all (v,¢) € HL(Qe) x H}(Q4),

(peii(t), V)a, + (¢ 2pa(t), ¥)a, + (2peC0(t), V)a, + (peC*u(t), v)a,
+ Ac(u(t), v) + Aa(e(t), V) + Ze(¢(t), v) + Za(ua(t), %) (7)
= (fe(t)v V)Qe + (pafa(t)v w)Qa

Here, the bilinear forms A.: HL(Q)xHE(Q) — R, Z.: H(T'F) x H2(TS) —» R, Ay: Hp(Qq) %
HL(Q) — R, and Z,: H2(T¢) x H*(T¢) — R are defined as follows:

Ae(u7 V) = (Cs(u)v €(V))Qe7 Ie(w, V) = (pawn& V)FU

8
Aa(‘/)a 1/}) = (paV(Pa Vw)Qa, Ia(V,lb) = (PaV°na,¢)Fp ( )

where we have used the spaces of traces H"?(T'f) and H"?(I'?) of functions of H'(Q.) > HE ()
and H(Q,) o H}(Q,) on Ty, respectively [66, 67]. Notice that we have multiplied the second
evolution equation by p, to ensure (skew) symmetry of the two interface terms (since n, = —n.).

4. Discrete setting

Assuming that Q. and €2, are polygonal or polyhedral domains, we now introduce a polytopic
mesh 7, over Q2. We denote by h,; the diameter of an element x € 7}, and set h = max,e7; h.. We
assume that 7y, is compliant with the underlying geometry, i.e., the decomposition T;, = T, U T;*
holds, where 7,¢ = {k € Tj, : K € Qc} and 7,* = {k € T}, : k € Qy}. We assume that C and p, are
element-wise constant, and set

@H = (‘C1/2’%)|n Vk € 77167 pa,m = Palk Vk € 7;La' (9)

Here we have denoted by |-|2 the operator norm induced by the #2norm on R”, with n the
dimension of the space of symmetric second-order tensors (n = 3if d =2, n = 6 if d = 3). With
each element of 7,° (resp. 7,%), we associate a polynomial degree pe, > 1 (resp. pa, = 1), and
introduce the following finite-dimensional spaces:

Vil = [Zp (TN = {vi € L2() : Vi € [P, ()] Vi€ Ty}
Vit = Ppu(T) = {tn € LX) : Ynju € Do (k) Vi€ T}



For an integer [ > 1, we also introduce the broken Sobolev spaces

H%mn:{veL%Qg:vmeﬂ%@vmeﬁﬂ,
(10)
H%mwz{weL%Q@:wweﬂwmvﬁenﬁ.

Henceforth, we write x < y and 2 y in place of x < C'y and = > Cy respectively, for C > 0
independent of the discretization parameters (polynomial degree and meshsize), as well as of the
number of faces of a mesh element, but possibly depending on material properties, such as C,
Pe, C, and pg.

4.1. Grid assumptions

We term interface of T the intersection of the boundaries of any two neighboring elements
of Ty. This definition allows for the treatment of situations where hanging nodes or edges are
present. Therefore, for d = 2, an interface will always consist of a piecewise linear segment. On
the other hand, for d = 3, an interface will be given by the union of general polygonal surfaces;
we thereby assume that each planar section of a given interface may be subdivided into a set
of co-planar triangles. We refer to such (d — 1)-dimensional simplices (line segments for d = 2,
triangles for d = 3), whose union determines an interface of Ty, as faces. We denote by Fy, the
set of all faces of Tj,. Also, let

Thi={ke€Ty: 06N # &} (11)

denote the set of elements sharing a part of their boundary with I'y, and 7;°; = Tp1 0 77,
T = Tag 0 T, We then define the set of faces laying on I'y as follows:

Fpi={F € Fp: Fcor®nok €Ty, €T} (12)

(see Figure 2). Hence, we assume the following decomposition: Fj, = Fj U Fp1 U Fj, where Fj
and F}' collect, respectively, all faces of 7;° and of 7;* that do not lay on I'y. Further, 7} and
i are decomposed as follows: Fj = f;’i U fe’b, no= F,‘:’i v ]:;:’b, where .7:;’1 and Fg’i collect
the internal faces of T, and T,*, respectively, and Fe’b, f,(f’b collect the boundary faces of T;’
and T,%, respectively.
We can now proceed to state the main assumptions on Ty, referring to [19, Chapter 4] and
to [14, 15] for further details.

Assumption la (Generalized shape-regularity). For any element x € T, there exists a set of
non-overlapping (not necessarily shape-regular) d-dimensional simplices {/@f }Feox K, each one
of them sharing the specific face F' © dx with &, such that, for any face F' c 0k,

F
(i) by < U5 @) || & cw (13)
R ~ |F|7 b— )

where the hidden constant is independent of the discretization parameters, the number of faces
of k, the measure of F', and the material properties.
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Figure 2: Explanation of the employed notation for mesh elements and faces, in a two-dimensional setting. The
left domain is elastic, the right one acoustic.

Figure 3: A possible element of 7}, satisfying Assumption la with many tiny faces.

Remark 4.1 (Number of faces and degenerating faces). Notice that no restriction is imposed by
Assumption la on either the number of faces of an element, or the measure of the face of an
element with respect to the diameter of the element itself (cf. Figure 3). Therefore, the case of
faces degenerating under mesh refinement can be considered as well. The first condition in (13)
requires that, for a given face F', the diameter of a given mesh element is comparable with the
height of any d-simplex /if having F' as a base.

We recall that, under Assumption la, the following trace-inverse inequality holds for polytopic

elements:
Vi € Th, Yo € Py(k), |vllox S phi|0]n, (14)

where the hidden constant is independent of the discretization parameters, the number of faces
per element, and the material properties [14, 15, 19].

Assumption 1b (Covering simplicial mesh). Let 7;? = {K} denote a covering of @ = Q. U
Qq, given by the union of two disjoint coverings 775’6 and 7;3’“, consisting of shape-regular

d-dimensional simplices K (cf. Figure 4). We assume that, for any x € Tj,, there exists K € 775



Figure 4: Two elements of 75, and the corresponding elements of 775

such that x < K and

maxcard{m’e’ﬂ:/@’mlCaéQ, Keﬁsuch that/fch} <1 (15)

KETH

and that, for each pair k € Ty, K € 7;? with k € K, diam(K) < hy, where the hidden constant
is independent of the discretization parameters and of the material properties. Inequality (15)
sets a bound on the maximum amount of overlap between elements in 7; and the simplices of
the covering mesh 77?; we refer the reader to [19, Section 3.3| for further details.

