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Abstract9

The introduction of Linear Logic by Jean-Yves Girard takes its origins in the so-called normal10

functors model of lambda-calculus in which untyped λ-terms are interpreted as ‘normal functors’11

between presheaf categories. As a result, we produce a new model in ‘normal functions’ between12

sets of (possibly infinite) multisets, gaining new insights on Girard’s original construction. We13

then extend this to an explicit model of intuitionistic Linear Logic, contrasting the result with the14

weighted relational model.15
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1 Introduction20

What is a model of Linear Logic? Loosely speaking, there are at least two possible answers21

organised as those which take the models as central, with the syntax playing a supporting22

role, and those which take the syntax as central, with the models playing a supporting role.23

So-called categorical models fall in the former class: often, constraints are imposed that are24

justified by mathematical elegance or convenience rather than logical necessity; foremost of25

these is the requirement that the exponential modality (!) should be a comonad. Investigating26

the origins of this requirement leads to a paper by Seely [22] in which he writes ‘Notice that27

these rules seem to imply that we should regard ! as a functor, indeed a cotriple [...]’, an28

extremely loose justification. The models we will work with in the present paper, which29

focus on invariants and dynamics of the logic, are of the latter kind sometimes referred to30

as “models of cut-elimination”. Although present from the very origins of Linear Logic, this31

more general syntactic perspective has since remained comparatively unexplored.32

Normal Functors and Linear logic. In the initial development of Linear Logic [9], an33

important part was played by the ‘normal functors’ model of untyped λ-calculus [10] where34

terms are interpreted by finite polynomial functors [15]. This model has been studied through35

the lens of categorical semantics [24, 13], and plays a fundamental role in the current work36

around 2-categorical models of Linear Logic [2, 5, 3]. In [10] Girard proved his so-called37

Normal Form Theorem1: an equivalence between normal functors and analytic functors2, by38

way of a normal form common to each type of functor. Exploiting this result, he constructed39

a model of the untyped λ-calculus which can be understood as a categorification of Scott40

1 Which is a variant of normal form theorems on ordinals obtained within the theory of dilators [7].
2 We stress here that the notion of analytic functor as introduced by Girard differs from that introduced

and studied by Joyal [14].
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domains [19, 20, 21, 6]: instead of interpreting terms as continuous functions between directed41

complete partially ordered sets, he interprets them as functors preserving certain (co)limits42

(normal functors) between categories which possess the corresponding (co)limits. More43

precisely, a term t (equipped with a valid context x) is interpreted as a normal functor44

Jx ∣ tK ∶ (SetA)n → SetA, where A is a fixed countably infinite set.45

However, within this model lurks more structure than that which is reflected in the46

syntax of the untyped λ-calculus. A defining property of normal functors is that they47

are determined by their restriction to integral functors. Though this holds for all normal48

functors, the stronger condition that a functor is defined by its restriction to the underlying49

sets A × . . . × A → SetA only holds for a subclass of normal functors which we call linear.50

Restricting to the simply typed λ-calculus (à la Church) then extending the syntax to capture51

linear functors leads to the familiar logical system of Linear Logic.52

How exactly it is that Linear Logic is modelled by normal functors was never written down53

in Girard’s original paper. And it turns out that the origin of Linear Logic is most of the54

time explained, even by Girard himself, by referencing coherence space semantics [10, 8, 9], a55

special case of domains that is obtained as a qualitative version of normal functors.56

Contributions. The starting point of this paper was the realisation that what is written57

in Girard’s paper is overcomplicated, both in presentation and content. We remedy the58

former by providing a greatly streamlined account of both Girard’s Normal Form Theorem in59

Section 2 and a restructured presentation of Girard’s model in Section 3. As a consequence,60

we find that one need not consider normal functors at all, as the core mathematical ideas at61

work can be understood by considering much simpler normal functions instead. This leads62

to a simplification of the normal functors model in Section 4; in contrast to coherence spaces,63

this model remains quantitative. At face value, the simplified model bares similarities to the64

weighted relational model [16], and also to the “weighted Scott domains” model [1, Section65

3]. We show in Section 6 that it is distinct from these, so we declare this new (to the best of66

the authors’ knowledge) model, as one of this paper’s main contributions.67

The other main contribution is more conceptual. A critical point in Girard’s original68

paper is the use of so-called analytic functors (see Definition 4) which admit a presentation69

as a kind of generalized power series. This presentation is exploited to define the operations70

that interpret application and abstraction in Girard’s model in spite of the fact that the71

ambient category in which Girard implicitly works is not cartesian closed. The fact that72

normal functors are naturally isomorphic to analytic functors (see Theorem 7) is thus framed73

as crucial to recovering a functorial, presentation-independent version of his model. This74

idea of functors which can be presented via variants of power series has been elaborated75

upon by work generalising Girard’s ideas to the setting of profunctors and generalised species76

[4, 25]. These developments are of interest in their own right, but they may give one the false77

impression that such a presentation is necessary for modelling λ-calculus. Our simplification78

of Girard’s model demonstrates that the conditions for interpreting λ-calculus (resp. Linear79

Logic) are in fact much simpler, requiring only that a function interpreting a λ-term (resp.80

proof) is determined by its restrictions to smaller domains in a systematic way.81

That our simplification moves our understanding of Girard’s model away from power82

series is a deliberate and positive aspect of this current paper. We remark again that neither83

Girard’s model nor our own is a ‘categorical model’ in the usual sense. We stress this84

because it is usually treated as a deficiency of Girard’s original model, whereas we find this85

assessment, and more generally the associated belief that a model of Linear Logic should86

satisfy the axioms of a categorical model, potentially harmful as it could lead to disregarding87

interesting models. Indeed, had the normal functor model been abandoned due to the failure88
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of cartesian-closedness, we would likely not have Linear Logic, since Girard himself points89

to this paper as the origin of the formalism in reprints of this work [10]. In this regard,90

we judge that the most important feature resulting in the emergence of Linear Logic is the91

presence of linearity in his model, in the sense of a subclass of normal functors having a92

stronger property than being normal. We exhibit the corresponding class of linear functions93

appearing in our formalism as part of a model of Intuitionistic Linear Logic in Section 5; an94

interpretation of Linear Logic in Girard’s original model can be deduced from this one.95

2 Girard’s Normal Form Theorem96

In this section we survey Girard’s model, taking the opportunity to state the main results97

from his paper [10] in more modern terminology. We will show in the next section how this98

is used to define a model of λ-calculus.99

▶ Definition 1. Let A, B be fixed sets. A functor F ∶ SetA → SetB is normal if it preserves100

directed colimits and wide pullbacks. More generally, a functor SetA1 ×⋯ × SetAn → SetB is101

normal if it is so in each argument, or equivalently, if it is normal as a functor SetA1⊔⋯⊔An →102

SetB.103

▶ Remark 2. The collection of normal functors is closed under composition, by inspection.104

For b ∈ B, the evaluation functor evb ∶ SetB → Set is a normal functor. As such, given a105

functor F ∶ SetA → SetB we write Fb for the composite functor evb ○F , which will be normal106

whenever F is.107

Normal functors F ∶ SetA → SetB have the crucial property that the image of any functor108

F ∈ SetA under F is determined by finitary data, even when F takes values in infinite sets.109

To illustrate this point, consider the special case A = B = {∗}, so F is a normal functor110

Set → Set. Given a set X, let {Xi}i∈I be the collection of its finite subsets. Then X can111

be written as the direct colimit colimi∈I Xi. Since F preserves filtered colimits and wide112

pullbacks, we have the following:113

F (X) =F (colim
i∈I

Xi) = colim
i∈I

F (Xi).114

We can think of the collection {F (Xi)}i∈I as the collection of approximations of F (X)115

determined by finite data from X. In particular, it follows that F is entirely determined by116

its values on finite sets, and even by its restriction to the Von Neumann integers.117

Since F preserves pullbacks it preserves monomorphisms, so the colimit is a directed118

union. Moreover, if y ∈F (X) and Xi, Xj ⊆X are such that y ∈F (Xi) and y ∈F (Xj) then,119

