
HAL Id: hal-04499961
https://hal.science/hal-04499961

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A topical review on AI-interlinked biodomain sensors for
multi-purpose applications

Rubi Thapa, Sachin Poudel, Katarzyna Krukiewicz, Anil Kunwar

To cite this version:
Rubi Thapa, Sachin Poudel, Katarzyna Krukiewicz, Anil Kunwar. A topical review on AI-interlinked
biodomain sensors for multi-purpose applications. Measurement - Journal of the International Mea-
surement Confederation (IMEKO), 2024, 227, pp.114123. �10.1016/j.measurement.2024.114123�. �hal-
04499961�

https://hal.science/hal-04499961
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Graphical Abstract
A topical review on AI-interlinked biodomain sensors for multi-purpose applications
Rubi Thapa,Sachin Poudel ,Katarzyna Krukiewicz ,Anil Kunwar

Robotics, ML

Com
puter vision 

D
ig

it
al

 tw
in

s

Text Mining, NLP

Agriculture  sectorFo
od

  I
nd

us
tr

y

Health Care 

Environment  Monitoring



Highlights
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• Elaboration of the symbiotic relationship between machine learning and sensing technology.
• Uncertainty quantification in multiphysics models guided sensors enabled by AI
• Widespread integration of AI technique in devices for computer vision, e-skin, e-tongue and e-nose.
• Generative AI enables the exploration of appropriate substrate pair for a selected enzyme.
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ABSTRACT
Based on their construction or working principles, biosensors, biomimetic sensors, and bioapplicable
sensors may have been understood differently, but everyone acknowledges their commonality of
sensing in fields that require knowledge of biochemical science and engineering. In the era of big data
and industry 4.0, the amalgamation of artificial intelligence (AI) technology and the Internet of Things
(IoT) with the applied science of sensing is seen as a way forward to achieve unprecedented growth
in the design and development of novel and robust biochemistry-related sensors. The integration of
AI with sensing technology makes it possible to produce sensors that can rapidly detect targets while
maintaining high sensitivity, accuracy, and precision, all at a cost-effective price point. This work
reviews recent literature on the applications of AI tools to accelerate the advancement of intelligent
biosensors. Also, it projects how novel AI tools such as digital twins, machine vision, robotics, natural
language processing, and text mining will transform the design and broaden the applicability of
biosensors, bio-inspired sensors, and bioapplicable sensors.

1. Introduction
Nature serves as an abundant source of inspiration

for technological innovations, particularly in the field of
biomimetics, which harnesses nature’s principles to generate
new ideas [1]. Sensors, defined as devices that detect and
measure physical or chemical properties, play a crucial
role in technological advancements. Within this realm,
biomimetic sensors have made significant strides, imitating
natural systems to enhance sensing capabilities. Biosensors,
a specific category of biomimetic sensors, combine biolog-
ical components such as microorganisms, tissues, enzymes,
and synthetic catalysts with physiochemical transducers,
enabling advanced bioanalytical measurements [2]. These
biosensors have a wide range of applications in biomedicine,
environmental monitoring, and food safety. Additionally,
bio-applicable sensors are gaining prominence, encompass-
ing various types of sensors used in biomedicine, healthcare,
and biological research. By interfacing with biological sys-
tems, these sensors provide valuable insights into monitor-
ing physiological parameters, diagnosing diseases, and ad-
vancing personalized medicine and tissue engineering. The
collective contributions of biomimetic sensors, biosensors,
and bio-applicable sensors drive innovation in bio-related
fields.

Biomimetic sensors, utilize materials, structures, and
functions inspired by nature to achieve high levels of sen-
sitivity, selectivity, and adaptability. Drawing inspiration
from nature and borrowing its concepts through biomimicry
enables the creation of innovative technical systems and
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processes [3]. The potential of biomimetics is believed to be
boundless, with significant scientific, sociological, and eco-
nomic implications that can enhance the quality of life [4, 5].
The concept of biomimetic technologies emerged from the
transfer of ideas from the biological sciences to engineering,
benefiting from millions of years of evolutionary design
carried out by natural selection in living organisms [6]. The
rapid development of computing has led to the emergence
of important fields in artificial intelligence (AI), machine
learning (ML), system accumulation, and hardware design.
These interdisciplinary approaches contribute to the ad-
vancement of biomimetic technologies in various areas such
as evolvable electronic circuits, computer-assisted creation,
material manufacturing technologies, and robotics [7]. Bio-
inspired approaches have historically played a significant
role in the development of crucial inventions, particularly in
engineering design and technology. Figure 1 demonstrates
the arts guiding the biomimetic sensor design, with the
human olfactory system serving as the de facto source of
inspiration. The researchers have created artificial nose-
type sensing systems that mimic the pattern recognition
capabilities of the olfactory system. These systems aim to
enhance the specificity and sensitivity of odor detection
by analyzing and identifying smells chemically similar to
the olfactory system [8, 9]. Section 6.2 provides a detailed
description of an artificial olfactory system. The research
fields of biomechanics, bioengineering, bionics, robotics,
and biomimetics originated in the mid-twentieth century
and have since become widely explored areas. Over the
past few decades, data science and machine learning have
experienced significant growth, leading to their recognition
as the fourth pillar of science.
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Biosensors, which are analytical devices that combine
the precision and specificity of biology with physiochemical
transducers, facilitate advanced bioanalytical measurements
in user-friendly formats [10]. These sensors integrate bio-
logical, such as microorganisms, tissues, enzymes, and syn-
thetic catalysts, with a range of physicochemical transducers
including optical, electrochemical, thermometric, piezoelec-
tric, magnetic, or micromechanical technologies [2]. How-
ever, conventional biosensors have limitations in terms of
sensitivity, selectivity, and stability. To address the sensi-
tivity limitation, Miller et al. [11] enhanced biosensors by
introducing extracellular components that hinder the escape
of target molecules. In terms of selectivity, conventional
biosensors struggle to distinguish between various target
analytes. Hasib et al. [12] demonstrated a surface plasmon
resonance (SPR) biosensor with exceptional sensitivity, de-
tection accuracy, and quality factor using the Kretschmann
configuration. Additionally, Wann et al. [13] outlined the
primary obstacles and forthcoming outlooks for novel and
enhanced biosensor technology. To overcome the limitations

Figure 1: Schematic illustration for bio-inspired design of
sensors[14]. The image showing the human olfactory system
has served as a valuable inspiration for designing biosensors,
where arrays of olfactory receptors at the molecular level can
accurately detect specific target molecules. Reproduced with
permission from [14].

faced by conventional biosensors, the integration of AI tech-
nology and Internet of Things (IoT) is expected to accelerate
the advancement of intelligent biosensors. AI has played a
significant role in the development of biosensors, utilizing
tools such as Biorobotics, machine learning, digital twins,
computer automation, natural language processing, text min-
ing, and image and speech recognition. Overall, biomimetics
and AI-driven advancements have the potential to revolu-
tionize biosensor technology, enhancing sensitivity, selec-
tivity, and stability, while paving the way for next-generation
biosensors that are rapid, precise, and cost-effective. Biosen-
sors have witnessed remarkable growth across various fields,
benefiting from numerous technological advancements that
have provided us with the necessary tools and resources

for manufacturing sophisticated biosensor devices. Mod-
ern biosensors have undergone significant improvements in
terms of sensitivity, selectivity, and the ability to perform
multiplexing. These advancements have led to the develop-
ment of biosensor solutions that address a wide range of
challenges, including disease monitoring, food safety and
processing, environmental monitoring, modern agriculture,
and many other domains [15, 16].