Assumption 1c (hp-local quasi-uniformity). Given any two neighboring elements k=, k* € Tp,
it holds
Pt S hy— S hgts D+ S Pu— S Pty

where the hidden constants, lower and greater than one in the left and right sides, respectively, are
independent of the discretization parameters, the number of faces per element, and the material
properties. For details, see e.g. [65, 68| as well as the very recent contribution by Lozinski [69].

5. Semi-discrete problem

In this section, as well as in the following, we suppose that the solution to (1) is such
that u € C?([0, T]; H*(Q) n H™(T¢)) and ¢ € C*([0,T]; H*(2) n H(T,%)), with m,n > 2
(cf. Remark 3.3). Before stating the dG formulation of the semi-discrete problem we introduce
the following average and jump operators [1, 70]. For sufficiently smooth scalar-, vector- and
tensor-valued fields v, v, and 7, we define averages and jumps on an internal face I’ € ]-";’1 uF,
F c k™ ndk™ with k% and £~ any two neighboring elements in 7, or 7,%, as follows:

[v] = " n* + o0 =1
M=viont+voon, (vj= TtV
[l=rn' +7 0, o A,

10



where a®@b denotes the tensor product of a,b € R?, and 1%, vt and 7% denote the zeroth-order
traces of ¥, v and 7 on F taken from the interior of xT, and n is the outer unit normal vector
to 0kT. When considering a boundary face F € f;’b v ]:;:’b, we set [¢] = ¢¥n, [v] = v®n,
[7] = ™, and {¢} = ¢, {v} = v, {7} = 7. We also use the shorthand notation

(@, )= > (B, 0)p,  [Or=(D,)f
FeF

for scalar, vector or tensor fields ® and ¥ and for a generic collection of faces F < F,.
The semi-discrete approximation of problem (7) reads: find (up,¢p) € C*([0,T]; V) x
C2([0,T7;V;%) such that, for all (v, 105) € VE x V2,

(peiin(t), vi)a. + (¢ 2pa@n(t), ¥n)a, + (2pCan(t), vi)a. + (pCPun(t), vi)a,
+ Aj (un(t), vi) + Ap(on(t), ¥n) + Z5(@n(t), vi) + Ty (an(t), ¥n) (16)
= (fe(t)7vh)ﬂe + (pafa(t)a ¢h)ﬂa7

with initial conditions (up(0),15(0), (0), 9r(0)) € Vi x Vi x Vi* x Vi where the bilinear forms
Ap: VEX VE R, AL VEx Ve — R, I6: Vi@ x VE — R and T¢: VE x Vi — R are given by

An(a,v) = (an(u),en(v))a, — {on()}, [V 7 — ull, §on(v)})ze + llul, [vID 5
An (@, 0) = (pa Ve, Vih)a, — {paVie}, [[¢]]>f;; - <[[<P]]v {{Pavh¢}}’>fg + <X[[<P]]a [[7/)]]>f;;

I]i(wav) = (Pa¢neaV)F1a I}?(Vﬂj}) = (PaV‘naa¢)F1 = _Ig(wvv)a

(17)
with V), the usual broken gradient operator on 7. We point out that the last identity in
(17) holds due to the fact that n, = —n.. Here we have set, for any integer [ > 1 and any
v E Hl(’ﬁf) o Vy,

1
en(v) = 3 (Viv + thT) , op(v) = Cep(v).
The stabilization functions n € L*(Fy) and x € L*(F}) are defined as follows:
C,p? -
o  max (Hpem> VFeF", Fcoktnik,
re{rt,k™} he
mMr =9 _ ) (18a)
C
~Pe VF e f;’b, F < 0k;
U
( — pg
B  max (M) VFeF), Fciktnik,
rke{rkt,k™} hy
X|F = (18b)
ﬁ p?u@ b
% VFeF,”, Fcok,
K

cf. in particular [19, Lemma 35| for second-order elliptic problems. In (18a)-(18b), o, 8 > 0 are

11



constants to be properly chosen. We now introduce the following norms:

[VI3ge = IC2en(v) R, + 2 [VI%:  vveH(T;

n) = Vi,
IVIl3c.e = IVlEc.e + In~ " {Cen(v)}I%;  vve HA(TY),

(19)

16360 = e Vivld, + IX[01F: Vo e BT = Vi,
I¥ll3c.e = I¥lEc.. + HX71/2{{Pth¢}}|BTg Vip € H*(T)%).

The following result follows based on employing standard arguments.

Lemma 5.1 (Coercivity and boundedness of A§ and A). Provided that Ty, satisfies Assumption
1a, and that constants o and B are chosen sufficiently large, the following continuity and coercivity

bounds hold:

Ap(0,v) < [ufacelviage — Vu,ve Vg,
2 (20a)
AL (v, v) 2 [v[dg.e Vv e Vy,
Aﬁ(ﬁf% ¢) < ”@HdG,a ¢HdG,a th, ¢ € Vha’ (20b)
Al 9) 2 Wldc.q vip e Vi
Moreover,
A (w,v) S [wllagelVlace — ¥Yw,ve H*(Ty) + Vi, (21)

Al (0, 9) S lellagalvlaca Yo, e HA(T) + Vi

The proof of the above result is based on arguments along the same lines as in the proof of
Lemma A.Il in the Appendix. As a consequence of (20a)—(20b), whose proof hinges on Lemma
AT, the theory of ordinary differential equations guarantees that problem (16) admits a unique
solution (notice, also, that the coupling terms stemming from bilinear forms Z; and Z;' do not
contribute to the energy of the system, cf. Remark 6.1 below).

6. Stability of the semi-discrete formulation

In this section we state a stability result for the semi-discrete problem (16), i.e., the continuous
dependency of the semi-discrete solution on the data (see [71, 72, 68, 12| for the purely elastic
case). The proof is postponed to Section A.2 of Appendix A. Let W = (v, 1) € C1([0,T]; V£) x
C1([0,T7; V,*); we introduce the following mesh-dependent energy norm:

IW@)E = V)2, + v ®)]Z,, (22)
where

V)2, = 1o O, + o2V @)lE, + 1v(0)Ea.e.