120

y ∈F (Xi) ∩F (Xj) =F (Xi ∩Xj) (1)121

as F preserves pullbacks. This implies that there exists a minimal finite subset Xk ⊆ X,122

depending on y, from which y emerges upon applying F . Note that we only needed finite123

pullbacks here because A was a singleton, but wide pullbacks are needed as soon as A is124

infinite.125

The theory presented in the remainder of this section can be thought of as a generalisation126

of the phenomena just observed. First, we must identify the analogue of finite sets.127

▶ Definition 3. Let X ∈ Set be a set and F ∈ SetA a functor. We introduce the terminology:128

X is an integer if it is a Von Neumann integer (0 ∶= ∅, 1 ∶= {0}, . . . , n ∶= {0, . . . , n−1}, . . . ).129

F is finite if for all a ∈ A the set F (a) is finite, and all but finitely many of the F (a)130

are equal to ∅.131
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F is integral if it is finite and for all a ∈ A the set F (a) is an integer.132

For an arbitrary set A we denote by Int(A) the set of integral functors in SetA.133

The main reason that we need to restrict to integral functors rather than finite functors134

is to provide a set of representatives to serve as indices in the following definition.135

▶ Definition 4. A functor F ∶ SetA → SetB is analytic if there exists a family of functors136

{CG}G∈Int(A) in SetB such that for all objects F ∈ SetA and all morphisms µ ∶ F → F ′:137

F (F ) = ∐
G∈Int(A)

(CG × SetA(G, F )) F (µ) = ∐
G∈Int(A)

(CG × SetA(G, µ)).138

Girard presented the formulas in the definition of analytic functors as a kind of power139

series, whence the choice of name. To compare normal functors and analytic functors, we140

consider ‘normal forms’.141

▶ Definition 5. Let F ∶ SetA → SetB and b ∈ B. Let El(Fb) denote the category of elements142

of Fb (cf. Remark 2) and (F, x) an object of this category, so F ∈ SetA and x ∈F (F )(b). A143

form of F with respect to (F, x) is an object of the slice category El(Fb)/(F, x). Given a144

form η ∶ (G, y)→ (F, x), we say:145

η is finite if G is finite.146

η is integral if G is integral.147

η is normal if it is an initial object in El(Fb)/(F, x).148

With these notions established, we can introduce a third property of functors which149

mediates between normal and analytic functors.150

▶ Definition 6. A functor F ∶ SetA → SetB is said to satisfy the finite normal form151

property if for every b ∈ B and object (F, x) in El(Fb) there exists a finite normal form152

η ∶ (G, y)→ (F, x). The functor F is said to satisfy the integral normal form property153

if in the above the form η can be taken to be integral.154

Girard’s main theorem states that the three properties of functor are equivalent. Notice155

that the statement from the original article contains a minor error, the correct statement is156

as follows.157

▶ Theorem 7. Let F ∶ SetA → SetB be a functor. The following are equivalent:158

1. F is normal.159

2. F satisfies the finite normal form property.160

3. F is isomorphic to an analytic functor.161

The proof of Theorem 7 is difficult and requires all of the definitions introduced so far. For162

instance, when Girard proves (2 ⇒ 1) he relies on an explicit translation through integral163

functors. A full exposition of the proof of Theorem 7 is given in Appendix A.164

3 λ-terms as normal functors165

In this section, we present Girard’s model of the untyped λ-calculus using normal functors.166

In his paper, Girard was concerned with the minimal data property that we sketched at167

the start of Section 2; this corresponds to the hypothesis that normal functors preserve168

wide pullbacks. Accordingly, if one is willing to drop this property then the preservation169

of pullbacks may be dropped too! While preservation of pullbacks was important for the170

correspondence in Theorem 7, we will not require it at any point in the following results;171
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in other words, it is not essential for modelling λ-calculus. In Section 4 we will present our172

simplification of Girard’s model consisting of normal functions, where we do not impose the173

analogue of this condition.174

In the following, we use the notation Norm(C,D) to denote the collection of normal175

functors from a category C to a category D. The properties of normal functors enable us to176

“curry” and “uncurry” functions of several variables.177

▶ Lemma 8. For sets A, B, C there exists a pair of functions (−)+, (−)−:178

Norm (SetA ×SetB , SetC ) Norm (SetA, SetInt(B)×C )
(−)+

(−)−
(2)179

such that the composite ((−)+)− is the identity.180

Proof. Let F ∶ SetA ×SetB → SetC be normal. By Theorem 7, F is analytic (up to natural181

isomorphism), so that for F ∈ SetA and F ′ ∈ SetB we have isomorphisms,182

F (F, F ′) ≅∐CG,G′ × SetA(G, F ) × SetB(G′, F ′), (3)183

where the coproduct is taken over all (G, G′) ∈ Int(A) × Int(B), for some family of functors184

{CG,G′ ∈ SetC}(G,G′)∈Int(A)×Int(B). For (G′, c) ∈ Int(B) ×C, we can thus define:185

F+(F )(G′, c) ∶= ∐
G∈Int(A)

CG,G′(c) × SetA(G, F ). (4)186

Conversely, given a normal functor G ∶ SetA → SetInt(B)×C we define for (F, F ′) ∈187

SetA ×SetB and c ∈ C:188

G −(F, F ′)(c) ∶= ∐
G′∈Int(B)

G (F )(G′, c) × SetB(G′, F ′). (5)189

The fact that ((−)+)− is the identity follows easily. ◀190

▶ Remark 9. We can express the operations employed by Girard in terms of (−)− and (−)+.191

For example, Girard’s App functor, [10, Definition 2.20], is defined as follows:192

App ∶ SetInt(A)×B ×SetA → SetB
193

(H, F )↦ ∐
G∈Int(A)

H(G,−) × SetA(G, F ),194

but it can expressed more succinctly as (idSetInt(A)×B)−. Girard presents the fact that App is195

a normal functor as a result [10, Theorem 2.21], but in this form it follows immediately from196

the fact that (−)− takes normal functors to normal functors.197

The model of the untyped (or more precisely, unityped) λ-calculus will interpret terms as198

normal functors between powers of SetA for a suitable choice of A. As such, let us fix a choice199

of infinite set A and a bijection q ∶ Int(A) ×A→ A. This bijection induces an equivalence of200

categories q ∶ SetA → SetInt(A)×A.201

▶ Remark 10. In the original presentation, [10, Proposition 3.1], A is taken to be the initial202

algebra for the endofunctor X ↦ Int(X) ×X on Set, which Girard constructs inductively203

and denotes by A∞. This is countably infinite and equipped with a canonical bijection204

Int(A∞) ×A∞ → A∞. Since the universal property of this algebra is not used anywhere, we205

allow for greater flexibility here.206
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To be more specific, the model we will interpret λ-terms in context, so that terms of207

several variables are interpreted as functors of an appropriate arity.208

▶ Definition 11. A context is a sequence of variables x = {x1, . . . , xn}. A context x is valid209

for a λ-term t if the set of free variables of t is a subset of x.210

▶ Definition 12. Let t be a term and x = {x1, . . . , xn} a valid context for t. We define the211

functor Jx ∣ tK ∶ (SetA)n → SetA by induction on the structure of t:212

when t = xi is a variable, Jx ∣ xiK ∶= πi;213

when t = (t1)t2 is an application, Jx ∣ (t1)t2K ∶= (q ○ Jx ∣ t1K)− ○ ⟨id(SetA)n , Jx ∣ t2K⟩;214

when t = λy.t′ is an abstraction, Jx ∣ λy.t′K ∶= q−1 ○ (Jx, y ∣ t′K+).215

▶ Remark 13. Although the notation and presentation differs significantly, this definition is216

identical in content to [10, The model A∞]. In particular, we eliminate the App functor by217

observing that for H ∶ (SetA)n → SetInt(A)×A and J ∶ (SetA)n → SetA we have:218

App ○ ⟨H, J⟩ =H− ○ ⟨id(SetA)n , J⟩. (6)219

Our presentation makes it transparent, by the cancellation of q and q−1 and of ((−)+)−,220

that the application of an abstracted term corresponds to substitution into the last argument221