In addition to biomimetic sensors and biosensors, a third
category of sensors called bio-applicable sensors plays a cru-
cial role in various bio-related fields. Bio-applicable sensors
are simple mechanical or other types of sensors that find
applications in areas such as biomedicine, healthcare, and
biological research. These sensors are designed to interface
with biological systems, providing valuable data and insights
for monitoring physiological parameters, diagnosing dis-
eases, and studying biological processes. With their ability
to detect and measure physical and chemical signals in a
biocompatible manner, bio-applicable sensors contribute to
advancements in personalized medicine, wearable devices,
implantable sensors, and tissue engineering. These sensors
offer great potential for improving healthcare outcomes and
understanding the intricacies of biological systems, opening
up new avenues for research and development in the field of
bioengineering.

Our comprehensive review article aims to explore the
synergistic relationship between material science, artificial
intelligence (AI), and machine learning (ML) in the con-
text of biomimetic sensors, biosensors, and bio-applicable
sensors. It is first necessary to introduce the concepts of
sensing and biodomain sensors, and thus Sec. 2 is devoted
in summarizing the recent studies and work that outline the
basic models and design of biomimetic (Sec. 2.1) as well as
biosensors (Sec. 2.2). In the era of big data, the AI tools and
techniques have been influencing the design, manufacture
and application of sensors. At the meantime, there is an
understanding that the explainability of AI renders an appli-
cation more reliable, and this is possible by incorporating
theoretical models with the AI methods. Thus, Sec. 3 is
a synopsis of previous works that have focused on both
the multiphysical mathematical models and AI methods,
directly or indirectly related to biodomain sensor applica-
tions. At the forefront of ushering in a new era, 4 delves
into AI-guided sensor design, encompassing the holistic
development of sensors in various fields, particularly in the
biochemical domain, and explores the symbiotic relation-
ship between sensing technologies and artificial intelligence.
Section 5 navigates the integration landscape of AI tools
with biosensors, leveraging insights from notable review
papers and works. It encompasses diverse aspects: from
the amalgamation of artificial intelligence and robotics in
biosensors ( 5.1) to the synergy between machine learn-
ing and sensing technology ( 5.2), exploring the potential
applications of digital twins and real-time data in sensing
technology ( 5.3), utilizing computer vision for enhanced
automation in biosensors ( 5.4), and innovating interactive
biosensors through techniques such as text mining and NLP
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Figure 2: Schematic illustration of a) workflow mechanism in a biosensor revealing how a a receptor interacts with a biological
element to further induce the transducer to generate an electric signal is generated by the transducer, and b) categorical types
of collected information c) applied artificial intelligence for sensing d) how continual usage of data-driven methods can enhance
the design of improved biosensors and e) potential advanced applications of the highly improved and sensitive sensors.

( 5.5). It is followed by Sec. 6 which traverses through
notable insights gleaned from existing scholarly publica-
tions and research, elucidating the realm of data-driven
sensing technology applications across various biosensors,
biomimetic sensors, and bioapplicable sensors. It spans from

exploring tactile and vision applications of biomimetic sen-
sors ( 6.1) to simulating biomimetic olfaction and gustation
systems ( 6.2). Additionally, it delves into critical domains
such as food processing, awareness, quality, and safety ( 6.3),
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disease diagnoses and health monitoring ( 6.4), environmen-
tal monitoring ( 6.5), and agricultural applications ( 6.6).
After highlighting the challenges intrinsic to the integration
of artificial intelligence within the biodomain sensors (e.g.
biosensors, biomimetic sensors, and other sensors), Sec. 7
then outlines the way or roadmap for future advancements
or directions in the realm of these AI-interlinked sensors.

2. Biomimetic sensors and biosensors: basic
models and design
The world is undoubtedly moving towards Industry 4.0,

also known as the fourth industrial revolution, characterized
by the convergence of information communication and in-
dustrial technologies [17]. This revolution aims to integrate
the digital and physical realms by leveraging cutting-edge
technologies such as cyber-physical systems (CPSs), IoT,
artificial intelligence, big data, cloud computing, additive
manufacturing (AM), and automation [18, 19, 20].In the era
of Industry 4.0, there exists a substantial demand for both
biomimetic sensors and biosensors in scientific and tech-
nological applications. With advancements in materials sci-
ence and biotechnology, biomimetic sensors and biosensors
are expected to gain further traction in the era of Industry 4.0
and beyond. Their integration into larger systems opens up
new possibilities for improved efficiency and precision. The
growing popularity of biomimetic sensors and biosensors
can be attributed to their numerous advantages, surpassing
those offered by conventional sensors and analytical meth-
ods.
2.1. How the biological phenomena are inspiring

the sensor design
The natural world has evolved and refined a vast array

of sensors for tasks such as navigation, prey, and object
detection, and spatial orientation, offering valuable hints for
engineers to gather new ideas for developing novel sensor
technology and enhancing current technology [21]. Draw-
ing on concepts from biology has been proven to stim-
ulate creativity and promote innovation in a wide range
of forthcoming technologies [6, 22]. Biomimetic material
design involves studying the design principles of natural
structures to gain a fundamental understanding of them, and
then using biological building blocks such as DNA/RNA,
peptides/proteins, lipids, and sugars, to develop practical
applications that mimic hierarchically organized functional
structures [23, 24]. To create biomimetic sensors, there are
several approaches to imitate biological systems such as
functional design, morphological design, the use of biolog-
ical principles, strategies, and manufacturing either indi-
vidually or in combination. The concept of biomimicry is
broad-ranging and encompasses many different approaches.
Such sensors are developed through systematic procedures,
including observing natural systems and using databases
for inspiration [25]. Using biological inspiration for sensor
design has the potential to not only enhance existing sensor
models but also encourage the development of novel ones
[26, 25]. For instance, The development of vision sensors

has been inspired by the structure and function of the human
eye. Steffen et al [27] discuss the application of biomimetic
approaches to recreate essential attributes found in the hu-
man eye, such as high-resolution imaging, wide dynamic
range, and low power consumption. The authors emphasize
the utilization of diverse sensor designs and architectures
that closelymimic the structural principles of the human eye.
2.2. Biological components in sensor design and

manufacture
The use of biological components is crucial in the de-

sign and manufacturing of biosensors. In a common setup
(shown in Figure 2(a)), the three major components of
a biosensor are a bioreceptor, a transducer, and a signal
processing system [28]. A bioreceptor, also known as a
biological recognition element, interacts with the substance
beingmeasured i.e. analytes(enzyme, antibody, nucleic acid,
cells, aptamers, tissue, microorganism, organelle, cell recep-
tor), emerging options involve biomimetic materials such as
biomimetic catalysts, molecularly imprinted polymers, and
combinatorial ligands [29]. A bioreceptor typically consists
of a biological component that has been immobilized and
can recognize and respond to a specific target analyte [30].
The sensitivity of the entire device is determined by the
biological receptor generating a physicochemical signal that
is then monitored by the transducer [31]. A transducer is a
substance or material with the ability to convert energy from
one form to another [32]. It detects and measures changes re-
sulting from the interaction between the biological receptor
and the target analyte and converts the biochemical signal
produced by this interaction into a quantifiable signal (refer
Figure 2(a)-(b)), which could be in the form of piezoelectric,
optical, or electrochemical signals, among others [33].