[ @12, = le™ o @), + 19(#)3c.q

Remark 6.1 (Energy norm). The definition of the energy norm does not take into account the
interface terms. The reason is related to the fact that, as observed previously, the bilinear forms
I and Zj} are skew-symmetric, i.e., Zj(v,9) = =I5 (¢, v) for all (v,v) € Vi x V2

(23)

12



Theorem 6.2 (Stability of the semi-discrete formulation). For any t € (0,7, let Uy, = (up, vp)
be the solution of (16). Let Assumptions 1a and 1c be satisfied. For sufficiently large penalty
parameters o and 8 in (18a) and (18b), respectively, the following bound holds:

[Tn(®)]e < [UA(0)]e +L (Ife(M)le. + Ifa()e.) d7, € (0,T7]. (24)

7. Semi-discrete error estimate

In this section we state an a priori error estimate for the semi-discrete coupled problem
(16). For an open bounded polytopic domain D < R? and a generic polytopic mesh 7;, over
D satisfying Assumption 1b, we introduce, for any x € T, and m € Ny, the extension operator
&: H™(k) — H™(R?) such that EV) =0, |V, re S [V]m,s. The corresponding vector-valued
version, mapping H™ (k) onto H™(R?), acts component-wise and is denoted in the same way.
The result below is a consequence of the hp-approximation properties stated in [19, Lemmas 23
and 33| and of Assumption 1b.

Lemma 7.1 (Interpolation estimates). For any pair of functions (v,v) € H™(T¢) x H"(T2),
m =2, n =2, there exists (v, vr) € Vi x V| such that

2 min(m,pe,r+1)—2
hi

Iv—villdce < D] 6V ]2,
KeTE &K
h2mil’l(n,pa,n+1)72
K
Il = ¢rll3ce < Y. V)2 k.
KT Pa,x

Additionally, if (v,) € CY([0, T|; H™(T,¢)) x C1([0,T]; H*(T,)*)), m =2, n > 2, then
h2min(m,pe,,§+1)f2

Iv—vilz < )] 53 (1615 k + 16vI7k) -

RE ;he "
|
n,IC

The proof of the following result is postponed to Section A.3 of Appendix A.

h2 min(n,pa,x+1)—2

[ =il < Y, =g (I€

KETZ a,k

[ + 164

Theorem 7.1 (A priori error estimate in the energy norm). Let Assumptions 1a—1c hold. As-
sume that the exact solution of problem (1) is such that u € C%([0,T]; H?(Qe) n H™(T;¢)) and
e C%([0,T); H*(Q4) n H™(T%)), with m,n = 2. Let (un, on) € C*([0,T]; VE) x C2([0,T]; V%)
be the corresponding solution of the semi-discrete problem (16), with sufficiently large penalty
parameters o and B in (18a)—(18b). Then, the following bound holds for the discretization error

E(t) = (ec(t), ea(t)) = (u(t) —un(t), p(t) — @n(t)):

) himin(m,pe,n+1)—2 ) )
sup |E(t)[ < sup | > 53 (l€alm x + 16z, )

te[0,T] te[0,T] KETE e,k

13



himin(n,paﬁ+1)—2 )
+ ) —— (16812 + |69

KET a,k

aK) (25)

T h2 min(m,pe,,@—i-l)—Z
K .o .
i f D e (|EH e + S92 + Sl p)

0 KETY &K

2min(n,pa,rx+1)—2

hi ..
+ Z -3 (”&0

KETZ @K

ni H1EGIR  + 16

72’L,IC) dr.

Whenever the meshsize is quasi-uniform, i.e. h ~ h, VK € Ty, the polynomial degree distri-
bution is uniform, i.e. pe, = pe V& € T)Y and pg . = pa V& € T, and the solution is sufficiently
regular, the above result reads as follows.

Corollary 7.2 (A priori error estimate in the energy norm). Under the hypotheses of Theo-
rem 7.1, assume moreover that h ~ h, for any k € Tp, Pex = pe for any k € T, and pq . = Pa
for any k € T2, Then, if (u,¢) € C*([0,T]; H™(Q)) x C*([0,T]; H"(Q4)) with m = pe + 1 and
n = pg + 1, the error estimate (25) reads

h2pe . T .
sup [E(t)[E € 5 ( sup _([[af7,.0, + lulf o) +f (7 . + a7, + lul7.0,) dt)
te[0,T7] De te[0,T7] 0

h2pa )
+ —,=3| sup (H90|
Pa te[0,T

0. tlelzq,)dt

(26)

T
20+ lol2a.) +f0 (15120, + 14l

8. Fully discrete formulation

With a view towards writing the semi-discrete algebraic formulation of the problem, we fix
a basis to span the discrete spaces Vi and Vi (cf. Section 9 for details). The semi-discrete
algebraic formulation of (16) then reads

(M2U(t) + M20(t) + (M2 + A)U(t) + Ced(t) = Fo(t), te (0,71,
Ma®(t) + Ag®(t) + C,U(t) = Fo(t), te (0,77,
! u©) = V" (27)
U(0) = VO,
®(0) = ¢°,
b(0) = v,

N

where vectors U(t) and ®(¢) represent the expansion coefficients of uy,(t) and ¢, (t) in the chosen
bases. Analogously, M!, M2, M3, A., and C. are the matrices stemming from the bilinear forms

(P, Ve, (2peCu,V)a,, (peC®u,V)a,, An(u,v), Zi (¥, v),

14



respectively, and M, A,, C, = —C represent the bilinear forms

(C_Qpag)? ¢)Qa, .A%(go, ¢>7 I]% (Va ¢)7

respectively. Finally, Fe(t) and F,(t) are the vector representations of linear functionals (f.(t), v)q
and (pq fa(t),¥)q,, respectively.

To fully discretize (16), we employ a time marching method based on centered finite-difference,
widely employed for the numerical simulation of wave propagation, namely, the leap-frog scheme.
We now subdivide the time interval [0,7] into N7 subintervals of amplitude At = T//Nr and
we denote by U' ~ U(t;) and ®' ~ ®(¢;) the approximations of U and ¢ at time t; = iAt,
i€ {l,...,Np}. The leap-frog (centered finite-difference) method reads then

e

M+ §EM2 SEC | [untt | =ML+ §Em2 SEC, | | unt
—&tcl M, ||t | —4ECT M, | ot
oML — At2(A, + M3 0 ur Fn
e ( + e) + At2 e 7
0 2M, — A#2A, | | ®" Fn
(28)
forme{l,...,Np— 1}, and
11 1 A 3\ ) 110 1 oo AP o AP
MU = (M{ = = -(Ac + MJ) | U% + Af(M; = MOV? — == Cow? + ——F,
2 2 2
M, ! = (Ma — A;Aa> o0 + AtM, V0 + ATtCZVO + ATth,

with Fi(a) = Fe@)(ti), 7 € {0,..., N7 — 1}. Let us remark that the centered finite-difference
method is an explicit second-order-accurate scheme; thus, to ensure its numerical stability, a
Courant-Friedrich-Lewy (CFL) condition has to be satisfied (see [73]|). In particular, when
uniform meshsizes h, and h, and uniform polynomial degrees p., p, are used, the CFL condition
reads

he  ha
Al < i ) p
Cotrrmin <p20p p%c) 29)

where Ccq € (0,1) (see also [12] for the purely elastic case).