(see the proof of Theorem 25). Definition 12 therefore gives a model of untyped λ-calculus.222

It is moreover a denotational model.223

▶ Definition 14. Given λ-terms t, s and a variable x, we write t[x ∶= s] for the term given224

by substituting s for x in t. More formally, we inductively define:225

if t is a variable then either t = x in which case t[x ∶= s] = s, or t ≠ x in which case226

t[x ∶= s] = t.227

if t = t1t2 then t[x ∶= s] = t1[x ∶= s]t2[x ∶= s].228

if t = λy.t′ we may assume by α-equivalence that y ≠ x and that y does not occur in s and229

set t[x ∶= s] = λy.t′[x ∶= s].230

Recall that a model of untyped λ-calculus is said to be a denotational model if for all231

λ-terms s, t in a context x, we have:232

Jx ∣ (λy.t)sK = Jx ∣ t[y ∶= s]K. (7)233

▶ Theorem 15. Definition 12 yields a denotational model of the λ-calculus.234

An essential intermediate result in proving Theorem 15 is the Substitution Lemma, which235

witnesses the fact that substitution works as expected in terms of the interpreting functors.236

▶ Lemma 16 (Substitution Lemma). Let t, s be λ-terms, x = {x1, . . . , xn} a collection of237

variables and y a further variable such that x ∪ {y} is a valid context for t and x is a valid238

context for s. Then for any F ∈ (SetA)n we have239

Jx ∣ t[y ∶= s]K(F ) = Jx, y ∣ tK(F , Jx ∣ sK(F )). (8)240

The proofs of these results are identical to the proofs of the analogous results in the241

simpler model, Lemma 24 and Theorem 25, below.242

4 λ-terms as normal functions243

There are several dissatisfying aspects of the model given in the previous sections. Firstly, from244

the perspective of category theory it is unnatural to have to choose particular representatives245
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of finite sets (the Von Neumann integers). Moreover, requiring that A is a set renders246

naturality of transformations between functors vacuous, as any collection of A-indexed247

functions is natural. Lastly, the preservation of wide pullbacks plays no technical role in the248

model per se: it instead provides a feature of the model which may or may not be desired.249

We eliminate these aspects in the present section by constructing a simpler model. We250

dispose of the preservation of wide pullbacks entirely, as well as the superfluous categorical251

structure. In the sequel to this paper [18] we will show that both Girard’s model (minus252

wide pullback preservation) and our simplified model are special cases of a family of models.253

▶ Notation 1. For a set A, we denote by Q(A) the set of functions a ∶ A→ N ∪ {∞} and by254

I(A) the subset consisting of those a such that ∑a∈A a(a) <∞ (that is, those for which all255

values are finite and all but finitely many are 0). The set Q(A) admits a partial order ≤256

given by a1 ≤ a2 if and only if ∀a ∈ A, a1(a) ≤ a2(a).257

▶ Definition 17. We say a function f ∶ Q(A) → Q(B) is normal if it is order-preserving258

and preserves suprema of filtered sets. That is, if {ai}i∈I is a filtered set of elements in Q(A),259

then f(supi∈I{ai}) = supi∈I{f(ai)}.260

Observe that Q(A)×Q(A′) ≅ Q(A⊔A′) and this bijection induces a natural ordering on the261

left-hand side, so we can extend Definition 17 to functions of several variables as we did in262

Definition 1.263

Since we do not impose the analogue of wide pullback preservation, we do not have a264

presentation of normal functions resembling power series and therefore do not have a direct265

analogue of analytic functors. Nonetheless, we can still break our functions down into finite266

parts in a natural way to obtain a result comparable to Theorem 7 in this simplified context.267

▶ Theorem 18. Let f ∶ Q(A)→ Q(B) be order preserving. Then f is normal if and only if268

for any pair (a, b) ∈ Q(A) ×B we have269

f(a)(b) = sup
u∈I(A)

f(u)(b)τu≤a (9)270

where τu≤a is equal to 1 if and only if u ≤ a and is equal to 0 otherwise.271

Proof. Suppose f is normal and let (a, b) ∈ Q(A) ×B. Consider the set Xa ∶= {u ∈ I(A) ∣272

u ≤ a}. Then Xa is filtered with respect to the ordering on I(A) and supXa = a. Since f is273

normal, we thus have274

f(a)(b) = f( sup
u∈Xa

u)(b) = sup
u∈Xa

f(u)(b) = sup
u∈I(A)

f(u)(b)τu≤a. (10)275

On the other hand, suppose (9) holds. Let {ai}i∈I be a filtered set. Then for any b ∈ B we276

have277

f(sup
i∈I
{ai})(b) = sup

u∈I(A)
{f(u)(b)τu≤supi∈I{ai}} (11)278

Also,279

sup
i∈I
{f(ai)(b)} = sup

i∈I
{ sup

u∈I(A)
{f(u)(b)τu≤ai

}} (12)280

One can verify that the right-hand sides of (11) and (12) are equal by a circle of inequalities,281

exploiting the fact that a ≤ a′ implies τu≤a ≤ τu≤a′ for all u. ◀282

As in Section 3, we can “curry” a normal function f ∶ Q(A)×Q(B)→ Q(C) to a function283

f+ ∶ Q(A)→ Q(I(B) ×C) and dually “uncurry” functions.284
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▶ Definition 19. Let f ∶ Q(A) × Q(B) → Q(C) be arbitrary. We can define a function285

f+ ∶ Q(A)→ Q(I(B) ×C) as follows.286

f+(a)(u, c) = f(a, u)(c) (13)287

Conversely, given arbitrary g ∶ Q(A) → Q(I(B) ×C) we define g− ∶ Q(A) ×Q(B) → Q(C)288

as:289

g−(a, b)(c) ∶= sup
u∈I(B)

g(a)(u, c)τu≤b (14)290

We note that f+ is normal when f is and g− is normal when g is by Theorem 18.291

The analogue of Lemma 8, that currying then uncurrying yields the identity, is the292

following proposition. We also consider of the effect of uncurrying followed by currying.293

▶ Proposition 20. Given f ∶ Q(A) ×Q(B)→ Q(C) and g ∶ Q(A)→ Q(I(B) ×C) which are294

normal, we have (f+)− = f and (g−)+ ≥ g.295

Proof. Let (a, b) ∈ Q(A) ×Q(B), c ∈ C. We have:296

(f+)−(a, b)(c) = sup
u∈I(B)

f+(a)(u, c)τu≤b = sup
u∈I(B)

f(a, b)(c)τu≤b = f(a, b)(c).297

On the other hand, for a, c as above and u ∈ I(B),298

(g−)+(a)(u, c) = g−(a, u)(c) = sup
u′∈I(B)

g(a)(u′, c)τu′≤u ≥ g(a)(b, c). ◀299

Now fix an infinite set A and a choice of bijection q ∶ I(A) ×A→ A. There is an induced300

bijection q ∶ Q(A)→ Q(I(A) ×A).301

▶ Definition 21. Let x = {x1, . . . , xn} be a set of variables and let t be a λ-term for which x302

is a valid context (Definition 11). We associate to each such pair (x, t) a normal function303

Jx ∣ tK ∶ Q(A)n → Q(A) inductively on the structure of t:304

when t = xi is a variable, Jx ∣ xiK ∶= πi;305

when t = (t1)t2 is an application, Jx ∣ (t1)t2K ∶= (q ○ Jx ∣ t1K)− ○ ⟨id(SetA)n , Jx ∣ t2K⟩;306

when t = λy.t′ is an abstraction, Jx ∣ λy.t′K ∶= q−1 ○ (Jx, y ∣ t′K)+.307

▶ Remark 22. The resemblence between Definition 12 and Definition 21 is evident; the latter308

is obtained from the former by a substitution of simpler ingredients. This demonstrates that309

our model is capturing the conceptual essence of Girard’s.310

▶ Example 23 (Church numeral 2 in λ-calculus). Consider the term (f)(f)x in the context311