Nature and biology guide in many ways how overall
sensing and measurements are designed. While the biosen-
sors themselves include biological components, the bioin-
spired sensors are inspired by natural/biological phenomena,
and the bioapplicable sensors are developed to work together
with biological systems. By imitating the structure and func-
tion of biological systems, bioinspired sensors have the
potential to provide better sensitivity, selectivity, and robust-
ness compared to conventional biosensors. As biosensors,
biomimicking sensors, and bioapplicable sensors are impor-
tant tools in studying nature through quantitative means, it
is very much fundamental to advance the sensing techniques
by utilizing artificial intelligence. The concept of AI-guided
sensor design will be explained in the following section (
Sec. 4).

3. Multi-physical theoretical models meeting
data-driven methods
The knowledge of the working principles of biodomain

and environmentally applicable sensors makes it possible to
design routes andmechanisms not only for their performance
improvement but also for broadening their application areas.
The correct information on the fundamental physical models
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governing the working mechanism of a sensor is required
for the process integration with data-driven methods or
equipment. The integration of AI techniques into the design
and operation of multiphysical equation-driven sensor tech-
nology holds promise for enabling uncertainty quantification
within biodomain areas. It is noteworthy to highlight that
the integration of multiphysical theoretical insights with the
machine learning technique makes the latter explainable.
On the other hand, the explainable AI (XAI) enables the
uncertainty quantification in physics governed sensors via
statistical optimization techniques. The details about the
quantification of uncertainties are presented in Sec. 7. The
nature of the materials used in the sensor design, and the
expected field of applications require different mathemati-
cal models in the sensing action. For example, Michaelis-
Menten Equation [34, 35] for substrate-enzyme kinetics is
utilized in the design of biosensors, whereas piezoelectric
equations govern the working mechanisms of flexible bio-
applicable sensors [36]. While the stimuli in sensors will be
obtained in terms of variables associated with mechanical
or chemical fields, the measurement mostly takes place after
conversion into the variable of electrical field. Thus, multi-
physicalmodels aremostly employedwith sensing activities.
This section will present a summarized literature review of
the basic physical equations utilized in the design of bio-
and environmental-domain sensors. Wherever applicable,
the progress made toward the implementation of AI-related
tools in the corresponding sensors will also be discussed. It
is to be noted that the integration of physics-based equations
with AI can greatly help render the latter explainable.
Kinetics at substrate-enzyme interface : TheMichaelis-
Menten model is a fundamental approach in enzyme ki-
netics, portraying the reaction velocity (V ) in relation to
substrate concentration. As depicted in the top image of Fig.
3 (a), it characterizes reversible binding of a substrate (S) to
an enzyme (E) forming an enzyme-substrate complex (ES),
which then undergoes irreversible reactions to generate a
product (P) and regenerate free enzyme (E). The Michaelis-
Menten equation states that the product formation rate V de-
pends hyperbolically on [S] , and is depictedmathematically
as follows:

V =
Vmax × [S]
(KM + [S])

(1)
where, [S] is understood as the substrate concentration and
Vmax is the maximum velocity at saturating substrate con-
centrations. In Eq. 1,KM is the Michaelis constant, defined
as the substrate concentration at which V attains half the
value of Vmax. In amperometric enzyme-based biosensors
(refer Fig. 3 (b)), the current density (J ) values [37] could
be taken as a quantitative indicator for reaction rate (V).
Fig. 3 (b) illustrates the method of calculating the KMfor the specific enzyme-substrate pair [37]. In the figure,
Jmax ≈ 100�A∕cm2, and from the curves it can be observed
that the J ≈ 50�A∕cm2 is attained for glucose (substrate)
concentration of 16± 2mM. Thus, theKM for this biosensor
system is 16 ± 2 mM. It is to be noted that Eq. 1 is

established by assuming that the enzyme concentration ([E])
is in excess; and thus does not influence the rate of reaction.
If [E] is not saturating, then Vmax will vary and V will have
a linear dependence on the enzyme concentration [34].

One of the bottlenecks in the design of biosensors based
upon enzyme-substrate kinetics and cellular physiology is
the quantification of the Michaelis constant [38, 39]. Phys-
ically, KM can also be an inverse measure of the affinity
of an enzyme for a given substrate [38]. Since determining
KM frequently involves challenges and consumes substan-
tial time, experimentally obtained values for this parameter
are available for merely a minority of enzyme-substrate
interactions, even within well-studiedmodel organisms [39].
The middle illustration ( in Fig. 3 (a)) portrays the ap-
plication of AI-driven estimations to bridge the knowledge
gap inherent in the determination of KM values across
diverse enzyme types and various living organisms [38].
The subsequent illustration in the lower part of the same
figure underscores the potential of these AI-driven forecasts
to not only advance the realm of metabolic engineering
but also to foster innovative prospects within drug target
exploration [38]. Kroll et al [39] have introduced a novel
approach (Fig. 3 (c)) utilizing a generalizable and organism-
independent machine learning algorithm for the prediction
of Michaelis constant solely based on protein and substrate
data. The upper portion of Fig. 3 (c) delineates the process of
computing molecular fingerprints using the RDKit software,
employing the databases of the substrates ( provided via
MDL Molfiles). These fingerprints, combined with global
attributes such as molecular weight (MW) and octanol-water
partition coefficient (LogP), serve as input features for the
ANN, facilitating the subsequent prediction of KM value.
In the lower section of the same figure, the feature vectors
obtained via a graph neural network are first aggregated with
MW and LogP, and then the dataset subsequently undergoes
training with the ANN with KM assigned as the target
feature.

Another major milestone in the development of AI-
guided biosensor design and development is the establish-
ment of the database of enzyme-substrate relationships. Es-
pecially, a significant disparity exists between the consider-
able number of proteins projected to have enzymatic func-
tions and the limited experimental understanding of their
corresponding substrate ranges [40]. While data are abun-
dant regarding the enzymes (in the range of several millions
of entries in well-known databases), only a tiny fraction
of these entries have clear annotations of candidate small
molecule substrates for associated catalytic reactions [40].
As illustrated in Fig. 3 (d), generative AI, or more specif-
ically attention mechanism-based machine learning algo-
rithm has been utilized in Kroll et al. [40] to estimate the
candidate substrates for given enzymes.
Transport equation for ionic migration: Impedimetric
biosensors [41] are utilized in the healthcare sector for bac-
terial detection. In such biodomain electrochemical sensors,
the associated transport phenomena of ions are represented
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Figure 3: The top portion of (a) demonstrates the mathematical model for Michealis-Mentes kinetics associated with blue-colored
enzyme (E), brown-colored substrate (S), and green-colored product (P) [38]. The Michaelis constant (KM) has been introduced
as the concentration of S at which the reaction rate is half of its maximum value [38]. The mid image illustrates how AI-based
prediction can be used to fill the knowledge gap associated with the quantification of KM for several types of enzymes in multiple
living organisms [38]. The bottom image then shows the possibilities of such AI-based predictions on opening new avenues not
only in the area of metabolic engineering but also in the field of drug target discovery [38]. In (b), the constant KM = 16 ± 2 mM,
is determined in terms of the current density (J) for amperometric enzyme-based composite biosensor [37]. In (PtC/PoPD-GOx),
Platinum cylinder metal wire (PtC), is used as the electrode, and polypolyphenylenediamine (PoPD) polymer is used for the
entrapment of Glucose Oxidase (GOx) enzyme. Image (c) shows the procedure to determine KM using artificial neural network
[39]. The upper image in (c) illustrates how molecular fingerprints are calculated using RDKit software based on MDL Molfiles
of the substrates These fingerprints along with global features such as MW and LogP are supplied as input features in the ANN
to subsequently predict the value of KM . In the lower image of (c), feature vectors obtained via graph neural network are pooled
together with the global features, and then trained with ANN for prediction of KM [39]. The machine learning model of (d) can
be utilized to estimate appropriate substrate candidates for given enzyme type [40]. The use of such integrated mathematical and
data-driven models have a great potential for uncertainty quantification in sensor development.

