
HAL Id: hal-04500014
https://hal.science/hal-04500014

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orthogonal matching pursuit-based algorithms for the
Birkhoff-von Neumann decomposition

Damien Lesens, Jérémy E Cohen, Bora Uçar

To cite this version:
Damien Lesens, Jérémy E Cohen, Bora Uçar. Orthogonal matching pursuit-based algorithms for the
Birkhoff-von Neumann decomposition. RR-9543, Inria Lyon. 2024, pp.12. �hal-04500014�

https://hal.science/hal-04500014
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

43
--

FR
+E

N
G

RESEARCH
REPORT
N° 9543
March 2024

Project-Team ROMA

Orthogonal matching
pursuit-based algorithms
for the Birkhoff–von
Neumann decomposition
Damien Lesens, Jérémy E. Cohen, Bora Uçar

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Orthogonal matching pursuit-based algorithms
for the Birkhoff–von Neumann decomposition

Damien Lesens∗, Jérémy E. Cohen†, Bora Uçar‡

Project-Team ROMA

Research Report n° 9543 — March 2024 — 12 pages

Abstract: Birkhoff-von Neumann (BvN) decomposition writes a doubly stochastic matrix
as a convex combination of permutation matrices. For a given doubly stochastic matrix, the
decomposition in general is not unique. In many applications a sparsest decomposition, that is
with the smallest number of permutation matrices is of interest. This problem is known to be
NP-complete, and heuristics are used to obtain sparse solutions. We propose heuristics based on
the well-known orthogonal matching pursuit for sparse BvN decomposition. We experimentally
compare our heuristics with the state of the art from the literature and show how our methods
advance the known heuristics.

Key-words: Sparse Coding, Birkhoff-von Neumann Decomposition, Orthogonal Matching Pur-
suit

∗ Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668,
F-69007 LYON, France

† Univ Lyon, INSA-Lyon, UCBL, UJM, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621,
Lyon, France

‡ Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668,
F-69007 LYON, France

Algorithmes basés sur l’OMP pour la décomposition
de Birkhoff-von Neumann

Résumé : La décomposition de Birkhoff-von Neumann (BvN) écrit une matrice dou-
blement stochastique comme une combinaison convexe de matrices de permutation.
Pour une matrice doublement stochastique donnée, la décomposition n’est généra-
lement pas unique. Dans de nombreuses applications, il est intéressant d’obtenir la
décomposition la plus parcimonieuse, c’est-à-dire avec le plus petit nombre de matrices
de permutation. Ce problème est connu pour être NP-complet, et des heuristiques sont
utilisées pour obtenir des décompositions assez parcimonieuses. Nous proposons des
heuristiques basées sur la célèbre méthode "Orthogonal Matching Pursuit" pour la
décomposition BvN clairsemée. Nous comparons expérimentalement nos heuristiques
avec l’état de l’art de la littérature et montrons comment nos méthodes font progresser
les heuristiques connues.

Mots-clés : Approximation parcimonieuse, decomposition de Birkhoff-von Neu-
mann, Orthogonal Matching Pursuit

OMP-based algorithms for the BvN decomposition 3

Contents
1 Introduction 4

2 Background and notation 4
2.1 State of the art heuristics . 5
2.2 BvN decomposition as a sparse coding problem 6
2.3 Birkhoff heuristics, matching pursuit and Frank-Wolfe algorithms . . . 6
2.4 Orthogonal matching pursuit . 6
2.5 Bipartite matching problems . 7

3 GompBvn: Greedy orthogonal matching pursuit based algorithms
for BvN decomposition 7

4 Experiments 9

5 Conclusion 11

RR n° 9543

4 Lesens, Cohen, & Uçar

1 Introduction
A square matrix is called doubly stochastic if it has nonnegative entries, and the sum of entries in
each row and in each column is one. Birkhoff Theorem states that any doubly stochastic matrix
can be written as a convex combination of permutation matrices [3]. That is, for an n×n doubly
stochastic matrix A, there exist coefficients α1, α2, . . . , αk ∈ (0, 1] with