(f, x). Its interpretation in our model is as follows after simplifying:312

Jf, x ∣ (f)(f)xK ∶ Q(A) ×Q(A)→ Q(A)313

(a1, a2)↦ q−(a1, q−(a1, a2)).314

The interpretation of the Church numeral 2 ∶= λfλx.(f)(f)x is obtained by applying (−)+315

and q−1 (twice) but the essence of the interpretation is captured by the above. Beware that316

q− is distinct from q−1!317

In our model, application is interpreted by introducing a new summand in the domain318

(via q−) and then substituting the interpretation of the second term into this new summand.319

So, in the above, we think of the interpretation of (f)x as the substitution of a2 into the320

new argument of a1 introduced by q−. Then for (f)(f)x, this intermediate term q−(a1, a2)321

is substituted into the new argument of a1 introduced by the outermost q−.322
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Our simplified model remains a denotational model (Definition 14); the proof relies on an323

analogue of Lemma 16.324

▶ Lemma 24 (Substitution Lemma). Let t, s be λ-terms and x = {x1, . . . , xn} be a collection325

of variables and y another variable so that x ∪ {y} is a valid context for t and x is a valid326

context for s. Then for any α ∈ Q(A)n we have327

Jx ∣ t[y ∶= s]K(α) = Jx, y ∣ tK(α, Jx ∣ sK(α)) (15)328

Proof. We proceed by induction on the structure of the term t. The base case where t is a329

variable is trivial.330

Say t = (t1)t2 is an application. First, for (α, a) ∈ Q(A)n×Q(A), we have the following.331

Note that we suppress the contexts to ease notation.332

J(t1)t2K(α, a) = (qJt1K)− ((α, a), Jt2K(α, a)) (16)333

On the other hand,334

J(t1[y ∶= s])(t2[y ∶= s])K(α) = (qJt1[y ∶= s]K)− (α, Jt2[y ∶= s]K(α))335

= (qJt1K)− ((α, JsK(α)), Jt2K(α, JsK(α)))336

where in the final line we have used the inductive hypothesis.337

Say t = λy′.t′ is an abstraction. We have, for (α, a) ∈ Q(A)n ×Q(A):338

Jx, y ∣ λy′.tK(α, a) = q−1Jx, y, y′ ∣ t′K+(α, a) (17)339

On the other hand, we have for α ∈ Q(A)n and c ∈ A the following (assume q−1(c) = (c′, c′′)).340

Jx, y ∣ λy′.t[y ∶= s]K(α)(c) = (q−1Jx, y, y′ ∣ t′[y ∶= s]K+)(α)(c)341

= Jx, y, y′ ∣ t′[y ∶= s]K+(α)(c′, c′′)342

= supu∈I(A)nJx, y, y′ ∣ t′[y ∶= s]K(u, c′)(c′′)τu≤α343

= supu∈I(A)nJx, y, y′ ∣ t′K(u, Jx ∣ sK(u), c′)(c′′)τu≤α344

= Jx, y, y′ ∣ t′K+(α, Jx ∣ sK(α), c′)(c′′)345

= q−1Jx, y, y′ ∣ t′K+(α, Jx ∣ sK)(c)346

where we have used the inductive hypothesis in the fourth line. ◀347

▶ Theorem 25. Definition 21 gives a denotational model of the λ-calculus.348

Proof. By the Substitution Lemma we have for α ∈ Q(A)n:349

Jx ∣ t[y ∶= s]K(α) = Jx, y ∣ tK(α, Jx ∣ sK(α)) (18)350

On the other hand, we have351

Jx ∣ (λy.t)sK(α) = (q q−1Jx, y ∣ tK+)− ⟨id, Jx ∣ sK⟩)(α)352

= Jx, y ∣ tK(α, Jx ∣ sK(α))353

which concludes the proof. ◀354
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(ax)
X ⊢X

(a) Axiom

⋅⋅⋅⋅⋅ π1

Γ ⊢ A

⋅⋅⋅⋅⋅ π2

∆, A, ∆′ ⊢ B
(cut)

Γ, ∆, ∆′ ⊢ B

(b) Cut

⋅⋅⋅⋅⋅ π′

Γ, A, B, ∆ ⊢ C
(ex)

Γ, B, A, ∆ ⊢ C

(c) Exchange

⋅⋅⋅⋅⋅ π′

Γ, A, B, ∆ ⊢ C
(L⊗)

Γ, A⊗B, ∆,⊢ C

(d) Left tensor

⋅⋅⋅⋅⋅ π1

Γ ⊢ A

⋅⋅⋅⋅⋅ π2

∆ ⊢ B
(R⊗)

Γ, ∆ ⊢ A⊗B

(e) Right tensor

⋅⋅⋅⋅⋅ π′

Γ, A, Γ′ ⊢∆
(der)

Γ, !A, Γ′ ⊢∆
(f) Dereliction

⋅⋅⋅⋅⋅ π′

!Γ ⊢ A
(prom)

!Γ ⊢ !A
(g) Promotion

⋅⋅⋅⋅⋅ π′

Γ, A, ∆ ⊢ B
(R ⊸)

Γ, ∆ ⊢ A ⊸ B

(h) Right implication

⋅⋅⋅⋅⋅ π1

Γ ⊢ A

⋅⋅⋅⋅⋅ π2

B, ∆ ⊢ C
(L ⊸)

Γ, A ⊸ B, ∆ ⊢ C

(i) Left implication

⋅⋅⋅⋅⋅ π′

Γ, !A, !A ⊢ B
(ctr)

Γ, !A ⊢ B

(j) Contraction

⋅⋅⋅⋅⋅ π′

Γ ⊢ B
(weak)

Γ, !A ⊢ B

(k) Weakening

Figure 1 Rules for linear logic sequent calculus

5 Linear proofs as linear functions355

This model of the untyped λ-calculus can easily be extended to a model of the simply-typed356

λ-calculus by allowing the chosen set A to vary. In fact, the situation is much better than357

that: we can extend our model to a model of Intuitionistic Linear Logic!358

We recall the deduction rules for Intuitionistic Linear Logic (ILL henceforth) in Figure359

1. Since the cut-elimination rules (which we need for Theorem 34) are more cumbersome,360

we refer the reader to [17, Section 3] for these. For our purposes, a model of ILL in a361

monoidal category3 (C,⊠, I) consists of an object A of C for each formula A and a morphism362

JπK ∶ A1 ⊠⋯⊠ An → B of C for each proof π of a sequent A1, . . . , An ⊢ B constructed using363

the deduction rules of Figure 1, such that JπK = Jπ′K whenever π ∼ π′ are two proofs which364

are equivalent up to cut-elimination. (Note that the empty monoidal product when n = 0 is365

interpreted as the monoidal unit I.)366

In order to construct the underlying category of our model, we need some further367

definitions. Recall from Section 4 that for a set A, Q(A) consists of all functions f ∶ A→ N.368

Considering N as a set equipped with the operation of natural number addition (extended369

in the intuitive way to include ∞), the set Q(A) with its point-wise addition inherits a370

commutative monoid structure.371

▶ Definition 26. Given an element a ∈ A, let δa ∈ Q(A) be the function for which δa(a′)372

evaluates to 1 if a = a′ and to 0 otherwise. We say a function f ∶ Q(A)→ Q(B) is linear if373

f(a)(b) = ∑
a∈A

a(a)f(δa)(b).374

More generally, given sets A1, . . . , An, B, a function f ∶ ∏n
i=1Q(Ai) → Q(B) is said to375

be multilinear if it is linear in each argument. We denote the set of such functions376