by the following Nernst-Planck equation [41, 42]:
)c
)t
+ ⃖⃗v ⋅ ∇c = D∇2c + �∇c∇� (2)

where, the ionic mobility (�) appearing in the electrochem-
ical migration term is defined as � = zF

RT . The symbols z, F,
R, and T are ion charge number, Faraday constant, universal

gas constant, and temperature respectively. � is the electric
potential. The ionic concentration of the hydrated ions is
denoted as c in Eq. 2. The velocity of the ion-containing
liquid electrolyte represented as ⃖⃗v, appears in the advection
term and will be zero if there is no flow. The parameter D
in the diffusion term is the ionic diffusivity coefficient of
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the hydrated ions. The partial differential equation (Eq. 2 )
allows the accurate modeling of the electrical double layers
atop the oxides ( the selectivitymeans to bind target bacteria)
and bacterial cells in the capacitive biosensors [41].

On the other hand, the Nernst equation is expressed as
follows:

E = E0 −
(RT
zF

)

ln [c] (3)

This equation stands as a fundamental principle that
establishes amathematical connection between the electrode
potential E and the multitude of factors that influence it. In
this equation, E0 signifies the standard electrode potential, ameasurement conducted under defined standard conditions.

Fig. 4 (a)-(f) highlight some of the special sensor ap-
plications in which the Nernst-Planck equation ( Eq. 2 )
can be applied. The electrochemistry theory when combined
with artificial intelligence can help in the accelerated design
and discovery of wearable sweat sensors, electronic tongues,
electronic noses, gas sensors, and selectivity-enhanced non-
enzymatic electrochemical biosensors [43, 44, 45, 46, 47,
48]. It is now possible to study electrochemical sensors via
physics-informed machine learning techniques. The partial
differential equation (Eq. 2) as well as boundary conditions
namely, the Nernst equation (Eq. 3) and Butler-Volmer
equation can be easily incorporated into a physics-informed
neural network (PINNS) for development of accurate elec-
trochemical sensors [49]. In a schematic sketch of PINNs
shown in Fig. 4(f), space (x) and time (t) serve as the
output features of the neural network, whereas the ionic
concentration (c) and coupled electrical potential (�) are
assigned the output features. The loss function (L) of the
PINNs is usually the sum of individual loss functions as-
sociated with the residual of the Nernst-Planck equations,
boundary conditions, initial conditions, and datasets. These
PINNs allow not only induction-based learning on several
electrochemical experiments but also the replacement of
computationally expensive methods such as finite element
method and finite difference method [49].
Smart materials and theories of solids : For solid-
state smart sensing materials used in the measurement tasks,
some of the well-established theoretical frameworks are
Hooke’s law and piezoelectric equations. The basic form of
Hooke’s Law for a sensor material component is given by
the following equation:

F = −kx (4)
Hooke’s Law, expressed in Equation 4, describes the

linear relationship between the force (F ) applied to a spring
(e.g. component No. 6 of the tensometer/myotonometer in
Fig. 5(a) ) and the resulting displacement (x exhibited
by the spring) in a given direction from its equilibrium
position [50]. The spring constant (k) characterizes the
stiffness of the spring, indicating how it responds to the
applied force F . This force is measured with the help of
the force sensor (component No. 3) of the myotonometer

[50]. The generalized Hooke’s law expressed in terms of
stress tensor (�ij) and strain tensor (�kl) is �ij = Cijkl�kl.In this expression, Cijkl is the fourth-order stiffness tensor
of the sensor material. In terms of normal stress (�) and
normal strain (�), Hooke’s law for linearly elastic isotropic
sensor materials can be simply reduced to � = E�. The
proportionality constant E is Young’s modulus of elasticity.
It has been quite cumbersome to quantify using traditional
experimental methods, the values of elastic moduli and other
coefficients constituting the stiffness tensor of the novel
functional materials, composite materials, multi-materials,
and meta-materials used in the sensor devices. In Fig. 5(b),
the elastic moduli of the magnetic films constituting the
tactile sensor (popularly known as electronic skin) relate
the force of the ball to the magnetic flux density [51].
For accurate measurement by the tactile sensor, the correct
estimation of the elastic modulus and shear modulus of the
film is necessary. However, measurement of the properties
in thin films (very small thickness) is challenging, and it
may be not possible to retain magnetic properties in the
materials using destructive testingmethods such as vibration
test, nanoindentation test, tensile test and bending test [52].
Moreover, when a newly developed magnetic film material
is proposed for the construction of a tactile sensor, it will
be again necessary to quantify the elastic moduli for this
novel material. In the context of traditional elastographies
for heterogeneous objects such as tissues, established with
the consideration of stress uniformity are susceptible to
inaccuracies [53]. The use of machine-learning algorithms
built from reliable datasets can help in the prediction of the
elasticity values that are otherwise difficult or impossible
to obtain from conventional experimental techniques. Chen
and Gu [53] have developed ElastNet by combining a deep
learning approach with the theory of elasticity. As illustrated
by the schematic methodology shown in Fig. 5(d), ElastNet
is able to extract the values of hidden elasticity of hetero-
geneous objects based on the positional distributions of the
measured strain values. In the future, there are possibili-
ties that machine learning models such as Fourier Neural
Operator [54], variational autoencoder [55] etc. could be
utilized to accurately predict the strains and strain values in
the component materials of sensor devices. As revealed by
Fig. 5(c), the predictions of fourier neural operator model
are validated by FEM-based results.

Another interesting group of solid-state functional ma-
terials that find large applications for sensor applications are
those that demonstrate piezoelectric behavior. Piezoresistive
materials are a sub-category of piezoelectric materials which
show a significant change in their resistance upon appli-
cation of mechanical force or displacement. The following
equation of piezoresistivity is commonly utilized in sensor
material design :

ΔR∕R = S� ⋅ � (5)
The expression outlines the change in resistance per

unit resistance (ΔRR ) experienced by a material component
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Figure 4: The schematic sketches of flexible electrochemical sweat sensor provided in (a) and (b) essentially highlight the practical
application of Nernst-Planck equations [43]. The theory of electrochemistry when integrated with machine learning is finding
widespread applications in the fabrication of ultra-modern sensors such as (c) electronic tongue for detection of polyphenolic
antioxidant compounds with high resolution [44], (d) electronic nose for accurate sensing and real-time selective detection of
gases [47], (e) non-enzymatic biosensors for lactase and glucose detection [48]. The PINNs shown schematically in (f) offer a
route to solve the Nernst-Planck equations with the help of electrochemical sensor data.

of the sensor device due to applied mechanical strain (�).
The piezoresistive coefficient (S�) quantifies the material’s
sensitivity to strain-induced resistance changes. Fig. 6(a)
shows a flexible pressure sensor based upon piezoresistiv-
ity effect [36]. The sensitivity of the material can also be
expressed in terms of applied pressure (Δp) to represent
the response of pressure sensor [36, 56]. In such case, the
equation for the sensitivity of the piezoresistive sensor be-
comesΔR∕R = Sp ⋅Δp. The Ag/polydimethylsiloxane (Ag-
PDMS)material-based sensor of Fig. 6(a) is found to exhibit
a fast response time of 45 ms and a very high sensitivity
(Sp = 2.525 kPa−1) for a broad pressure range of 312 kPa
[36] thereby rendering it a highly promising candidate for
tactile sensing in prosthetic and robotic applications.