9. Benchmark test cases

In this section we solve problem (1) in the rectangle 2 = (—1,1) x (0, 1) on polygonal meshes
such as the one represented in Figure 5. Numerical experiments have been carried out both to
test hp-convergence (besides validating numerically estimate (26) by computing the dG-norm of
the error, we also check convergence of the method in the L?-norm) and to simulate a problem
of physical interest, where the system is excited by a point source load in the acoustic domain.
In all cases, we assume that Q. = (—1,0) x (0,1) is occupied by a homogeneous and isotropic
material, and Q, = (0,1) x (0, 1) is occupied by a fluid with constant density p,. The interface is
given by I't = {0} x (0,1). Meshes have been generated using PolyMesher [74]|. The timestep will
be precised depending on the case under consideration. In all of the numerical experiments of
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-1 0 1z

Figure 5: Computational domain and mesh made up by 120 polygons.

this section, as in [9, 47|, we choose the following values of the material parameters: cp = 6.20,
cs =312, p. =27, p,=1,and c = 1.

Concerning the choice of the basis to span the finite-dimensional spaces, along the lines of
[19, Section 6.3] to which we refer the reader for a comprehensive and detailed presentation, we
employ the so called “bounding box” approach, based on employing suitably scaled and cropped
tensor-product Legendre polynomials of total degree at most p, on each mesh element k € Tj,.

9.1. Test case 1

In this test case, the right-hand sides f. and f, are chosen so that the exact solution is given
by

u(z,y;t) = 22 cos(vV2mt) cos (g:v) sin(my) 4, ¢(z,y;t) = 2% sin(v/2nxt) sin(rz) sin(wy),  (30)

where @i = (1,1). The timestep is here set to At = 1074, so that the error due to time integration
is negligeable, and the final time is set to T = 1. Notice that, in this case, both the left- and
right-hand sides of the transmission conditions on I' (cf. (1)) vanish, as well as the unknowns
u and ¢ themselves. Figure 6 shows convergence results in the dG- and L?-norms respectively,
for four nested, sequentially refined polygonal meshes, when polynomials of uniform degree p. =
pe = p = 2 are employed. The numerical results concerning the dG-error show asymptotic
convergence rates that match those predicted by estimate (26). Also, as it is typical for dG
methods, the L%-error turns out to converge in hP! (see, e.g., [72, Theorem 2| for the case of
the elastodynamics equation).

Figure 7 shows convergence results in a semilogarithmic scale, in the dG- and L?-norms
respectively, for a fixed mesh given by 300 elements and a uniform polynomial degree ranging
from 1 to 5. Since the exact solution is analytical, as expected, the error undergoes an exponential
decay.

9.2. Test case 2
We now choose the right-hand sides f. and f, so that the exact solution is given by

4y drx

u(z,y;t) = (cos (—), oS ()) cos(4rt), (x,y;t) = sin (47%%> sin(47t). (31)

cp Ccs

The same test has been carried out in [9] using a Spectral Element discretization; the choice
of material parameters is also the same as in the previous test case. In this case, on I't, both
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Figure 6: Test case 1. dG-error and L2-error vs. h for four sequentially refined polygonal meshes and second-order
polynomials (pe = p, =p = 2).
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Figure 7: Test case 1. dG-error and L2-error vs. p for p. = p, = p ranging from 1 to 5 and a mesh given by 300
polygons.
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Figure 8: Test case 2. dG-error and L2-error vs. h for four sequentially refined polygonal meshes and second-order
polynomials (pe = p. =p = 2).

the traction o(u)n. and the acoustic pressure —p,¢$n. vanish; on the other hand, we have
dp/dn, = —0-n, = 4rsin(4rt). The timestep is, again, set to At = 10™%; on the other hand,
the final time is in this case set to T' = 0.8, to ensure that none of the two unknowns u and ¢
be identically zero when dG- and L?-errors are computed.

Figure 8 shows convergence results in the dG- and L?-norms respectively, for four nested,
sequentially refined polygonal meshes, when polynomials of uniform degree p. = p, = p = 2 are
employed. The numerical results concerning the dG-error again show asymptotic convergence
rates matching those predicted by estimate (26). Also, notice that the L?-error convergence rates
turn out to be slightly above the optimal rate h?*! both for u and for ¢; in the latter case, this
difference is more remarkable. This behavior is probably due to the observation time 7" at which
the errors are computed (see also [75]); indeed, if we consider T' = 0.0625, the convergence rate
of the L2-error is closer to the optimal rate h?*1 (cf. Figure 9).

Figure 10 shows convergence results in a semilogarithmic scale, in the dG- and L?-norms
respectively, for a fixed mesh given by 300 elements and a uniform polynomial degree ranging
from 1 to 5. Again, the error undergoes an exponential decay. Notice that, concerning the L2-
error on u (Figure 10b), the convergence rate decreases when passing from polynomial degree 4
to 5: in both cases the L?-error is on the order of 10~7. This behavior is related to the choice of
the timestep At, set to 10™%; indeed, when a leap-frog time discretization is employed, the error
is expected to converge in At?. In our case, At?> = 10~®, which is only one order of magnitude
lower than the L?-error for p = 4 and p = 5. Decreasing the timestep to At = 107° allows to
recover the expected convergence.
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Figure 9: Test case 2. dG-error and L2-error vs. h for four sequentially refined polygonal meshes and second-order
polynomials (pe = po =p = 2).
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Figure 10: Test case 2. dG-error and L2-error vs. p for p. = p, = p ranging from 1 to 5 and a mesh given by 300
polygons.
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Figure 11: Test case 3. dG-error and L2-error vs. h for four sequentially refined polygonal meshes and second-
order polynomials (pe = p, =p = 2).