Lin(∏n
i=1Q(Ai),Q(B)).377

3 Formally we could take C to be a multicategory here, but we will not exploit this level of generality.
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▶ Remark 27. Whereas a normal function f ∶ Q(A)→ Q(B) is determined by its restriction378

to the domain I(A) → Q(B), if f is linear then it is determined by its restriction to the379

domain A→ Q(B) (after identifying a ∈ A with δa).380

To understand multilinearity, given a function f ∶ Q(A) ×Q(B)→ Q(C) which is linear381

in the second argument, for any a ∈ Q(A) and b ∈ Q(B) we have382

f(a, b) = f (a,∑
b∈B

b(b) ⋅ δa) = ∑
b∈B

b(b) ⋅ f(a, δb). (19)383

We can actually “curry” and “uncurry” multilinear functions using the presentation expressed384

in (19). Unlike currying for normal functions, this linear currying is a bijection.385

▶ Proposition 28. There is a bijection,386

Lin (Q(A) ×Q(B),Q(C)) Lin (Q(A),Q(B ×C))
(−)×

(−)÷
(20)387

Proof. We define f× ∶ Q(A)→ Q(B ×C) as follows for a ∈ Q(A) and (b, c) ∈ B ×C:388

f×(a)(b, c) = f(a, δb)(c) (21)389

Conversely, given a linear function g ∶ Q(A)→ Q(B×C) we define g÷ ∶ Q(A)×Q(B)→ Q(C)390

as follows for (a, b) ∈ Q(A) ×Q(B), c ∈ C:391

g÷(a, b)(c) = ∑
b∈B

b(b) ⋅ g(a)(b, c) (22)392

Clearly, if f ∶ Q(A) × Q(B) → Q(C) is linear in its second argument, then (f×)÷ = f .393

Conversely, for any g ∶ Q(A)→ Q(B ×C) we have (g÷)× = g. ◀394

▶ Example 29. Taking A = B and C = {∗} in Proposition 28, we find that (idQ(A))÷ is the395

‘scalar product’ map,396

(idQ(A))÷(a, a′) = ∑
a∈A

a(a) ⋅ a′(a) ∈ N397

which is the linear extension of (a, a′)↦ δa(a′).398

At this point we already have enough structure to interpret the formulas of Linear Logic.399

▶ Definition 30. We choose, for each atomic formula X, a set which we denote X. For a400

formula, we define the interpretation inductively via the rules:401

A⊗B = A ⊸ B = A ×B, !A = I(A). (23)402

Rather than the category of sets, we take the context for these interpretations to be403

the Kleisli category of Q. Indeed, Q becomes a monad on Set when equipped with unit404

transformation δ ∶ A → Q(A) mapping a to δa and multiplication µ ∶ Q(Q(A)) → Q(A)405

given by viewing elements on each side as extended multisets and taking the disjoint union.406

Morphisms A→ B in the Kleisli category are functions A→ Q(B), which in turn correspond407

to linear functions Q(A) → Q(B). As such, we will interpret a proof π of a sequent408

A1, . . . , An ⊢ B as a multilinear function Q(A1) ×⋯ ×Q(An)→ Q(B), which correspond to409

linear maps Q(A1 ×⋯ ×An)→ Q(B). Thus cartesian products of sets induces the monoidal410

product operation on the Kleisli category.411

To interpret proofs, we need a little more structure. Let dA ∶ Q(I(A)) → Q(A) be412

the map sending δa to ∑a∈A a(a)δa, extended linearly. Let pA ∶ Q(A) → Q(I(A)) be the413

morphism that maps δa to δδa , extended linearly. We will also employ the linear extension414

of the diagonal map, which we denote ∆A ∶ Q(I(A))→ Q(I(A) × I(A)), and the swap map415

sA,B ∶ Q(A) ×Q(B)→ Q(B) ×Q(A).416
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▶ Definition 31. We construct the interpretation JπK of a proof π by induction on the417

structure of π, with reference to Figure 1. Throughout, when a composition symbol carries a418

subscript, this indicates the formula corresponding to the argument at which to compose.419

if π consists of a single axiom rule (Figure 1a), then JπK ∶= idQ(X);420

if π ends with a cut rule (Figure 1b), then JπK ∶= Jπ2K ○A Jπ1K;421

if π ends with an exchange rule (Figure 1c), then JπK ∶= Jπ′K ○A,B sB,A;422

if π ends with a left tensor rule (Figure 1d), then JπK ∶= Jπ′K up to identifying multilinear423

maps out of Q(A) ×Q(B) with linear maps out of Q(A ×B);424

if π ends with a right tensor rule (Figure 1e), then JπK(a, b) ∶= Jπ1K(a) × Jπ2K(b);425

if π ends with a right linear arrow rule (Figure 1h), then JπK ∶= Jπ′K×;426

if π ends with a left linear arrow rule (Figure 1i), then for a ∈ A, JπK(α, a, b, β) ∶=427

Jπ1K÷(α, a) ⋅ Jπ2K(b, β) (this is the linear version of application);428

if π ends with a dereliction rule (Figure 1f), then JπK ∶= Jπ′K ○A dA;429

if π ends with a promotion rule (Figure 1g), then JπK ∶= pA ○ Jπ′K;430

if π ends with a contraction rule (Figure 1j), then JπK ∶= Jπ′K ○!A,!A ∆A;431

if π ends with a weakening rule (Figure 1k), then JπK(a1, . . . , an, a) ∶= Jπ′K(a1, . . . , an).432

▶ Example 32 (Church numeral 2A in Linear Logic). Consider the Church numeral 2A (without433

the penultimate right implication rules).434

(ax)
A ⊢ A

(ax)
A ⊢ A

(ax)
A ⊢ A

(L ⊸)
A, A ⊸ A ⊢ A

(L ⊸)
A, A ⊸ A, A ⊸ A ⊢ A

(der)
A, !(A ⊸ A), A ⊸ A ⊢ A

(der)
A, !(A ⊸ A), !(A ⊸ A) ⊢ A

(ctr)
A, !(A ⊸ A) ⊢ A435

Recall that by definition, A ⊸ A = A×A (where on the right-hand side we drop the underline436

on the A for convenience). Thus we can write f ∈ !(A ⊸ A) = I(A ×A) as f = ∑n
i=1 ci(ai, bi)437

with ai, bi ∈ A and ci ∈ N. With this notation, dA×A(δf) = ∑n
i=1 ciδ(ai,bi), and hence the438

interpretation of the above proof is the function Q(A) ×Q(I(A ×A))→ Q(A) obtained as439

the linear extension of:440

A × I(A ×A)→ Q(A)441

(a, f)↦ (
n

∑
i=1

ci ⋅ δa(ai)) ⋅
⎛
⎝

n

∑
i,j=1

ci ⋅ cj ⋅ δbi(aj)
⎞
⎠
⋅
⎛
⎝

n

∑
j=1

cj ⋅ δbj

⎞
⎠

.442

▶ Remark 33. Let us take a moment to reflect on the relationship between normal functions443

and linear functions in light of the interpretations of terms and proofs in Definitions 30 and444

31. Since linear functions are determined by their restriction along the inclusion δ ∶ A→ Q(A)445

and normal functions are determined by their restriction to I(A) ⊆ Q(A), one might expect to446

be able to identify normal functions Q(A)→ Q(B) with linear functions Q(I(A))→ Q(B),447

which would be the interpretation of a proof of !A ⊢ B. While any normal function can indeed448

be presented as a linear function in this way, not every such linear function is normal, since449

it need not respect the ordering on I(A); we must apply the plus and minus constructions450

to each argument to recover a normal function. Nonetheless, this presentation of ‘ordinary’451

functions as linear functions out of a modified domain is, according to Girard, the original452

inspiration for Linear Logic.453
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The dereliction operation d is the linear extension of the inclusion I(A)→ Q(A) whose454

normal extension is the identity Q(A)→ Q(A). Thus the interpretation of the simplest proof455

of !A ⊢ A, namely456

(ax)
A ⊢ A

(der)
!A ⊢ A457

is precisely the linear function corresponding to Girard’s interpretation of a variable in λ-458

calculus, and similarly for the simplest proof of more general variables. Similarly, promotion459

is chosen so that application of terms corresponds to the interpretation of promotion followed460

by cut:461
⋅⋅⋅⋅⋅ π1

!Γ ⊢ A
(prom)