The following equationmathematically explains the con-
cept of piezoelectricity in sensor component material, and it
also includes the piezoresistive effect as discussed above:

Si = dij ⋅ Ej (6)
The piezoelectric equation 6 highlights the relationship

between mechanical strain (Si) and an applied electric field
component (Ej) in a material. Demonstrating the elec-
tromechanical coupling via piezoelectric coefficient tensor
(dij), this equation highlights how certain materials generate
electric polarization under mechanical stress and vice versa.
A smart glove is illustrated in Fig. 6(b) and is enabled by
sensors based upon piezoelectric effect [57]. To establish
a real-time virtual reality interaction mechanism, a long
short-term memory (LSTM) model is integrated with this
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Figure 5: A typical myotonometer (tensometer) shown in the upper image of (a) demonstrates the practical application of Hooke’s
law [50]. For the schematic sketch in the lower part of (a), the number 1 denotes the biological tissue. The numbers 2,3 and 4
occurring in both images represent tool, force sensor, and robot respectively. Finally, 5 and 6 in the upper image mean strain
gauge sensor and spring respectively. In (b)(1), the skin structure of the human figure and the mathematical representation of
the receptive field are illustrated [51]. The tactile sensor of (b)(2) emulates human skin response [51]. During the contact of the
ball with the taxel S5 with regions of differing magnitudes of magnetic flux density, the elastic moduli appear in the expression
relating force components with the change in magnetic signals [51]. It is to be noted that the response of the tactile sensor can be
improved by using a neural network. Fourier neural operator (FNO) model validated with the help of benchmark FEM model has
been implemented in (c) to predict the values of von-mises strain and equivalent strains for composite materials [54]. ElastNet
based upon deep neural network can predict the elasticity of a generic material as a function of the information of position p [53].

smart glove [57]. So et al [58] have combined silicon
piezoresistors with a tailored deep learning data processing
methodology to enable accurate evaluation and analysis of
diverse stimuli, thereby obviating the necessity for intricate
procedural intricacies. As shown schematically in Fig. 6(d),
the deep learning-aided data translation integrated with the
flexible epidermal piezoresistive sensor structure is aimed at
efficiently recognizing not only the complex stimuli shape
and magnitude but also the modulus of the skin [58].
A summary of the mechanical stimuli, mechanisms, and
machine learning-assisted data processing techniques that
are or could be implemented in flexible mechanical sensing
technology [59] is provided in Fig. 6(c). Strain, pressure,
shear force, and vibration have been listed as the most
prominent source of stimuli whereas piezoresistive, piezo-
electric, piezocapacitive, triboelectric, and iontronic effects
are categorized as the commonly observedmechanisms [59].
Data decoupling, multimodal sensing, and array integration
are the tasks in sensing technology that can be enhanced
using aid from machine learning processing techniques

[59]. Finally, health monitoring, electronic skin, human-
machine interface for [59] identification of hand gesture,
voice, posture, as well as position, pressure prediction, and
position recognition, etc. are the notable application areas of
the flexible sensors [59].

4. Ushering in the new era: AI-guided sensor
design
After elaborating on the fundamentals of the working

of biomimetic sensors and biosensors in Sec. 2, it is now
necessary to highlight the evolutionary paradigms dictating
the growth and usage patterns of such sensors. This is the
era of big data and machine learning, and it is quite clear
that sensing technology is very much intertwined with AI
methods. The intertwining is two-sided-(i) AI-aided sensor
design and development, and (ii) sensors supporting the AI-
based other technologies. This section will highlight the
symbiotic relationship between AI and biochemical sensing
technologies.
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i) ii)

iii) iv)
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Figure 6: Figure showing a) Developed flexible piezoresistive pressure sensor with lotus leaf micropatterned polydimethylsiloxane
achieves high sensitivity and wide pressure range, promising human-like tactile sensation in prosthetic and robotic systems [36]
b) a smart glove equipped with piezoelectric sensors is utilized for hand movement detection. A network predicts movement
states from the sensor data, enabling approximation of joint angles for virtual hand implementation [57]. c) Advancements in
flexible sensing technology, coupled with machine learning, drive innovation in various applications including health monitoring,
human-machine interfaces, and object recognition, promoting the development of artificial flexible mechanical sensing [59] d)
Mechanical Activation of Skin Receptors vs. Machine-Aided Recognition in Artificial Sensor [58]

4.1. AI favoring the all-round growth of sensors,
including those related to biochemical field

The growing interest in the fourth industrial revolution,
characterized by advancements in AI, big data analytics,
the IoT, and robotics, has reached unprecedented levels
[60]. AI encompasses a collection of technologies that en-
able computers to emulate human-like thinking, decision-
making, logical reasoning, and language processing. Figure
2(c)-(e) demonstrates how the continual development in AI
techniques significantly impacts the progress of biosensors.
While the illustrations are for biosensors, the utilization of
AI techniques can impact the advancements of biomimetic
and bioapplicable sensors as well. AI can be leveraged to
enhance the creation of more precise biosensor models,
facilitate biomarker detection, and design improved algo-
rithms for data analysis. In recent years, AI has expanded
into various subfields, including deep learning, machine
learning, neural networks, robotics, the IoT, and digital
twins, finding applications in diverse domains. This contin-
ual development in AI will have a profound influence on the
evolutionary design of biosensors. One key component of
AI, machine learning (ML), has emerged as a valuable tool

in materials science for data processing and analysis [61].
ML has the potential to offer innovative solutions to address
challenges faced by biosensors. Moreover, it can enable the
transformation of conventional biosensors into intelligent
biosensors by incorporating decision-making systems that
can automatically predict analyte species or concentrations.
Machine learning algorithms, particularly neural networks,
have been successfully applied in physical sensing systems
such as strain and acceleration sensors for several years.
They have played a significant role in gesture recognition
[62], activity recognition [63], and object identification,
showcasing the broad applicability of machine learning in
sensor technologies.
4.2. Sensing and artificial intelligence:

technologies in symbiosis
Continuous academic and industrial research efforts are