9.8. Test case 8 — nonzero damping

We now consider a test case where { # 0 (in particular, we set ( = 4m), and choose the
right-hand sides f. and f, so that the exact solution is given by

4 4 A
u(z,y;t) = (COS (ﬂ)j COS (m)) 6747rt7 oz, y;t) = sin (ﬂ)efht.
c

32
cp cs ( )

Concerning the transmission conditions on I'y, the situation is completely analogous to Test
case 2. The timestep is set to At = 107>, and the final time is set to T" = 1.

Figure 11 (resp. Figure 12) shows the computed errors in the dG- and L?-norms respectively,
for four nested, sequentially refined polygonal meshes, when polynomials of uniform degree p, =
Pa = 2 (resp. pe = pg = 3) are employed. The numerical results concerning the dG-error again
show asymptotic convergence rates matching those predicted by estimate (26).

Finally, Figure 13 shows an exponential rate of convergence of the error measured in the dG-
and L?-norms respectively, for a fixed mesh given by 300 elements and a uniform polynomial
degree ranging from 1 to 5. The error undergoes an exponential decay as expected.

Notice that, in all of the numerical experiments carried out in this section, the h?*!-convergence
of the L?-error resulting from h-refinement and its exponential convergence resulting from p-
refinements is in agreement with the numerical results available in the literature (see e.g. [47, 49)]).

To close this section, we give an insight into the computational costs of our method. More
precisely, in Table 1 we report the sizes of the matrix to be inverted at each time-step in the left-
hand side of (28), the number of its nonzero elements, and the ratio of the latter with respect to
the former, for p. = p, = p € {2, 3} and a sequence of four sequentially refined polygonal meshes.
We recall that for the solution of (28) we employ a direct solver based on the LU factorization;
notice that M, M2 and M, are block diagonal. Thus, the amount of time spent for a single step
is negligeable with respect to the one spent for the assembly of the matrix.
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Figure 13: Test case 3. dG-error and L?-error vs. p for p, = p. = p ranging from 1 to 5 and a mesh given by 300
polygons.

p=2 p=3
Nel 80 320 1280 5120 80 320 1280 5120
S 720 | 2880 | 11520 | 46080 | 1200 | 4800 | 19200 | 76800
NNZ | 4824 | 18648 | 71552 | 282046 | 13392 | 51756 | 198778 | 783518
NNZ/S? | 9e-3 | 2e-3 oe-4 le-4 9e-3 | 2.2e-3 | OSe-4 le-4

Table 1: Computational costs of the method in terms of the nonzero elements of the matrix to be inverted at each
time-step for pe = po = p € {2, 3}, using a sequence of four sequentially refined polygonal grids. Nei = number of

polygons in each grid, S = size of the matrix, NNZ = number of nonzero elements of the matrix.
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10. Physical examples

10.1. Acoustic point source

As a first numerical experiment, we simulate a seismic source. In particular, we suppose that
the system is excited only by a Ricker wavelet [76], i.e., by the following point source load placed
in the acoustic domain:

fa(x,1) = fo (1= 272 f2(t — 19)2) e ™ =10 6 (x — x¢), x0 € Uy to€ (0,T],  (33)

where x = (z,y), X0 = (20, %0) is a given point in €, ¢ is the Dirac distribution, fy represents the
intensity of the source, and f,, is the peak frequency. All initial conditions, boundary conditions,
as well as the body force f., are set to zero. The Dirac distribution in xg is approximated
numerically by a Gaussian distribution centered at xg. The computational domain is the same
as in the previous section, where the length and width are measured in c¢m and the elastic
medium is again homogeneous and isotropic. For the material parameters, we consider here
the same numerical values as in [47], namely, p. = 2.5g/cm3, p, = 1g/cm?, cp = 4.0em/s,
cs = 2.0cem/s, ¢ = 1.5cm/s, and we assume a zero damping, i.e. ( = 0. Moreover, in (33), we
choose xg = (0.2¢m,0.5¢cm), tg = 0.1s, and, as in [47], fo = 3620 Hz - em? and f, = 13.5 Hz.
We employ here a polygonal mesh of 5000 elements, corresponding to a meshsize h ~ 0.04, a
uniform polynomial degree p = 3, and a timestep At = 107> s. The final time is set to 7' = 1 s.

Figure 14 shows the numerical solution (horizontal and vertical elastic displacements, and
acoustic potential) at time ¢ = 0.5s. The vertical displacement, displayed in Figure 14b, turns
out to be very close to zero in a large elastic subregion, except near the boundary, where small
reflected wavefronts can be detected, because of homogeneous Dirichlet boundary conditions.
This behavior is due to the fact that the seismic source is placed close enough to the interface
I'1, so that the effects of reflected waves in the elastic region are not observed for a certain time,
and hence only the coupling effects are visible (only longitudinal stresses are propagated through
the elasto-acoustic interface, since fluids cannot sustain shear stresses). Nevertheless, after a
certain time, elastic waves are reflected, which gives rise to a nonzero vertical displacement.
Concerning the acoustic region, spherical wavefronts generated by the point source load can be
clearly observed in Figure 14c; again, waves are reflected on the boundary for the same reason
as before.

10.2. Elastic point source in the presence of acoustic cavities

To further demonstrate the effectiveness of our approach in the simulation of elasto-acoustic
coupling, we now consider the situation of a 100 m x 100m elastic square domain including 45
acoustic cavities. Each acoustic cavity is itself a polygonal element of the mesh (cf. Figure 15),
which is made up overall by 4861 elements, resulting in a meshsize h ~ 10.45m. We simulate
the effect of a seismic source acting in the elastic domain and located at point xg = (10m,10m);
the time factor is the same as in Section 10.1, with fo = 10* N, fp=1Hz, and ty = 2s. Initial
conditions, boundary conditions, and the acoustic source f, are all set to zero. The elastic
medium is homogeneous and isotropic, and is characterized by a density p. = 1600 kg/m?> and
by wave propagation velocities cp = 25m/s and ¢g = 10m/s, resulting in the following values
of the Lamé parameters: A = 680kPa and pu = 160 kPa. On the other hand, we consider the
air as acoustic medium, and thus set p, = 1000 kg/m? and ¢ = 300m/s. We use on every mesh
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Figure 14: Numerical solution at ¢t = 0.5.
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Figure 15: Mesh of a 100m x 100 m elastic square domain with 45 acoustic cavities (a) and zoom on the neigh-
borhood of an acoustic cavity (b). Each acoustic cavity is described by one single polygonal element with many
faces.

element a polynomial degree p = 3, the time-step is At = 10™%s, and the final time is set to
T =10s.