!Γ ⊢!A

⋅⋅⋅⋅⋅ π2

!∆, !A, !∆′ ⊢ B
(cut)

!Γ, !∆, !∆′ ⊢ B462

▶ Theorem 34. Definition 31 gives a model of Intuitionistic Linear Logic. That is, if π1463

and π2 are (cut)-equivalent proofs, then Jπ1K = Jπ2K.464

Proof. We go through each (cut)-elimination rule methodically and prove invariance of the465

interpretations under these transformations.466

The interesting cases are (prom)/(der) and (R ⊸)/(L ⊸). First we consider (prom)/(der).467

Say π is on the left of the cut and π′ is on the right. The two interpretations are respectively468

Jπ′K ○A dA ○!A pA ○ JπK, Jπ′K ○A JπK (24)469

So it suffices to show that dA ○ pA = idQ(I(A)). It suffices to check this on elements of the470

form δa, and indeed dA(pA(δa)) = dA(δδa) = δa is the identity, as required.471

Next we consider (R ⊸)/(L ⊸). One of the interpretations involves (JζK×)÷ for some472

proof ζ where the other involves simply JζK. These are equal by Proposition 28 and the473

result follows. ◀474

6 Comparison to other models475

By replacing the set N in the definition of Q with the two-element poset 0 < 1, we recover476

the power set monad P on Set and many of the components of the models have parallels477

in that setting, producing a model resembling the relational model of Linear Logic. One can478

generalise powerset algebras to qualitative domains, which consist of a set X along with a479

set ∣X ∣ of subsets of X, which contains the empty set, and is closed under arbitrary subset480

and also filtered colimits. Girard took this approach in [10, 8], where he showed that in fact481

binary qualitative domains also suffice for the construction of a model of λ-calculus. It is482

easy to show that binary qualitative domains are exactly coherent spaces. Investigating the483

true origins of Linear Logic was in fact the original motivation for the current paper.484

More generally, we could replace N with a continuous semiring and recover the components485

of weighted relational models [16]. A significant difference between our model and those is486

that ours is not functorial in the usual sense, as applying a dereliction rule followed by a487

promotion rule to an axiom yields a proof whose denotation is not the identity morphism on488

Q(I(A)). This can be seen easily by the following calculation:489

pAdA(δa) = pA(∑
a∈A

a(a) ⋅ δa) = ∑
a,a′∈A

a(a)δa(a′) ⋅ δδa′
= ∑

a∈A
a(a) ⋅ δδa (25)490
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which is not equal to δa. In this sense our model lies outside of the accepted categorical491

definition of a model of Linear Logic [17].492

We note however that ‘non-functorial’ denotational models already exist in the literature.493

In particular the interpretation of Linear Logic proofs in Geometry of Interaction constructions494

[11, 12, 23] do not interpret the proof π obtained from applying a dereliction and a promotion495

to an axiom as an identity. Indeed, using the notations of the first geometry of interaction4,496

the interpretation of that proof is equal to497

π● = ( 0 t(1⊗ p∗)
(1⊗ p)t∗ 0 )498

which does not act as an identity, i.e. if applied to an argument a, this yields499

Ex(π●, a) = t(1⊗ p∗)a(1⊗ p)t∗500

which is different from a in general.501

We adopt the attitude that the research program which realises Linear Logic models as502

categorical structures differs in principle from ours as we put the syntactic systems themselves503

as primary, and the models themselves as secondary, in the sense that we have not imposed504

convenient categorical hypotheses which are not justified by the logic: most notably, ! is not505

a comonad here. We wish to emphasise the fact that a perspective prioritising categorical506

aesthetics would have discarded our model, and we believe this would have been a mistake.507

The merit of our model is that it puts on firm footing exactly how λ-terms may be508

thought of as structure preserving functions, and it does so in a down-to-earth way that we509

intend to generalize in future.510

4 As a very quick recap, the first geometry of interaction interprets proofs as matrices whose coeficients are
linear operators acting on the Hilbert space ℓ2

(N) of square-summable sequences of complex numbers.
The operators p and q are the linear operators induced by applying the injections n↦ 2n and n↦ 2n+1
on the standard natural basis. The operator t implements associativity of the tensor product (which
encodes the tensor of a and b as p∗ap + q∗bq): it is induced by the following bijection applied to the
standard basis: 2n↦ 4n, 4n + 1↦ 4n + 2, 4n + 3↦ 2n + 1.
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A Proof of Girard’s Normal Form Theorem574

Clearly, every integral functor is finite. Conversely, every finite functor is isomorphic to an575

integral functor. It follows that the finite normal form property is equivalent to the integral576

normal form property. Moreover, this holds even when A is an arbitrary category, even577

though this case was not considered in Girard’s original paper [10].578

We now show that if a functor F ∶ SetA → Set admits the finite normal form property579

then it is isomorphic to an analytic functor. This result can be thought of as recovering580

the functor F from its collection of normal forms. In short, given a functor F ∈ SetA and581

an element x ∈ F (F ), a normal form η ∶ (G, y) → (F, x) will induce the data of a triple582

(G, η, y′) ∈ ∐G∈Int(A)(SetA(G, F ) × CG) where y′ is equivalent to y under an appropriate583

equivalence relation. To finish the proof, we must define the equivalence relation defining the584

classes which form CG. This will require an alternate classification of when an integral form585

is normal without reference to its codomain.586

▶ Lemma 35. Let η ∶ (G, y)→ (F, x) be an integral form (not necessarily normal) and say587

F satisfies the integral normal form property. Then η is normal if and only if idG ∶ (G, y)→588

(G, y) is.589

Proof. Let η′ ∶ (G, y′) → (F, x) be an integral normal form associated to (F, x). Then by590

normality there exists a morphism γ ∶ G→ G so that the following is a commutative diagram591

in El(F ).592

(G, y′) (F, x)

(G, y)

γ

η′

ηγ′ (26)593

Since id is normal, there exists a section γ′ rendering (26) commutative.594

Since γγ′ = idG and η is normal, it follows that η′ is normal. On the other hand, say η is595

normal. Let ϵ ∶ (H, w)→ (G, y) be arbitrary. Consider the composition ηϵ. By normality of596

η, there exists a unique γ ∶ (G, y)→ (H, w) so that the following diagram commutes:597

(F, x)

(G, y) (H, w)

η

γ

ηϵ (27)598

If γ′ was another such map, then ηϵγ = ηϵγ′ so by normality of η we have that γ = γ′. ◀599

▶ Lemma 36. If a functor F ∶ SetA → Set satisfies the finite normal form property, then F600

is isomorphic to an analytic functor.601

Proof. The main step in the proof will be to define for each G ∈ Int(A) a set CG and for602

each F ∈ SetA a bijection603

hF ∶F (F )→ ∐
G∈Int(A)

(SetA(G, F ) ×CG) (28)604

In fact, in the current setting where A admits only identity morphisms, this will complete605

the proof.606

For any element (F, x) of El(F ) there is some finite normal form η ∶ (G, y) → (F, x),607

isomorphic to an integral normal form. Thus, it suffices to consider the case where F satisfies608

the integral normal form property.609
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An integral normal form η ∶ (G, y)→ (F, x) is not uniquely determined by (F, x), however,610

given another integral normal form η′ ∶ (G′, y′)→ (F, x) we have that G′ ≅ G by normality611

and thus G′ = G by integrality. So at least the domain of the object is uniquely determined612

by (F, x).613

Let XG denote the elements y ∈F (G) for which idG ∶ (G, y)→ (G, y) is normal, since F614

satisfies the integral form property, there is always at least one such y. Let CG denote a set615

of choices of representatives of the isomorphism classes of XG.616

Thus, to each x ∈F (F ) we have associated an integral normal form η ∶ (G, y)→ (F, x)617

and fixed particular choices so that this map hF (x) = (G, η, y) is a bijection. ◀618