∑k
i=1 αi = 1 and n × n

permutation matrices P1,P2, . . . ,Pk such that

A = α1P1 + α2P2 + · · ·+ αkPk . (1)

This representation is called Birkhoff-von Neumann (BvN) decomposition. A given doubly
stochastic matrix in general has multiple BvN decompositions, and there are various applications
in which a decomposition with a small number of permutation matrices is required [1, 7, 16, 17].
Dufossé and Uçar [10] show that the problem of finding a BvN decomposition of a given matrix
with the minimum number of permutation matrices is NP-complete.

Heuristics approaches to obtaining BvN decompositions with small number of permutation
matrices have been proposed and analysed [10, 11]. According to the results reported in these
papers, a greedy approach called BvNG performs very well in general but has limitations. In
particular, BvNG obtains a much smaller number of permutation matrices than the known
algorithm resulting from Birkhoff’s proof on matrices arising in various applications, in many
cases close to a lower bound. More importantly there are optimal BvN decompositions which
neither BvNG nor its generalizations can reach. Our aim in this paper is to design a set
of heuristics based on the well-known greedy orthogonal matching pursuit algorithm with the
following characteristics:

• they obtain optimal solutions on some instances in which BvNG cannot access to optimal
solutions;

• they perform as good as BvNG on problem instances in which BvNG performs well, while
improving it on hard cases.

The work presented here lies at the intersection of graph algorithms, matrix computations,
and the sparse coding problem. We give a brief, required background in these areas in the next
section. Then, in Section 3 we present the heuristics. Section 4 contains experiments to document
the characteristics listed above, before concluding the paper in Section 5 with a summary and
future work.

2 Background and notation
We use bold upper-case letters to refer to matrices, and bold lower-case letters to refer to vectors.
We use vec(·) to convert a matrix to a vector, by stacking the columns, e.g., for an n×n matrix
A, the vector a = vec(A) is of size n2.

A permutation matrix is a square matrix consisting of zeros and ones, with exactly a single
one in each column and in each row. Let A be an n× n matrix and P be an n× n permutation
matrix. We use the notation P ⊆ A to denote that the entries of A at the positions corresponding
to the nonzero entries of P are also nonzero. That is, the nonzero pattern of P is included in
the nonzero pattern of A. We use P ⊙A to denote the entry-wise product of P and A, which
selects the entries of A at the positions corresponding to the nonzero entries of P. We also use
min{P⊙A} to denote the minimum entry of A at the nonzero positions of P.

A square matrix A is called fully indecomposable, when AQ has nonzeros on the diagonal for
a permutation matrix Q, and no permutation matrix P exists such that PAQPT is block upper
diagonal [2, Ch.2].

Inria

OMP-based algorithms for the BvN decomposition 5

2.1 State of the art heuristics
Birkhoff’s original proof [3] of the existence of a BvN decomposition of the form (1) is construc-
tive, and leads to the following family of heuristics. Let A(0) = A. At every step i ≥ 1, find
a permutation matrix Pi ⊆ A(i−1), use the minimum nonzero entry of A(i−1) at the positions
identified by Pi as αi, set A(i) = A(i−1) − αiPi, and repeat the computations in the next step
i + 1 until A(i) becomes void. The structure of any heuristic of this type is called generalized
Birkhoff heuristic and is shown in Algorithm 1.