Figures 16 and 17 show the euclidean norm of the displacement field and the absolute value
of the acoustic potential, respectively, at four different istants of time. The elastic wave gets
scattered due to the presence of the acoustic inclusions and is reflected on the boundary due
to homogeneous boundary conditions. On the other hand, the acoustic waves generated within
the cavities are subject to refraction and reflection phenomena when interacting with the elastic
domain.

11. Conclusions

We proposed and analyzed a high-order discontinuous Galerkin method for the approxima-
tion of a coupled elasto-acoustic evolution problem on computational meshes made by general
polygonal /polyhedral elements. We established the well-posedness of the problem in the con-
tinuous setting based on the Hille-Yosida theory and we then analyzed the well-posedness of
the semi-discrete formulation by stating and proving a stability result, as well as a hp-version
error estimate for the semi-discrete problem. The proposed spatial discretization scheme fea-
tures the following advantages: (i) grids on the elastic and acoustic domains can be generated
independently, which allows for geometric flexibility; (ii) it allows for Ap-tuning of discretization
parameters; (iii) it is well-suited for applications (naturally oriented to high performance com-
puting techniques). We have also discussed the fully discrete numerical scheme, based on the
leap-frog method. Finally, we validated the theoretical results by numerical experiments carried
out on several two-dimensional test cases. In particular, we carried out a simulation on a compu-
tational domain occupied by an elastic medium with several acoustic spherical inclusions. This

24



0.1

0.09

0.08

0.07

0.06

0.05

y-axis
[m]
y-axis

0.04

0.03

0.02

0.01

0.05

y-axis
[m]
y-axis

0.04

0.03

0.02

0.01

X-axis

()

Figure 16: Euclidean norm of the displacement field at times ¢t = 2s (a), t =3s (b), t =45 (c), and t = 55 (d).
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test case shows that the flexibility in the process of mesh design offered by polytopic elements,
can be fully exploited at a lower computational cost compared to conforming elements.
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Appendix A.

The proofs of Theorems 3.1 (existence and uniqueness for the solution of the continuous
problem), 6.2 (stability of the semi-discrete formulation), and 7.1 (semi-discrete error estimate),
as well as the statements and proofs of Lemmas A.I and A.Il, are presented here.

A.1. Existence and uniqueness
Proof of Theorem 3.1. Let w =10, ¢ = ¢, and U = (u, w, ¢, ¢). We introduce the Hilbert space

H = Hp () x L*(2) x Hp(Q) x L* (),
equipped with the following scalar product:
(U, Us) = (peC®ur, uz)q, + (Ce(ur), e(uz))g,
+ (pew1, Wa)o, + (Pa Vo1, Vir)a, + (¢ ?padt, $2)0,-
Then, we define the operator A: D(A) c H — H by
AU = (—w, 2(w + (*u— p. 'divCe(u), —¢, —c*Ap) VU € D(A),
where the domain D(A) of the operator is the linear subspace of H defined as follows (cf. defi-

nition (3)):

D(A) = {U e H:ue HE(Q), we Hb(), e HA(Q), ¢ € Hb(Q);
(A.2)
(Ce(u) + papI)n, =0o0n Ty, (Vo +w)n, =0on FI}.

Finally, let
F = (0,p.1£.,0,c2f,).

Problem (1) can then be reformulated as follows: given F € C*([0,T]; H) and Uy € D(A), find
U e CY([0,T];H) n C°([0,T]; D(A)) such that

Yy auw) = 7y, te (0,11,

de
U(0) = Up.

(A.3)

Owing to the Hille-Yosida Theorem, this problem is well-posed provided A is maximal monotone,
ie., (AU,U)g =0 VYU € D(A) and I + A is surjective from D(A) onto H. By the definition (A.1)
of the scalar product in H, we have

(AU,Z/{)H = (—peC2W, u)Qe + (—CE(W), e(u))ﬂe + (2PeCW + peczu —div Cs(u), W)Q
+(=paV$, V), + (—paldp, d)a,-

Taking into account the definition (A.2) of the domain D(A) and integrating by parts, we obtain

€

(AU U = (2pCw, w)a, = 0,
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i.e., A is monotone. It then remains to verify that, for any F = (F1,Fo, F3, Fy) € H, there is (a
unique) U € D(A) such that U + AU = F, that is,

u—w="Fq,
(1+20)w + ¢*u — p.'divCe(u) = Fy,

¢ —¢=F;,
& —cENp = Fy.

(A.4)

The first and third equations allow to express w and ¢ in terms of u and ¢, respectively;
substituting these two relations in the other two equations gives

(¢ +1)%u — p;'divCe(u) = (1 + 2¢)F; + Fy,

A5
¢ — Ao =Fs+ Fy. (A.5)

Since ne = —n, on I't, and owing to the first and third equations of (A.4) and to the transmission
conditions on I't embedded in the definition of D(A), the variational formulation of the above
problem reads: find (u,¢) € HL () x H},(Qq) such that, for any (v,) € HL(Q:) x H(Qa),

where

A ((w,0), (v, 1)) = (pe(¢ + 1)%u,v)q, + (Ce(u),e(v))a, + (papne, v)r,
+ (pac 20, V)0, + (Pa Vi, Vib)a, — (patone, ¥)r,

and

Z(v, /lzz)) = (pe(l + 2<)Fl + PeF2, V)Qe + (paF3n67 V)FI + (paC_Q(FZ% + F4), Q;Z))Sh - (paFl'nev ¢)I‘1-

This problem is well-posed owing to the Lax—Milgram Lemma (notice, in particular, that the
bilinear form .o is coercive since the interface contributions vanish when v = u and ¢ = ¢). In
addition, thanks to equations (A.5) we infer that u € Hé(ﬂe) N HL(Q.) and p € H2(Q4) N
H}(€,). This in turn gives (w, ¢) € HE(Qe) x H}(€,) thanks to the first and third equations
of (A.4). Thus, U € D(A) and the proof is complete. O

A.2. Stability of the semi-discrete formulation
Proof of Theorem 6.2. Taking vy, = 0y, and 1, = ¢p, in (16), we obtain