The converse to Lemma 36 also holds, which we now move onto proving.619

In general, if µ ∶ H → G is a natural transformation and η ∶ (G, y) → (F, x) is a normal620

form, then the composite ηµ is need not be a normal form. However, if F satisfies the finite621

normal form property the normal forms can be carried through natural transformations.622

This is the content of the next Lemma.623

▶ Lemma 37. Let F ∶ SetA → Set be a functor satisfying the normal form property. Then624

if η ∶ (G, y) → (F, x) is a normal form and µ ∶ G → H is a natural transformation, then625

µη ∶ (G, y)→ (H,F (µ)(x)) is a normal form.626

Proof. Let ϵ ∶ (K, z) → (H,F (µ)(x)) be an arbitrary form. We show that there exists a627

unique morphism (G, y) → (K, z) in the category El(F )/(H,F (µ)(x)). Since F satisfies628

the normal form property there exists some normal form γ ∶ (L, w) → (H,F (µ)(x)). It is629

convenient to draw this situation out in the category El(F ), ignore the dashed arrows for630

now.631

(G, y) (F, x)

(L, w) (H,F (µ)(x))

(K, z)

η

γ′ µ

γ

β

γ

ϵ

(29)632

Since µη ∶ (G, y) → (H,F (µ)(x)) is a form with respect to (H,F (µ)(x)) we have by633

initiality of γ ∶ (L, w) → (H,F (µ)(x)) that there exists a morphism γ ∶ (L, w) → (G, y)634

fitting into (29).635

The morphism ηγ ∶ (L, w)→ (F, x) induces the morphism γ′ and composing this with the636

morphism β (which is induce by initiality of γ ∶ (L, w)→ (H,F (µ)(x)) induces a morphism637

(G, y)→ (K, z) which is the unique morphism rending the full diagram commutative. Thus638

µη ∶ (G, y)→ (H,F (µ)(x)) is initial. ◀639

▶ Lemma 38. Let F ∶ SetA → Set be analytic. Then F satisfies the normal form property.640

Proof. Let F ∈ SetA be arbitrary and consider an element (G, η, y) of F (F ) =∐G′∈Int(A)(SetA(G′, F )×641

CG′). We can then consider the set642

F (G) = ∐
G′∈Int(A)

SetA(G′, G) ×CG′ .643

A particular element of this set is (G, idG, y). We show that η ∶ (G, (G, idG, y))→ (F, (G, η, y))644

is normal.645

Say ϵ ∶ (H, (G′, η′, y′))→ (F, (G, η, y)) is a form, then646

F (ϵ)(G′, η′, y′) = (G, η, y) (30)647
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We unpack the definition of the function F (ϵ) =∐G∈Int(A)(SetA(G, ϵ) ×CG). This function648

makes the following Diagram commute, where the vertical morphisms are canonical inclusion649

maps.650

∐G∈Int(A)(SetA(G, H) ×CG) ∐G∈Int(A)(SetA(G, F ))

SetA(G, H) ×CG SetA(G, F ) ×CG

F(µ)

○ϵ×idCG

(31)651

So (30) implies (( ○ ϵ) × id)(η′, y′) = (η, y). We thus have:652

G′ = G, ϵη′ = η, y′ = y (32)653

Thus, the domain of the morphism ϵ ∶ (H, (G′, η′, y′))→ (F, (G, η, y)) is equal to (H, (G, η′, y)).654

We need a unique morphism (G, (G, idG, y))→ (H, (G, η′, y)). Clearly η′ is such a morphism,655

and it is the unique such because for any morphism µ ∶ G→ G we have (SetA(G, µ)×CG)(µ) =656

µ, and so η′ is the unique morphism µ determined by the condition (SetA(G, µ) ×CG)(µ) =657

η′. ◀658

Everything so far also holds in the setting where A is an arbitrary category, even though659

the assumption was made in [10] that A is a set.660

▶ Lemma 39. Any functor F ∈ SetA is the colimit of finite functors in SetA.661

Lemma 39 is useful for proving that certain subobjects are finite. In short, one can prove662

a set Y is finite by defining a surjective function f ∶X → Y where X is finite. This suggest a663

relaxing of the finite normal form condition to the saturated form condition, which is to say664

that every appropriate pair (F, x) admits a saturated form.665

▶ Definition 40. A form η ∶ (G, y)→ (F, x) is saturated if any other form ϵ ∶ (H, z)→ (G, y)666

is an epimorphism.667

▶ Lemma 41. If F is normal, then every saturated form is finite.668

Proof. Let η ∶ (G, y) → (F, x) be a saturated form. We have by Lemma 39 that G is the669

colimit of its finite subobjects, so we write G ≅ Colim{Gi}i∈I . Hence, F (G) ≅F Colim{Gi} ≅670

Colim{F (Gi)}, using normality.671

Thus, we can view y as an element of Colim{F (Gi)} and consider i ∈ I along with672

y′ ∈F (Gi) which maps onto y ∈ Colim{F (Gi)} under the corresponding morphism of the673

colimit. We thus have a commutative diagram.674

F (G) Colim{F (Gi)}

F (Gi)

≅

(33)675

Thus, (Gi, y′) → (G, y) is a form which is surjective by saturation of η. Since Gi is finite,676

this implies G is finite. ◀677

The final preliminary lemma required states that morphisms out of saturated normal678

forms are unique, in an appropriate sense. The proof of this lemma will use the fact that any679

functor preserving pullbacks preserves equalisers.680

▶ Lemma 42. Let η ∶ (G, y)→ (F, x) be saturated and η′ ∶ (G, y)→ (F, x) an arbitrary form.681

Then η = η′.682
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Proof. Consider the equaliser Eq(Fη,Fη′). Since Fη(y) = Fη′(y) we have that y ∈683

Eq(Fη,Fη′). Since Eq(Fη,Fη′) ≅F Eq(η, η′) it follows that (Eq(η, η′), y)→ (G, y) is a684

form, which in fact is surjective by saturation of η. It follows that η = η′. ◀685

▶ Lemma 43. If F ∶ SetA → Set is normal then it satisfies the normal form property.686

Proof. Let (F, x) be a pair consisting of a functor F ∈ SetA and an element x ∈ F (F ).687

Consider all the saturated forms with codomain (F, x) and take the pullback of this entire688

diagram. We use the labelling as given by (34).689

(Si, yi)

PullBack ⋮ (F, x)

(Sj , yj)

σiηi

ηj σj

(34)690

There exists y ∈ F (PullBack) so that Fηi(y) = yi for all i. We consider a saturated form691

ϵ ∶ (G, z)→ (PullBack, y). We claim that this is a normal form with respect to (F, x).692

Assume there is a form γ ∶ (H, w)→ (F, x) and consider a saturated form γ′ ∶ (H ′, w′)→693

(H, w). A saturated form is one such that any form into it is surjective. Thus γγ′ ∶ (H ′, w′)→694

(F, x) is saturated as γ′ ∶ (H ′, w′)→ (H, w) is.695

It follows that (H, w) = (Si, yi) for some i. Thus we have a morphism ηiϵ ∶ (G, z) →696

(Si, yi) = (H, w). It follows from Lemma 42 that this is the unique morphism in the697

appropriate sense. This completes the proof. ◀698

The remaining result to be proved for is the converse to Lemma 43.699

▶ Lemma 44. A functor F ∶ SetA → Set satisfying the finite normal form property is normal.700

Proof. We must show that F preserves direct colimits and wide pullbacks.701

F preserves direct colimits: consider a direct system, that is, assume there exists a702

collection of objects {Fi}i∈I fo SetA, where I is a set equipped with a partial order <, along703

with a collection of morphisms {αij ∶ Fi → Fj}i,j∈I subject to the following conditions704

∀i, j ∈ I, ∃k ∈ I such that αik ∶ Fi → Fk, and αjk ∶ Fj → Fk exist.705

∀i, j, k ∈ I, αjkαij = αik706

∀i ∈ I αii = idFi707

Let C denote the direct colimit of this direct system in the category SetA and let {µi ∶ Fi → C}708

denote the associated morphisms into C. Consider also the direct colimit709

(C ′,{gi ∶F (Fi)→ C ′}i∈I) (35)710

of the direct system given by ({F (Fi)}i∈I ,{F (αij) ∶F (Fi)→F (Fj)}i,j∈I) in the category711