Algorithm 1: Generalized Birkhoff heuristics
Input : A: a doubly stochastic matrix
Output: α1, . . . , αk and P1, . . . ,Pk, where A =

∑k
i=1 αiPi

Let A(0) ← A and i← 1

while A(i−1) ̸= 0 do
1 find a permutation matrix Pi ⊆ A(i−1)

αi ← min{Pi ⊙A(i−1)}
2 A(i) ← A(i−1) − αiPi

j ← i+ 1

k ← i− 1

The heuristics from this family differ by the way in which a permutation matrix is chosen at
Step 1 of Algorithm 1. The original argument in Birkhoff’s proof selects a permutation matrix
Pi at step i which contains a one at the position of the smallest nonzero entry of A(i−1). Dufossé
and Uçar [10] propose choosing a permutation matrix Pi where the minimum nonzero entry
of A(i−1) identified by Pi is maximum—this is the mentioned BvNG heuristic. Experiments
reported in the earlier work [10] comparing these two approaches show that BvNG is a very
effective in general.

The heuristics from the generalized Birkhoff family have the following distinctive character-
istic. At Step 2 of Algorithm 1, they annihilate at least one nonzero from A(i−1) in obtaining
the next matrix iterate A(i). Based on this observation, Marcus–Ree Theorem [19] states that
for a dense matrix, any algorithm from the generalized Birkhoff family will obtain at most
k ≤ n2 − 2n + 2 permutation matrices. Brualdi and Gibson [5] and Brualdi [4] show that for a
sparse, fully indecomposable doubly stochastic matrix with τ nonzeros, the relation k ≤ τ−2n+2
holds.

Motivated by a question of Brualdi [4], Dufossé et al. [11] show that the mentioned character-
istic of the generalized Birkhoff heuristics prevents all algorithms from this family to explore the
whole solution space of BvN decompositions. In particular, no algorithm from this family, nor
similar algorithms making sequential greedy decisions about coefficients without revising them,
can always find optimal solutions, even if they test all available permutations. One class of ma-
trices are constructed [11] by first associating each letter from a to j with 2p for p = 0, . . . , 9 in
the lexicographic order. Then, the matrix

A =
1

1023


a+ b d+ i c+ h e+ j f + g
e+ g a+ c b+ i d+ f h+ j
f + j e+ h d+ g b+ c a+ i
d+ h b+ f a+ j g + i c+ e
c+ i g + j e+ f a+ h b+ d


is doubly stochastic, as is (

In×n 0n×5

05×n A

)
, (2)

RR n° 9543

6 Lesens, Cohen, & Uçar

for any n ≥ 0, where In×n is the n × n identity matrix and 0n×5 and 0n×5 are matrices of
zeros. An optimal decomposition of (2) requires ten permutation matrices corresponding to the
ten letters, and any algorithm annihilating an entry in the first iteration without revising the
coefficients cannot find it.

2.2 BvN decomposition as a sparse coding problem
Dufossé et al. [11] formulate the BvN decomposition of a given doubly stochastic matrix A as a
linear system of equations. As this formulation underlines our contributions, we review it shorty.

Let Ωn be the set of all n× n permutation matrices. The n! matrices in Ωn are, without loss
of generality, ordered and referred to as P1, . . . ,Pn!. Dufossé et al. define an incidence matrix
M of size n2× n!, which encodes the inclusion of each nonzero position of A in the permutation
matrices in Ωn. Matrix M is therefore a dictionary of permutations. Consequently, a BvN
decomposition with the smallest number of permutation matrices is the following sparse coding
problem

min
x∈Rn!

+

∥x∥0 such that Mx = a , (3)

where a = vec(A), and x is a vector of n! nonnegative elements, xj corresponding to the permu-
tation matrix Pj . The dictionary is dramatically large even for tiny values of n ≥ 11, making
this sparse coding problem very challenging in theory (the dictionary coherence is high) and in
practice (the whole dictionary must not be stored).