(peiin, Up)a, + (20eC0n, Up)a, + (peCPup, 0p)o, + (o'h(uh)ash(ﬁh))ﬂe
= {on(un)}, [0nl)re — Munl, fon(an)}) ze + Mlunl, [anl)z
+ (2 pahy ¢n)en + (0aVien, Vagn)o, — {paVien}, [onl) 7o
—pallon]l; {VroR ) o + Xllpn]l [2n]D 70 = (Fes tn)a, + (Pafas $n)au
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that is,

2 < (102 — 2 (o)}, [anDz; + e Voo Tenl )

+2“p1/2 1/211/1”9 = (fe,un)q. + (Pafar Pn)o,

Integrating the above identity over the interval (0,t) we have

[ODIE =2 (Honlwn )}, [wn (05, + HpaVaon O, [on (O],
+4 fo Io}2¢ i () B a7 = [UL(0)12 — 2 (hom(un(0) }, [ua(0) )

t

+ UpaVrgon()}, [on 0Dy ) +2 fo (E.(7), (7)) d7 +2 fo (Pafa(r), on(r))q,dr,
and, since the last term on the left-hand side is positive, we get
U012 =2 (Gon(un®)} TonOD 5 + Hou o [on®) )
< UL 2 (AonurO)}. [ws O], +HpaVienO}. LoDz )
+ 2L (fe(T)7 ﬂh(T))Qe dr + QJ;) (pafa(T)v ()bh(T))Qa dr.
From Lemma A.Il, we get

[O0)2 =2 (o)}, [an @D 5, + HpaVaon®} [en® Dz ) 2 U2,
[UA(O) 1% = 2 (Hon(un ()} [un(O) Dz, + HpaVren(O)} [on(0)] ;) < U012,

where the first bound holds if the stability parameters o and 8 are chosen large enough. Conse-
quently

t

t
[UL(0)2 < [0L(0) 2 + 2f0 (£.(7), (7)) . dr +2 j (bafalr), $(7) g dr
t
< UL 0)2 + f I£() o |00 (7)o, + f 1Fa()an e 22 () e

< [Un(0)[2 +L (le(m) e + [ fa(T)l0.) [Un(T)]e dr,

where we have used the Cauchy—Schwarz inequality and the definition (22) of the energy norm
in the last two bounds. The assertion follows then by employing Gronwall’s Lemma (see e.g. |77,

p. 28]). O
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A.3. Semi-discrete error estimate

Proof of Theorem 7.1. Tt is easy to see that the semi-discrete formulation (16) is strongly con-
sistent, i.e., the exact solution (u, ¢) satisfies (16) for any ¢ € (0,77:

(peil, V), + (¢ 2paB, V)0, + (2041, V)a, + (peCu, V),
+ A} (u,v) + Ay (0, 0) + I (@, v) + T (1, 9)) (A.6)
= (feaV)Qe + (pafaa w)Qa? V(V,’QZJ) € Vﬁ X V;;l

Subtracting (16) from the above identity, we obtain the error equation:

(peéevv)ﬂe + (C_2paéaa w)Qa + (2Pecéea V)Qe + (PeC2ee, V)Qe

AT
+ Aj (e, v) + Afy(€a, ) + Tji(éa, v) + Tji(ée, ¥) = 0, V(v, ) € Vi x V. A

We next decompose the error E = (e, e,) as follows: E = E; — Ep, with E; = (er,e7) =

(u —ur,p — (p[), and Eh = (eh,eh) = (uh — us,$Yp — QOI), (uI,<p[) € V],f X V}f being the
interpolants defined as in Lemma 7.1. By taking as test functions (v,) = (&, ¢éy), the above
identity reads then

(Pens en)a. + (¢ 2path, én)a, + (2peCen, én)a. + (peClen, en)a,
+ Aj,(en, en) + Ap(en, én) + Ip,(én, €n) + Zjy (€, én)
= (pebr, €n)a, + (¢ 2pafr, én)a, + (2peCer, én)a, + (peCer, én)a,
+ Aj (er,én) + Af(er,én) +If(ér,€n) + Ly (€1, én).

Using the Cauchy—Schwarz inequality to bound the terms on the right-hand side, the above
estimate can be rewritten as

1d

52t (IEslE = 2({on(en)}. [enD) s, —2<HpaViend. lenl )

+ 2] p2¢enld, < lerlellenle. + lérlelenle, + 2lpd2¢ 2 er]a. pd?¢ 2 en 0.
+ A (er, &) + Af(er, én) + If(ér, €p) + Ip (1, é1) + (p(er, én)q. -

This inequality can be further manipulated by observing that
2| p*¢Perla. lpd* ¢ Penlla. < Ip2*Cerl, + 1022 enld,;

thereby we obtain

1d
535 (IEal2 = 2(fon(en)} Tenl) sy — 2HpaVaen}s lenl 5y )
+ 1pd* ¢ enld, < lerle.lenle. + lerlellenlle, + 027¢ e,
+ Af(er, en) + Aj(er, én) + If(ér, én) + i (€1, én) + (pC%er, ép)a,
Since Hpe : 1/thHQ 0, integrating in time between 0 and ¢, using Lemma A.II, and choosing the

projections of the initial data such that ep(0) = ugp — (up)r = 0 and e;(0) = @on — (vo)r = 0,
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we get

t t ¢
|Ex|E < f (lezrle. llenlle. + ezl lenle,) dm + J o> e, dr +f (peCer,ep)a.dr
0 0 0

¢ ¢
+ J (AZ(G[, éh) + .A‘fl(ef, éh))d’l' + J (Zﬁ(é], éh) + Ig(é[, éh))dT. (A8)
0 0

Performing integration by parts in time between 0 and ¢ on the third term on the right-hand
side, and using the fact that e,(0) = 0, e;(0) = 0 and the definition (22) of the energy norm

yields
t

t
L(peC2el7éh)QedT = (peCer(t), en(t))a. — L (peC?ér,en)q.dr

t
< Jerle. lenle, + f lé1le. lenle. dr.
0

Analogously, using the continuity of bilinear forms Aj and Af expressed by (21), and the defi-
nition (22) of the energy norm, we obtain

L (A5, (er, €n) + Aj(er, én))dr = A5, (er(t), en(t)) + Af(er(t), en(t))

t
_ JO (AS (er,en) + A2 (ér en))dr

S llerllac el

enle. + llerllac.alenle,

t
n fo (lerllacclenle. + lerllac.allenle, )

We now seek a bound on the fifth term on the right-hand side of (A.8). Focusing on the
bilinear form Zy (cf. definition (17)), we have

Tiernen) = Y (pemeé)r< Y loaérlrlenlr s Y [érlonelénlon
FeFp 1 FeFn 5667;51,/6”‘67—}?71
—1 . .
< 0 penehlerlonsénlec lenlle..