focused on advancing the field of biosensors for monitoring
in real-time. AI has emerged as a powerful tool to im-
prove the efficiency and effectiveness of biosensors [64].
They have proven to be effective in improving biosensor
performance in various aspects, such as signal processing,
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data analysis, and decision-making. For instance, by em-
ploying a combination of AI techniques such as wavelet
transform and artificial neural networks, researchers were
able to optimize the signal-to-noise ratio of a biosensor
designed for glucose level detection. The application of
these AI algorithms significantly reduced noise interference,
resulting in enhanced accuracy whenmeasuring glucose lev-
els [65]. AI-based algorithms (e.g. glucose prediction algo-
rithm, calibration algorithm) have a far-reaching potential in
terms of the advancement of continuous glucose monitoring
(CGM) sensors [66], and this can be useful for diabetes
management. The advancement of artificial intelligence has
resulted in significant economic benefits for humankind and
has positively impacted all areas of life. Additionally, it has
dramatically promoted social development, ushering in a
new era of progress [67]. Globally, there is a lot of concern
about the safety and security of the environment. Scien-
tists are exploring long-lasting methods for environmental
monitoring since controlling toxic substances is crucial for
remedying pollution. Typically, traditional chromatographic
[68, 69, 70] and spectroscopic [71, 72, 73, 74] techniques
are employed to identify pollutants, which are commonly
recognized for their high sensitivity and specificity. Never-
theless, these techniques are time-intensive, require skilled
manpower, and need multiple steps for sample preparation.
The need for advanced biosensing devices arose from the re-
quirement for faster, more precise, and more sensitive means
of detecting and screening pollutants in real-time while also
ensuring selectivity and accuracy. In the development of
biosensors, the complexity of environmental samples must
be taken into account since there is high demand for their use
in technological applications [75, 76, 77]. The utilization of
biosensors is crucial for monitoring the current state of soil,
water, and air samples to identify pollutants such as pes-
ticides, harmful elements, pathogens, toxins, and chemical
compounds that interfere with an endocrine function [78].
Biosensors have undergone rapid and diverse advancements
over the past few decades [79], owing to their capability
to detect an extensive array of analytes such as pollutants,
bacteria, fungi [76]. In the food industry, biosensors have
multiple applications, including nutrient analysis, natural
toxin, and antinutrient detection, food processing monitor-
ing, and the detection of genetically modified organisms.
Generally, Biosensors are used to prevent and minimize the
bacteria or fungus from growing in fresh foods, detection of
spoiled food, and food contamination [80]. Biosensors can
also determine the levels of pesticides, antibiotics, proteins,
B-complex vitamins, and fatty acids present in foods through
enzymatic and immunogenic reactions [81].

The symbiotic relationship between AI and sensors
(biosensors, biomimetic sensors, and bio-applicable sensors)
represents a powerful synergy that drives advancements in
sensor technologies. AI, with its ability to process and ana-
lyze vast amounts of data, provides valuable support to the
sensors [82], enhancing their performance and capabilities.
By harnessing AI algorithms, these sensors can achieve
higher accuracy, sensitivity, and selectivity in detecting

target analytes. The integration of AI techniques, such as
support vector machines and convolutional neural networks
[83], empowers the sensors to learn from data patterns,
enabling them to make informed predictions and decisions.
Furthermore, AI plays a vital role in the development of
intelligent biosensors, and biomimetic and bioapplicable
sensors that can adapt to changing environmental conditions
and optimize their performance for specific applications. In
return, these sensors can offer a rich source of data that fuels
AI algorithms, enabling them to learn and improve over
time. For example, the studies on human-computer intelli-
gent interactions and intelligent user interface fields, focus-
ing on the intelligent recognition of gestures, emotions, and
facial expressions, are conducted using sensor technologies,
including but not limited to the gyroscope, camera, EEG,
eye tracker, Kinect, and wearable sensors [83]. It could be
said that in the fields of biological and biochemical sciences,
the applications of artificial intelligence also will require
biosensors, biomimetic sensors, and bioapplicable sensors
for the acquisition of data from the sources. This mutually
beneficial relationship between AI and biosensors holds
tremendous potential in various fields, including healthcare,
environmental monitoring, and agriculture, where precise
and real-time sensing is crucial for decision-making and
resource management. As the advancements in AI continue
to unfold, the synergy betweenAI and biosensors is expected
to drive significant innovations and unlock new possibilities
for sensor technologies.

5. How well can the tools of AI be integrated
with biosensors?
By now, it is already apparent that there is a large sym-

biosis between sensing technology and artificial intelligence.
To solve emerging scientific and technological issues, it is
important to ensure that the devices and technologies related
to biosensing are fully integrated with AI. This section sheds
light on some illustrations discussing the overall views on
howwell the integration has been done hitherto, the perspec-
tive on how it can proceed, and what benefits it might offer
to human society. The aspects such as robotics, digital twins,
machine learning, computer vision, text mining, natural
language processing (NLP), etc. that are frequently utilized
for operating the AI-operated hardware will be interlinked
with biosensors in this section.

As already mentioned earlier, Figure 2(c) provides an
overview of the tools of AI that could be utilized for the
advancements of biosensors. It has to be noted that these
tools are also applicable to the advancements of biomimetic
and bio-applicable sensors. The design and discovery of
biosensors are becoming increasingly data-driven, working
in collaboration with various artificial intelligence tech-
niques. In the past few years, there has been an increasing
inclination towards utilizing data-driven approaches for the
design and discovery of biosensors, with the incorporation of
artificial intelligence (AI) technologies that aim to enhance
the performance and efficiency of biosensors by improving
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Figure 7: A roadmap illustrating how the action of AI inte-
gration enables conventional biosensors to be transformed into
intelligent biosensors [82, 90]. When a conventional biosensor
(represented by a rightward pointing arrow) meets AI/ML and
IoT (AI + IoT represented by a leftward pointing arrow), then
the performance of biosensors can improve by several folds.
Abilities such as noise reduction, less reliance on receptors, au-
tomated analysis, anomalies detection, signal sorting, improved
efficiency, the establishment of correlationships between bio-
events and signals, etc. can be incorporated into the existing
conventional biosensors through the integration task, and these
sensors are transformed into intelligent sensors (represented
by a yellow colored circle). In particular, this AI integration
helps in the improvement of the sensitivity, specificity, signal
strength, and measurement time of the biosensors. Reproduced
with permission from [82, 90].

accuracy and reducing costs [84]. In the study by [85] the
authors have emphasized diverse AI techniques, such as ma-
chine learning, deep learning, and network analysis, utilized
to discover novel biomarkers. This data-driven methodology
enables the identification of appropriate targets for biosensor
development, thereby enhancing diagnostic accuracy and
specificity.

The AI integration with biosensing devices and environ-
ment, as illustrated in Fig. 7, can help in the achievement
of a system characterized by enhanced sensitivity, signal
strength, and specificity as well as a shortened response time
[82]. Biosensors can be integrated via digital methods, such
as pattern analysis and classification algorithms, to close the
gap between data collection and interpretation and increase
the accuracy of diagnostic and therapeutic procedures. Ma-
chine learning (ML) is a branch of AI that offers a method
for understanding large amounts of data [86, 87, 88]. With
the use of computational systems, ML allows an algorithm
to perceive, identify and learn about its surroundings [89],
and this is inherently needed for sensor design. [64].

Aptamers are commonly acknowledged as highly po-
tential recognition elements suitable for implementation in
biosensors. These aptamers offer several benefits over con-
ventional antibodies [91]. Aptameric biosensors employ ap-
tamers as the bioreceptor or sensing element. The integration
of AI plays a vital role in advancing and designing aptamer-
based biosensors. By leveraging AI, it becomes feasible
the identify the most effective aptamer sequences for target
molecules, as well as optimize the conditions for aptamer

binding, such as temperature and buffer pH, to increase the
sensitivity and specificity of the biosensor. Machine learning
algorithms can be applied for analyzing extensive datasets
containing aptamer-binding information, which can identify
patterns and connections, leading to the development of
biosensors exhibiting improved accuracy, sensitivity, and
selectivity in a wide range of applications, including health-
care, environmental monitoring, and food safety testing. [92]
Chitin-based biosensors can benefit from the application
of computational intelligence to enhance their precision,
sensitivity, and overall performance. Through the use of
AI algorithms, these biosensors can effectively process the
vast amounts of data generated during the detection process,
identify trends and irregularities, and achieve quick and
dependable detection of target analytes in a sample. For
the successful design of easy-to-use sensing applications
of these chitin-based sensors, AI is the necessary tool that
will eventually help in the integration of these sensors with
concepts such as the Internet of medical things and the
Internet of nano things [93].
5.1. Artificial intelligence and robotics in