2.3 Birkhoff heuristics, matching pursuit and Frank-Wolfe algorithms
The generalized Birkhoff family is closely related to the Matching Pursuit (MP) algorithm from
the sparse coding literature [18]. MP is a greedy iterative algorithm that finds patterns in a
known dictionary that sum up to a given observation. It first chooses a maximally correlated
pattern with the residuals r(i) = a −Mx(i) at current iteration i by solving the selection prob-
lem argmax

j≤n!
|Mjr

(i)|, then removes this pattern by projecting the residual on the orthogonal

hyperplane, computing coefficients x(i+1). MP is therefore similar to the generalized Birkhoff
heuristics. However the update rule for the coefficients in the MP algorithm may not guarantee
that the residuals a−Mx(i) are nonnegative. When this happens, the matrix in the next iteration
cannot be a (scaled) doubly stochastic matrix and hence the decomposition cannot correspond
to (1). We elaborate on this to develop novel algorithms in the next section.

A similar observation is used by Valls et al. [22], who connect the Frank-Wolfe algorithm [14]
to the Birkhoff’s heuristics. In this context, Frank-Wolfe has the same selection rule as MP,
but a different coefficient update method that guarantees that the solution stays in the space of
doubly stochastic matrices at all times throughout the iterative algorithm.

2.4 Orthogonal matching pursuit
A significant issue with generalized Birkhoff heuristics, MP or Frank-Wolfe is that they always
estimate permutation weights sequentially, leading to suboptimality on instances (2). A solution
to this issue, also quickly explored in [22], is to improve upon the coefficients update rules. To
this end, we propose to use the framework of Orthogonal Matching Pursuit (OMP). In Algorithm
2, we reproduce the standard OMP algorithm from the literature [12, p. 65], but in the next
Section we will part from the usual formulation to derive a class of generalized OMP heuristics
for the BvN decomposition. In Step OMP1 of Algorithm 2, similarly to MP heuristics, we choose
the index of the largest absolute value in the vector MT (a−Mx(i)), and add that to the solution

Inria

OMP-based algorithms for the BvN decomposition 7

Algorithm 2: Orthogonal matching pursuit
Input : a given matrix M and a given vector a
Output: the vector x, a sparse approximate solution to Mx = a

Let S(0) ← ∅ and x(0) ← 0
i← 0
while not converged do

OMP1 S(i+1) ← S(i) ∪ {j} where j = argmaxj{|MT
j (a−Mx(i))|}

OMP2 x(i+1) ← argminz{∥a−Mz∥2 where supp(z) ⊆ S(i+1)}
i← i+ 1

support S. However in Step OMP2, we now find the best solution vector whose nonzero indices
are in the current set S, therefore updating all coefficients at each iteration.

It is worthwhile to note that variants of OMP have been studied rigorously in the litera-
ture. Of particular relevance to our work is the Nonnegative OMP heuristic [20], which imposes
nonnegativity in Step OMP2 and has similar performances and guarantees as the standard OMP.

2.5 Bipartite matching problems

Permutation matrices correspond to perfect matchings in bipartite graphs, and are useful in our
context. Therefore, we give an overview of bipartite matching problems.

A matching in a graph is a set of edges no two of which share a common vertex. A vertex
is said to be matched if there is an edge in the matching incident on the vertex. In a perfect
matching , all vertices are matched.

Let A be an n × n doubly stochastic matrix. The standard bipartite graph G = (R ∪ C,E)
associated with A has n vertices in the set R and another n vertices in the set C such that each
ai,j ̸= 0 uniquely defines an edge (ri, cj) ∈ E in G. For a given matrix A then, a permutation
matrix P with P ⊆ A corresponds to a unique perfect matching in the bipartite graph of A.
Because of this connection, we are concerned with perfect matchings in bipartite graphs. The
values of the nonzero entries of the matrix can be used as the weight of the corresponding edges
in the bipartite graph.