HEE'The,I, f‘c‘leTh“’I
where we have used the Cauchy—Schwarz inequality, the trace-inverse inequality (14), the defini-

tion (22) of the energy norm, and, in the last bound, Assumption lc on hp-local quasi-uniformity.
Hence, we have

t t t
f Tg(ér,6) AT < f ( D pa,nh21/2|élam> eh|ged¢d=eff T (ér)lenls. dr. (A.9)
0 0

0 a
neThJ
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Recalling that Zj'(ér, é,) = —Zj (én, €r), with completely analogous arguments we obtain

t
f Iy (ér,ép)dr $J < D Pexh 1/2|el|an> |€h|£ad7—f Ty (€1)]en]e,dr. (A.10)
0 0

KETe

Substituting the above bounds into (A.8), we get

Bl < (lerle. + llerllac. ) lenle, + llerllac lenle, + f lo}2¢ 61, dr

t t
# | erle. + erlla, + Tien)lenle.dr + | (rlle, + Ierllag.a+ T @n)lesle.dr
Observe now that |ep|s, < |En|e and |lep|s, < |Enlle. Thanks to Young’s inequality we have
€ 9 1 2
(lerle. + llerllac. ) lenle. < Slenl?, + 5= (lerle. + llerllac.c)

< SIBulE + = (lerl, + llerll3e..)

2
llerllag,ollenlle. < §HEhH§ + %me[md&a‘

Choosing € such that 1 — %C’e > 0 and ¢ such that 1— %C((S—FE) > 0, C being the hidden constant
n (A.8), we infer that

B2 < llerl?, + llerll3e.. + lerll3aa + j ol ¢ 613, dr
t
- jo (Ierle. + Nerllage + T + lerle, + érllaga + T (@n) [Enle dr.

Upon setting

2 2
G = sy (e, + Vil + lerllie,) + [ 1o erttan
te[0,T]

and applying Gronwall’s Lemma [77, p. 28] along with Jensen’s inequality, we get

T
. . 2 . . . 2 .
B2 < G+ | (Jerll, + lorlio, + e + lerll, + lerli, + Tien?) dr. - (A1)

Owing to hp-approximation boundary estimates [19, Lemma 33|, we infer that

hmin(pam +1,n)—-1

TN € Y,

a
KETy pa K

ymin(pe x+1.m)—1

. K .

VAR el A (S
KET) | Pe,x
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(cf. (A.9) and (A.10)). Applying the bounds of Lemma 7.1 to estimate the energy- and dG-
norms in the right-hand side of (A.11), observing that |E(t)|% < 2(|En(0)|% + |Ef(¢)|2) Vt €
[0, T], applying again the bounds of Lemma 7.1 to estimate the second addend, and taking the
supremum over [0, 7] of the resulting estimate, the thesis follows. ]

Lemma A.I. The following inequalities hold:

_ 1 e
I~ {enWYlz; < ZIC enWlla, Vv e Vi, (A12a)

_ 1 a
I e Vavblz § Sl Vidla, Yo eV, (A-12D)

where o and B are the stability parameters appearing in the definition of stabilization functions

(18a)~(18b).

Proof. We only prove (A.12a), the arguments for showing (A.12b) being completely analogous.
Recall that the following trace-inverse inequality holds for simplices [19, p. 25]: given a
simplex T' < R? and a polynomial degree p > 1, for all v € Z,(T) there is a real number C' > 0
independent of the discretization parameters such that
||
lol < Cp2m||UH2T- (A.13)
Owing to (A.13), the definition (9) of C,, the definition (18a) of 7, and Assumption la, for
any v € V7 we obtain

I~ {onBF < 35 D) Culn *CPe)%

k€T Fcok
w2 FL 2 L1 2
S D0 D 0 Cl e IC e ()2 < ~[Cen(v) [, -
ReTf FCor |Rb | ’ a
O
Lemma A.IL. For any W = (v,¢) € C*([0,T]; VZ) x CL([0,T]; V}%*), it holds
(W12 —2 (Aon)) VD + AnaVii) [y ) < IWI2, o

W2 =2 (Uonh VD + HpaVivh [ ) 2 W3,

Proof. The first bound follows from the Cauchy—Schwarz inequality, the definition (22) of the
energy norm, and Lemma A.IL:

IWIE = 2 (Uon)h VD5 + e Vath [6]))
< W2 + 17 o) Mz 2 Ivllzg + I (o Vs Hzg Ix [ |7

1 1
<IWIE + EHCW%(V)HQEHVHdG,e + ﬁ\!pi/ZVhwl\QaMdG,a
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S WIE+ [Wike < W2,

where we have set |[W|3, = HV||§G7€ + HdJHgG,a. To prove the second bound, it suffices to show
that

IWiie =2 (o)} VD s + Vi) 1815 ) 2 [Wlie: (A.15)
Indeed, by the definition (22) of the energy norm and (A.15),

W2 =2 (o)}, [ + Apa ¥tk 91 )

= 1P, + o2 CvIR, + e o1, + TW G —2 (Aon )b VD + paVith [ 5 )
2 0L, + 102CvlE, + e o013, + W3 = [W2.

Thus, we next show that (A.15) holds provided the stability parameters o and 3 are chosen large
enough. To this purpose, using Young’s inequality we infer that, for any J,¢e > 0,

HonW} vIDr < D) [0~ {onlv )}}HFHnl/Q[[V]]HF<2*15H77*1/2{{0h(\')}}!\3r;+gH771/2[[V]]H3r;7

FeFy

AR (S S I PR Y M [t N PR 00 PR P 1 T

FeFy

Hence, from the definition of the |-|qg.e- and [-|qaq,o-norms on V¢ and V)¢, it follows that

IWiie =2 (o)} VD x + L Vit 415 )
1, _
> [CPe() B, + lpd Vi, + (1 =0) [0 [v][3 — sl Phon(v)} 5
1,
F (= I T91By — I e Vit bl
Ch Co
> (1- S ictemlh, + (1- 5 ) 19k,

+ (1= 8) [0 [v]IF + (1 — ) [x " [¥]13,
where in the last bound we have applied Lemma A.I with hidden constants C; and Cs. Then
(A.15) follows by choosing, for instance, 6 = ¢ = 1/2 and « > 4C1, 8 = 4Cs. O
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