Set.712

By the universal property of C ′, there exists a unique function713

f ∶ C ′ →F (C) (36)714

so that for all i ∈ I the following diagram commutes.715

F (Fi)

C ′ F (C)

gi
F(µi)

f

(37)716



M. Rogers, T. Seiller, W. Troiani XX:21

We need to prove that f is an isomorphism (ie, a bijection). We do this by proving that it is717

injective and surjective.718

First we prove surjectivity. Let z ∈ F (C). By the finite normal form property, there719

exists a finite normal form ϵ ∶ (G, w)→ (C, z). Now, for each a ∈ A there is a function720

ϵa ∶ G(a)→ C(a) (38)721

hence, there exists some i ∈ I and function ϵ′a ∶ G(a)→ Fi(a) through which the function ϵa722

factors. Since G is finite, and the colimit is direct, there exists an i ∈ I such that for each723

a ∈ A there is a morphism G(a)→ Fi(a), which we also call ϵ′a, which makes the following724

diagram commute.725

G(a) Fi(a)

C(a)

ϵ′a

ϵa

(39)726

We claim the collection ϵ′ ∶= {ϵ′a ∶ G(a)→ Fi(a)} is a natural transformation, however since727

A is discrete (ie, has no non-identity morphisms), there is no condition to check, so this is728

vacuously satisfied.729

Note: even in the case where A is an arbitrary category, we still obtain naturality, it is730

inhereted from naturality of the morphisms involved in the following diagram:731

G Fi′ Fi

Fj

αi′i

αji (40)732

We have constructed a natural transformation ϵ′ ∶ G→ Fi so that the following diagram733

commutes.734

G Fi

C

ϵ′

ϵ
(41)735

Let z′ denote F (ϵ′)(w). We have commutativity of the following diagram736

FFi

C ′ F (C)

gi
Fµi

f

(42)737

Hence, gi(z′) is an element of C ′ such that f(gi(z′)) = z, establishing surjectivity.738

Now we prove injectivity. Let x1, x2 ∈ C ′ be such that f(x1) = f(x2). Let z denote739

this element of F (C). The functions {gi}i∈I form a surjective family over C ′ and so there740

exists i, i′ ∈ I and x′1 ∈F (Fi), x′2 ∈F (Fi′) so that gi(x′1) = x1, gi′(x′2) = x2. In fact, since the741

diagram the colimit is over is direct, we can assume without loss of generality that i = i′.742

Turning our consideration to z, which is an element of F (C), we choose a normal form743

ϵ ∶ (G, y) → (C, z). We have already seen in the proof of surjectivity how from this we744

obtain a j ∈ I along with a natural transformation ϵ′ ∶ G→ Fj so that the following diagram745

commutes.746

G Fj

C

ϵ′

ϵ
µj

(43)747
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We have that F (µi)(x′1) = F (µi)(x′2) = z. So, by initiality of (G, y) there exists unique748

morphisms γ1, γ2 ∶ G→ Fi so that the following diagram commutes749

G

Fi C

ϵγ2 γ1

µi

(44)750

and so that F (γ1)(y) = x1 and F (γ2)(y) = x2.751

Combining (43) and (44) we obtain commutativity of the following diagram.752

G Fj

Fi C

ϵ′

γ1γ2 µj

µi

(45)753

Now, let a ∈ A be an arbitrary element of A and consider (45) with everything evaluated at754

a, this gives a commuting diagram in Set. We notice that if G(a) is non-empty, then there755

exists a pair of elements d, d′ ∈ Fi(a) so that µia(d) = µia(d′) and so there exists some k ∈ I756

such that αika ∶ Fi(a)→ Fk(a) so that αika(d) = αika(d′). By finiteness of G (in particular,757

since all but finitely many a ∈ A are such that G(a) is non-empty) there thus exists k ∈ I758

and αik ∶ Fi → Fk so that for all a ∈ A there exists d, d′ ∈ Fi(a) so that αika(d) = αika(d′).759

Lastly, by the first property above of direct colimits we may assume k = j. The result is the760

following commutative diagram in SetA.761

Fk

Fi C

µj
αik

µi

(46)762

Finally, we can consider the following commuting diagram in Set.763

FG

FFi FFj

Fϵ′
Fγ1 Fγ2

Fαij

(47)764

Thus, FαijFγ1(y) =FαijFγ2(y), ie, Fαij(x′1) =Fαij(x′2), ie, x1 = x2. This establishes765

injectivity.766

FP P ′

F (Fi)

f

Fπi

µi (48)767

We must show that f is a bijection. First we show surjectivity. Let z ∈ P ′. For each i we768

consider F (πi)(z), which we denote by zi. Since F satisfies the normal form property, there769

exists a normal form770

ηi ∶ (Gi, wi)→ (Fi, zi) (49)771

By Lemma 37 the compositions772

αiηi ∶ (Gi, wi)→ (H,F (αi)(wi)) (50)773
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are normal forms with respect to (G,F (αi)(wi)) (note, F (αi)(wi) is independent of i).774

Hence by essential uniqueness of initial objects, we can assume without loss of generality775

that for all pairs i, j ∈ I we have Gi = Gj , denote this common element by G.776

By the universal property of the pullback, there exists a natural transformation γ ∶ G→ P777

rendering the following Diagram commutative.778

G Fi

P

γ

ηi

πi

(51)779

We notice also that the colleciton of elements {wi}i∈I induces an element w ∈FG so that for780

all i ∈ I we have F (ηi)(w) = zi.781

We claim that782

fF (γ)(w) = z (52)783

It suffices to show the following for all i ∈ I.784

πF(Fi)(z) = πF(Fi)fF (γ)(w) (53)785

This holds by the following calculation.786

πF(Fi)fF (γ)(w) =F (πi)F (γ)(w) (54)787

=F (ηi)(w) (55)788

= zi (56)789

= πF(Fi)(z) (57)790

Now we prove injectivity. Let x1, x2 ∈FP be such that f(x1) = f(x2). By the normal791

form property, there is a normal form χ1 ∶ (X1, x′1) → (P, x1) with respect to (P, x1) and792

a normal form χ2 ∶ (X2, x′2) → (P, x2) with respect to (P, x1). Let i ∈ I be arbitrary and793

consider the composition of these normal forms with the natural transformation πi:794

(X1, x′1) (P, x1) (Fi,F (πiχ1)(x′1))

(X2, x′2) (P, x2) (Fi,F (πiχ2)(x′2))

χ1 πi

χ2 πi

(58)795

Now, by commutativity of (48) we have796

F (πiχ1)(x′1) =F (πi)(x1) = µif(x1) = µif(x2) =F (πiχ2)(x′2) (59)797

Let w denote this common element.798

This implies that (58) are both objects of the same comma category, El(F )/(Fi, w), and799

in fact these are both normal by Lemma 37. We can thus assume without loss of generality800

that X1 = X2, x′1 = x′2, we let X, x respectively denote these common elements. Thus, our801

hypothesis is: for all i ∈ I we have802

πiχ1 = πiχ2 (60)803

It now remains to show804

F (χ1)(x) =F (χ2)(x) (61)805

We do this by proving χ1 = χ2.806
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First, notice that for k = 1, 2 and all i ∈ I we have F (πiχk) = µifF (χk)(x). Thus, by807

Lemma 37 the following are normal forms:808

πiχk ∶ (X, x)→ (Fi, µifF (χk)(x)) (62)809

By uniqueness of normal forms, it follows that πiχ1 = πiχj for all i ∈ I. Let ξi denote this810

common morphism. We now have that both χ1 and χ2 are morphisms X → P rendering the811

following diagram commutative for all i, j ∈ I.812

X

P Fi

Fj H

ξi

ξj

χ1,χ2

πi

πj αi

αj

(63)813

It follows from the universal property of the pullback that χ1 = χ2. ◀814
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