Given the weighted bipartite graph of a doubly stochastic matrix, one can define various
perfect matching problems. One problem of interest is the maximum weighted perfect matching
problem (MWPM). In this problem, the weight of a perfect matching (PM) is defined as the
sum of the weights of its edges, and the aim is to find a PM with the maximum weight. A
second problem of interest is the bottleneck perfect matching problem (BPM). In this problem,
the bottleneck value of a PM is defined as the minimum of the weights of its edges, and the aim
is to find a perfect matching with the maximum bottleneck value. The BvNG thus solves BPM
at each iteration. A comprehensive coverage of algorithms for the mentioned bipartite matching
problems can be found in the book by Burkhard et al. [6]. There are efficient solvers for MWPM
and BPM [9, 21].

3 GompBvn: Greedy orthogonal matching pursuit based
algorithms for BvN decomposition

Here, we propose OMP-based methods to solve (3) in order to obtain effective heuristics for
the BvN decomposition. The principal traits of the proposed approach are as follows: (i) it is
based on the solid OMP-framework to obtain sparse solutions; (ii) it generalizes and improves

RR n° 9543

8 Lesens, Cohen, & Uçar

the BvNG heuristic [10] in multiple aspects, including obtaining optimum solutions that cannot
be computed by any generalized Birkhoff heuristic.

Let us start by examining (3) and Steps OMP1 and OMP2 of Algorithm 2. As the matrix
M has n! columns, it cannot be stored when carrying out the Step OMP1. We will exploit the
special structure of M for this step. As highlighted before, one needs to guarantee that the matrix
entries are nonnegative to obtain a BvN decomposition (1). We will present approaches to do so
in the OMP framework for OMP2, to obtain a suitable heuristic for sparse BvN decompositions.

Step OMP1 of Algorithm 2 finds the column of M having the largest inner product with
the residual a −Mx(i). We first realize that computing the residual translates to A(i+1) ←
A−

∑
j∈S(i) xjPj , therefore it can be computed efficiently. We then recognize that MT contains

n nonzeros in each row, which are all one, and that those nonzeros in a row define a permutation
matrix. Therefore MT (a − Mx(i)) translates to computing the value

∑
P ⊙ A(i+1) for all

permutation matrices P and storing them in a vector. Obviously, the argmax in Step OMP1

selects the maximum of this vector.
As we have seen in Section 2.5,

∑
P⊙A(i+1) is the weight of the perfect matching associated

with P in the bipartite graph of A(i+1). Therefore, Step OMP1 of Algorithm 2 can be solved by
finding a MWPM in the bipartite graph of A(i+1).

Step OMP2 of Algorithm 2 solves a least squares (LS) problem which is efficiently solvable
by off-the-shelf methods. As a solution to an LS problem can contain both negative and positive
components, and the BvN decomposition asks for positive only, we should solve a nonnegative LS
problem here, as in nonnnegative OMP [20]. Furthermore, one needs to ensure that the residual
is nonnegative, that is a−Mx(i) ≥ 0, at the ith iteration. This is necessary for continuing with
finding perfect matchings, and also for making sure that the remaining matrix when multiplied
with 1∑i

j=1 αj
is doubly stochastic. Therefore, Step OMP2 is reformulated as

argmin
z≥0, a−Mz≥0

{∥a−Mz∥2 where supp(z) ⊆ S(i+1)} . (QP)

With this formulation in Step OMP2, we have thus a heuristic based on the OMP methodology
to find a BvN decomposition of a given doubly stochastic matrix. Note that (QP) can be solved
via quadratic program solvers.

While the above development follows the OMP-framework, we need to part from this strict
interpretation. This is so, as the additional conditions breaks the original design of OMP where
the problem solved by Steps OMP1 and OMP2 are derived from the same cost and constraints:
Step OMP2 fixes the solution support, while Step OMP1 finds a single entry in the solution,
which yield favorable properties on the reduction of the cost function [12, Lemma 3.3]. However
by introducing the nonnegative residuals constraints, the cost function in Step OMP2 can only
use a scaled down version of the inner product between the residual and the dictionary to retain
nonnegativity. We therefore propose another loss function for which the two OMP steps are
coherent.