biosensors
In the field of biosensors, AI and robotics play significant

roles, offering substantial contributions and advancements
in various applications. For example, in recent years, there
has been a rapid rise in the application of AI in biosensing,
specifically in automating the monitoring and analysis of
data. AI algorithms can be used to detect anomalies in
biosensor data [90, 94, 95] and alert the user if it falls outside
of a certain range. Additionally, AI can be used to interpret
the data and provide personalized health advice [96] based
on the individual’s unique health metrics. Robotics can be
used to control biosensors remotely, allowing for remote
monitoring and intervention. Tiboni et al. [97] highlight
the application of robotic sensors inmeasuring physiological
signals like electromyography (EMG), electroencephalog-
raphy (EEG), and electrocardiography (ECG) where these
signals provide valuable information about the individual’s
physiological state and enable real-time health monitoring.
Similarly, Dahiya et al.[98] highlights the advancement of
tactile sensors for robots, designed to replicate the sensing
capabilities of human skin where these sensors allow robots
to effectively recognize and respond to various tactile sensa-
tions like touch and pressure, which holds vast potential for
applications in areas such as prosthetics, robotics, interac-
tions between humans and robots and so on. Likewise, by
mimicking the human sense of taste and providing accu-
rate assessments of taste attributes, biosensing robots play
a significant role in taste discrimination in food samples.
They use a variety of methods, including chemical sensing,
machine learning, and data analysis, to identify and analyze
the chemical elements found in food samples and assess
their flavor attributes by offering precise measurements and
eliminating subjective biases associated with human sensory
panels in the food industry [99].
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5.2. Machine learning and sensing technology
The effectiveness and accuracy of biosensors are en-

hanced by the use of suitable machine-learning algorithms.
Numerous machine learning algorithms such as decision
trees, support vector machine (SVM), Naive Bayes(NB), K-
nearest neighbors (KNN), artificial neural network (ANN),
deep neural network (DNN), convolutional neural network
(CNN), random forest (RF), recurrent neural network (RNN),
eXtreme Gradient Boosting (XGBoost) and many more,
have been developed to processed data. ANN using a back
propagation algorithm can also be called a back propaga-
tion neural network (BPNN). Since a few years ago, ML
algorithms, particularly neural networks, have been used
in physical sensing systems (such as strain sensors and
acceleration sensors) and have achieved advancements in
the recognition of gestures [62], activity identification [63],
and object detection [100]. Dimension reduction, feature
extraction, picture recognition, classification, and prediction
are a few examples of the various data processing and
analysis phases that can be improved with the use of ML
techniques. In order to further enhance the performance of
biosensors used in the health sector, disease identification,
environment monitoring, food safety, and analysis, machine
learning (ML) algorithms may effectively transform unin-
telligible raw data into understandable and valuable infor-
mation [87]. Machine learning can be broadly characterized
as an algorithmic strategy for assessing sensor data and
extracting valuable information using statistical techniques
from the standpoint of biosensor applications [101]. Ma-
chine learning can directly, automatically, precisely, and
quickly support biosensor readout, which is crucial for on-
site detection or diagnosis. The Orringer group created an
optical imaging technique that uses the CNN algorithm to
anticipate the diagnostic test results [102]. A 1DCNNmodel
was created by Lussier et al.[103] to evaluate chemical
spectra for multiplexing SERS sensing which has two layers
of convolutional, pooling, and densely coupled neurons.
Figure 3 illustrates that, by integration of AI and ML tech-
nologies, biosensors can be designed to automatically learn
and categorize specific patterns in sensor data, allowing for
more precise and accurate detection of target molecules by
improving specificity and reliability.

Table 1 summarizes a list of applications for ML algo-
rithms integrated sensor devices in the two broadly defined
categories: (a) health and safety; (b) agriculture and envi-
ronment. It is to be noted that the algorithms such as ANN,
SVM,BPNN, RF, XGBoost, RNN and LSTMare commonly
employed for the design of sensors broadly utilized in the
healthcare and safety sectors [104, 105, 106, 107, 108,
109, 110, 111]. ANN, DNN and RNN are also commonly
employed in agricultural and environmental sectors [112,
113, 114].
5.3. Digital twins and real-time data

Digital twins (DTs) are an emerging and effectivemethod
for real-time interaction and further convergence between
physical space and information space. It is a concept that

refers to the ability to simulate and analyze the behavior
of physical objects in the digital world. They are created
by capturing real-world data and then using that data to
create a digital model that can be used to simulate, analyze,
and monitor the behavior of the physical object in various
contexts. Likewise, they have been used in a variety of fields
includingmanufacturing, healthcare, automotive, aerospace,
and consumer electronics [115, 116].

DTs are becoming increasingly important for the design
and optimization of biosensors by evaluating their perfor-
mance and accuracy, and identifying potential issues before
they arise. Biosensors with applications of digital twins are
becoming increasingly popular in a variety of industries,
as they can provide real-time insights into the performance
of biosensors enabling advanced monitoring, analysis, and
optimization capabilities [117]. By integrating data from
physical sensors with virtual models they provide real-time
monitoring of biosensor performance allowing continuous
assessment of the sensor’s condition, enabling early iden-
tification of anomalies, and anticipating possible errors.
With this information, proactive maintenance can be imple-
mented, ensuring the reliable and durable performance of the
biosensor [118].

In addition, the machine learning (ML) aspect of AI
enables prediction or decision-making from heterogeneous
digital data [119]. The concept of the digital twin in the
healthcare industry was originally proposed and first used in
product or equipment prognostics [118]. Angulo et al. [120]
introduced a general-purpose proposal for creating DTs that
apply to the health field, specifically lung cancer patients.
In adopting DTs to specifically protect against COVID-19
in infected patients, Laubenbacher et al. [121] discussed
how medical DTs are beneficial to mitigate COVID-19 viral
infection and any future pandemic. Furthermore, they were
concerned with combining medical DT with a mechanistic
understanding of the physiology and viral replication and AI
techniques for optimizing the treatment of patients infected
with a virus.
5.4. Computer vision to upgrade automation

capabilities of biosensors
Computer vision is a field of artificial intelligence that

uses image processing and machine learning algorithms to
analyze images and videos to identify objects, detect pat-
terns, and recognize faces, among other tasks. Principally, it
works by extracting features from an image or video, such as
edges, shapes, and colors, and then using machine learning
algorithms to identify patterns in these features. Machine vi-
sion can be used in the design and development of biosensors
to detect and analyze biological signals. Computer vision
and automation have become essential for advancing in the
field of biosensors, facilitating the creation of effective and
advanced sensing systems which enhance their overall per-
formance and capabilities by improving signal acquisition,
data processing, and decision-making processes [122, 123].

In the study,[124, 125] the authors provide a compre-
hensive review and analysis of computer vision and image
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Table 1
List of machine learning algorithms employed along with the sensing devices in various sectors. The health and safety sector includes
many sub-sectors including medicine, disease treatment, food-safety engineering etc., whereas other applications exclusively
associated with the agriculture and environment sectors are grouped into a separate sector.

Sectors Sensors/
Measurement tasks ML Algorithm Applications Ref.