Let z be a feasible vector, that is z ≥ 0 and a − Mz ≥ 0. Then, ∥z∥1 =
∑

zi, and
∥a −Mz∥1 = n(1 −

∑
zi). This is so, as each row/column of A adds up to 1 and a −Mz

translates to subtracting a total of
∑

zi from each row/column using the permutation matrices
identified by the support of z. Minimizing the quantity 1 −

∑
zi, or maximizing

∑
i zi, in

Step OMP2 therefore will minimize an upper bound on ∥a −Mz∥2, since ∥v∥1 ≥ ∥v∥2 for any
vector v. Once we choose

∑
zi as the objective function, we should modify Step OMP1 to be

relevant to this objective function. Let x(i) be the current solution where supp(x(i)) ⊆ S(i),
and j be the permutation matrix selected in Step OMP1. Since the vector z′ = [x(i), z′j] for
0 ≤ z′j ≤ min{vec(Pj) ⊙ a −Mx(i)} is supported by S(i) ∪ {j}, and it holds that z′ ≥ 0, and

Inria

OMP-based algorithms for the BvN decomposition 9

a−Mz′ ≥ 0, choosing j which maximizes min{vec(Pj)⊙a−Mx(i)} guarantees an improvement
of at least min{vec(Pj)⊙ a−Mx(i)} in the objective function

∑
zi. We thus propose using

argmax
z≥0, a−Mz≥0

{∥z∥1 where supp(z) ⊆ S(i+1)} (LP)

as the objective function in Step OMP2, with a BPM solver for Step OMP1. As its name indicate,
(LP) is a linear program for which very efficient solvers exist.

We use GompBvN(BPM,LP) to denote the proposed OMP-based solver, where the first
parameter designates the problem solved in Step OMP1, and the second one designates the
problem solved in Step OMP2. The strict OMP-inspired method is similarly referred to as
GompBvN(MWPM,QP). Obviously, the other combinations GompBvN(BPM,QP) and Gomp-
BvN(MWPM,LP) are possible.

4 Experiments
We present a selection of experimental results to compare the proposed GompBvN heuristics
with each other and with the state of the art. We have implemented all algorithms in Python,
used Gurobi [13] for (LP) and (QP), MC64 [9] for MWPM, and Bottled [21] for BPM.

We use matrices from the SuiteSparse Matrix collection [8] that arise in diverse applications.
As this collection has many matrices, we automatically selected those with the following proper-
ties: square, between 500 and 1000 rows, fully indecomposable, and with at most 50 nonzeros per
row. This selection yields 58 matrices from 11 different groups. We retained up to two matrices
per group to remove any bias that might be arising from the group. This resulted in 18 matrices
given in Table 2. (The name dynamicSoaringProblem_1 is shortened.) In this table, the column
n lists the number of rows, and the column τ gives the number of nonzeros for each matrix. The
matrices are preprocessed by taking the absolute values of their nonzeros and scaling them to
be doubly stochastic by the method by Knight and Ruiz [15], where the maximum deviation of
the row and column sums from 1 were less than 3.27E-7. We run different algorithms until the
coefficients obtained add up to at least 0.999.

In many problem instances, GompBvN(MWPM, QP) obtained a larger number of permuta-
tion matrices with much more computing time than GompBvN(BPM, LP). Therefore, we give
only a few results with GompBvN(MWPM, QP) for the sake of completeness. For example on
matrices 662_bus and EX1, GompBvN(MWPM, QP) obtained 116 and 90 permutation matri-
ces, which are larger than other numbers given in Table 2. On some matrices, for example on
bcsstk34, the run time was large. On this matrix, GompBvN(BPM, LP) runs in less than 20
seconds on a laptop with 2,5 GHz Intel Core i7 with 16GB memory and obtains 118 permutation
matrices, but GompBvN(MWPM, LP) does not deliver a result within 10 minutes (we have
stopped it at 81st iteration).

We first note that all four variants of GompBvN solve the special (n+ 5)× (n+ 5) case (2)
optimally with 10 permutation matrices. This outcome clearly separates the GompBvN solvers
from the generalized Birkhoff heuristics, in particular from BvNG which finds 12 permutation
matrices. As BvNG and GompBvN(BPM, ·) apply the same algorithm for selecting the per-
mutation matrices, their first selection is the same. Step OMP2 then helps GompBvN(BPM, ·),
to revise the coefficients to deliver optimal results.

Next, another family of matrices are constructed to give further insights into the GompBvN’s
performance. This set of matrices are created by two parameters n, k. First, an n×n permutation
matrix P is created. Then, another k permutation matrices are created, each of which has
distinct n/k common elements with P, while having random permutations for the remaining
n − n/k elements. P is multiplied by 2k, and other permutation matrices with 2p, for p =

RR n° 9543

10 Lesens, Cohen, & Uçar

Table 1: Performance of heuristics on a set of constructed matrices

GompBvN GompBvN
(n,k) BvNG (BPM,LP) (BPM,QP) (MWPM,LP) (MWPM,QP)

(100,10) 19 11 11 11 11
(200,15) 29 16 16 16 16
(500,20) 39 21 21 21 21

Table 2: Performance of heuristics on a set of matrices from the SuiteSparse matrix collection

Matrix GompBvN
Name n τ BvNG (BPM,LP) (BPM,QP)
EX1 560 8736 56 56 64
EX2 560 8736 67 68 70
cdde1 961 4681 22 19 19
cdde2 961 4681 23 16 18
bcsstk34 588 21418 120 118 119
bcsstm34 588 24270 174 174 170
ex21 656 18964 166 165 168
Trefethen_500 500 8478 69 69 69
ex22 839 22460 173 171 177
L 956 3640 59 58 58
ch5-5-b3 600 2400 4 4 4
dynamicSoaringP_1 647 5367 305 316 312
685_bus 685 3249 41 40 40
662_bus 662 2474 35 34 34
spaceShuttleEntry_1 560 6891 274 280 259
Trefethen_700 700 12654 73 73 73
netz4504_dual 615 2342 30 28 28
Si2 769 17801 87 86 87

{0, . . . , k−2} in arbitrary order, and all k+1 scaled permutation matrices are added to produce
a doubly stochastic matrix after a straightforward normalization. By construction, a matrix
from the (n, k)-family can be decomposed with k + 1 permutation matrices. BvNG will find P
in the first step and will use the minimum weight 2k +1 (before normalization) and thus cannot
find the said decomposition. The same is true of a variant of BvNG which uses MWPM for
selecting permutations. We compare BvNG and the four variants of GompBvN in Table 1 for
three (n, k) pairs. As seen from this table, GompBvN variants find decompositions with k + 1
permutation matrices, but BvNG obtains nearly twice larger number of permutation matrices.
These experiments thus show that the proposed methods improve the state of the art in hard
cases.

Last, we observe from Table 2 that in cases where BvNG is effective so is GompBvN(BPM,
·). This is of course not a surprise, as at a given iteration the solution space in Step OMP2

of GompBvN(BPM, ·) includes the coefficients found by BvNG, should they both contain
the same set of permutation matrices. The near identical solution quality between BvNG and
GompBvN(BPM, ·) thus not only confirms that GompBvN(BPM, ·) is effective but also sheds
light on the good performance of BvNG.

Inria

OMP-based algorithms for the BvN decomposition 11

5 Conclusion

This paper proposes a set of heuristics for obtaining a sparse Birkhoff-von Neumann (BvN) de-
composition of doubly stochastic matrices. The proposed heuristics are based on the well-known
greedy orthogonal matching pursuit (OMP) algorithm, and advances the state of the art in the
BvN decomposition problem. Experimental results show that the proposed heuristics overcome
the innate limitation of the state of the art approaches in the literature and are competitive with
them on general instances. There are a number of follow-up questions: (i) what other selection
and optimization approaches can be used inside the OMP framework; (ii) what are the limita-
tions of the proposed heuristics; (iii) what is the best way to hybridize the existing BvNG and
the proposed heuristics.

Acknowledgment

J. E. Cohen is supported in part by ANR JCJC project LoRAiA ANR-20-CE23-0010.

References

[1] M. Benzi and B. Uçar. Preconditioning Techniques Based on the Birkhoff–von Neumann
Decomposition. Computational Methods in Applied Mathematics, Dec. 2016.

[2] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM,
Philadelphia, PA, USA, 1994.

[3] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A,
(5):147–150, 1946.

[4] R. A. Brualdi. Notes on the Birkhoff algorithm for doubly stochastic matrices. Can. Math.
Bulletin, 25(2):191–199, 1982.

[5] R. A. Brualdi and P. M. Gibson. Convex polyhedra of doubly stochastic matrices: I. Ap-
plications of the permanent function. Journal of Combinatorial Theory, Series A, 22(2):
194–230, 1977.

[6] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, Philadelphia,
PA, USA, 2009.

[7] C.-S. Chang, W.-J. Chen, and H.-Y. Huang. On service guarantees for input-buffered cross-
bar switches: A capacity decomposition approach by birkhoff and von neumann. In Quality
of Service, 1999. IWQoS ’99. 1999 Seventh International Workshop on, pages 79–86, 1999.

[8] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Softw., 38(1):1:1–1:25, 2011.

[9] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22:973–996, 2001.

[10] F. Dufossé and B. Uçar. Notes on Birkhoff–von Neumann decomposition of doubly stochastic
matrices. Linear Algebra and its Applications, 497:108–115, 2016. ISSN 0024-3795. doi:
http://dx.doi.org/10.1016/j.laa.2016.02.023.

RR n° 9543

12 Lesens, Cohen, & Uçar

[11] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Further notes on Birkhoff–von Neumann
decomposition of doubly stochastic matrices. Linear Algebra and its Applications, 554:68–78,
2018. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2018.05.017.

[12] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser
Basel, 2013. ISBN 0817649476.

[13] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://
www.gurobi.com.

[14] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In 30th
ICML, pages 427–435. PMLR, Feb. 2013.

[15] P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA Journal of Numerical
Analysis, 33(3):1029–1047, 2013.

[16] J. Kulkarni, E. Lee, and M. Singh. Minimum Birkhoff-von Neumann decomposition. prelim-
inary version which is available at http://www.cs.cmu.edu/~euiwoonl/sparsebvn.pdf,
June 2017.

[17] L. Liu, J. J. Xu, and L. Fortnow. Quantized BvND: A better solution for optical and hybrid
switching in data center networks. In 2018 IEEE/ACM 11th International Conference on
Utility and Cloud Computing (UCC), pages 237–246, Dec 2018.

[18] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[19] M. Marcus and R. Ree. Diagonals of doubly stochastic matrices. The Quarterly Journal of
Mathematics, 10(1):296–302, 1959.

[20] T. T. Nguyen, C. Soussen, J. Idier, and E.-H. Djermoune. Exact recovery analysis of non-
negative orthogonal matching pursuit. In SPARS, 2019.

[21] I. Panagiotas, G. Pichon, S. Singh, and B. Uçar. Engineering fast algorithms for the bot-
tleneck matching problem. In The 31st Annual European Symposium on Algorithms, Ams-
terdam, Netherlands, 2023.

[22] V. Valls, G. Iosifidis, and L. Tassiulas. Birkhoff’s decomposition revisited: Sparse scheduling
for high-speed circuit switches. IEEE/ACM Transactions on Networking, 29(6):2399–2412,
2021. doi: 10.1109/TNET.2021.3088327.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