Electronic nose, gas
sensors arrays ANN Olfactory system’s mechanism for odor classification [104]

Gold-nanoparticle sen-
sor SVM Using breath samples for effective differentiation of differ-

ent stages of chronic kidney disease (CKD). [105]

Arterial Pressure ANN Hypertension management and its potential to generate
evidence for effective treatment [106]

MOS gas sensor
BPNN,
RF, SVM,
XGBoost

Analyzing and classifying various properties of wines. [107]

Health
and
Safety

Glucose level RNN Instantaneous categorization of individuals with diabetes
and prediction of future blood glucose levels [108]

Electronic nose ANN Differentiating lung cancer patients from healthy individ-
uals via exhaled breath’s (VOC) patterns. [109]

Accelerometers RNN, LSTM Recognition of human activities, detection of falls, and
classification of sleep stages. [110]

MOx gas sensor SVM Detecting and forecasting the existence of adulterants in
contaminated milk. [111]

Soil moisture sensors,
spectral sensors DNN, RF Crop classification, disease detection, yield prediction. [112]

Agriculture
and Envi-
ronment

Environmental sensors CNN Predicting of Air Pollution [113]

Electrochemical
biosensor ANN Recognizing contaminants (e.g. heavy metal salts, pesti-

cides, petrochemicals) in water sources. [114]

analysis studies focusing on the automated detection of
malaria parasites in blood smear images where these works
involve training machine learning algorithms to classify
the presence of malaria parasites. By integrating computer
vision techniques and automation, the diagnosis of malaria
becomes faster and more accurate, thereby improving the
effectiveness of biosensors in detecting and combating this
disease Likewise, Suzito et al [126] have applied the prin-
ciples of computer vision for pH detection using a But-
terfly pea flower biosensor. Machine learning algorithms
implementing computer vision can be considered promising
techniques for the detection, stratification, and classification
of biological cells [127].
5.5. Inventing interactive biosensors with

techniques employing text mining and NLP
An automated method that extracts important informa-

tion from unstructured text with the help of natural language
processing is referred to as text mining. By using machine
learning and natural language processing, it finds trends
and patterns in unstructured text data. Text mining has the
potential to be used extensively in the fields of biochemical
sciences and engineering. It is to be noted that text mining
and knowledge discovery from biomedical literature plays
vital roles in many areas including but not limited to drug

discovery, clinical therapy, development of biosensors, bi-
ological sensors, and bioapplicable sensors, pathology re-
search, etc [128, 129]. Generative AI is a powerful tool that
utilizes the methodologies of text mining and thereafter uses
it in discovering useful biodomain sensors.

Natural Language Processing (NLP) is one of the pow-
erful artificial intelligence and linguistics tools that is con-
cerned with the interplay between human and computer
language. This technology has largely gained popularity in
analyzing, understanding, and generating human language,
allowing a natural way of communication between humans
and computers [130]. In the context of biosensors, NLP
can be incorporated in analyzing a significant amount of
data and extracting desired information from it [131]. It has
also been applied in biosensors to enhance the correctness
of their readings [132]. NLP can be used to interpret the
data collected by the sensors (including biosensors) and to
provide insights into the data that would not be visible from
raw readings. For example, NLP applied to biosensor data
of body temperature, heart rate, etc. can, analyze contextual
information for deeper insights, detect anomalies indicating
potential health issues, identify trends and patterns over
time, incorporate textual or voice inputs to understand the
context, and provide a comprehensive health assessment,
etc. Thus, NLP can be used to identify patterns in speech or
text that may be indicative of certain health conditions and
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alert the user. Such identifications help in detecting changes
in data over time, allowing the user to identify potential
problems before they become quite serious. In addition to
these applications, NLP can also be used to generate rec-
ommendations and offer personalized advice based on the
data collected by not only the biosensors but also the bio-
inspired sensors and bio-applicable sensors [133, 134]. As a
computer-driven approach to facilitate human language pro-
cessing [135], the adoption of the NLP techniques for clini-
cal information processing has been popular for decades.

6. Notable insights on data-driven sensing
technology applications for biosensors as
well as biomimetic and bioapplicable
sensors
Sensors have played a pivotal role in the emulation of

various human sensory modalities, thereby facilitating the
creation of digital counterparts. Notably, the advancements
in technology have enabled the integration of bioinspired
algorithms mimicking biological sensory recognition pro-
cesses into our daily routines, manifesting in the form of
diverse applications. Delving into the realm of biosensors,
these bioinspired techniques can be classified according
to their association with the fundamental human senses,
namely tactile perception, visual processing, olfaction, and
gustation, as elucidated by Del Valle et al.[136]. To obtain
methodological insights into biomimetic sensors, it is neces-
sary to have a proper understanding of the analogies between
the actual physical phenomena and the response of the
sensors. By studying the sensors associated with mimicking
the behavior of human sense organs such as touch, vision,
taste, and smell; it will be easier to understand the analogies.

In the context of various fields, including but not lim-
ited to pharmaceutics, forensics, environmental monitoring,
healthcare, food safety, and agriculture, bioinspired, biosen-
sors, and bioapplicable sensors have proven to be incredibly
applicable. While the potential applications of the sensing
procedures for biochemical fields are of large numbers, this
section will provide a succinct overview of some notable
applications:
6.1. Tactile and vision applications of biomimetic

sensors
Perception, a cognitive process, helps the brain organize,

sort, and understand external stimuli acquired by the abun-
dant sensory organs of humans and higher animals, such as
vision, hearing taste, touch, smell, and intuition. The concept
of tactile and vision perception narrows down to the fields of
vision and touch. Within the field of smart sensor technolo-
gies, there has been considerable focus on developing tactile-
based and optical-based transduction methods, as these two
senses (touch and vision) are crucial for human learning and
interaction with the surrounding environment [137]. Tactile
sensors are typically configured in the form of force sensor
arrays that are designed to replicate the characteristics of

human skin [136]. The distinctive characteristics of tac-
tile and vision-sensing technologies enable them to detect
different types of information. Tactile sensors can identify
physical properties like pressure and texture, whereas vision
sensors can analyze properties such as color and shape.
These technologies are versatile and can be used for vari-
ous tasks, including object recognition [138, 139], human
behavior analysis [140], and 3D information reconstruction
[141, 142]. In the study by Luo et al [138], a recognition
rate of 91.33 % has been obtained for the machine learning
techniques associated with the Tactile-SIFT descriptor. Ito
et al. [141] have clearly highlighted that in the condition
of the availability of sufficient data, machine learning can
be successfully applied for computer vision-based tactile
sensing and shape prediction. Such a perspective provides
an enormous futuristic potential for AI in shaping the design
and applications of the biochemical sensor. Intelligent tactile
and vision perception systems using flexible sensors with
AI-driven ML algorithms have the potential to match or
surpass human perception by accurately processing and rec-
ognizing external information, but the challenges of working
on dynamic and irregular surfaces have been addressed
via the introduction of functional materials and innovative
structures, opening up new opportunities for AI development
[143]. Flexible biomimetic sensing technology improved by
advances in materials and sensing mechanisms, augmenting
data interpretation capabilities via machine learning makes
possible the realization of hyperconnected smart societies,
by implementing smart sensors to improve productivity,
health monitoring, human-machine interfaces, object or sur-
face recognition, pressure prediction, and human posture or
motion identification [144]. Qu et al. [145] have highlighted
that artificial intelligence plays a critical role in enabling
accurate identification of material type and roughness for
tactile perception sensors developed using a smart finger
with triboelectric sensing and machine learning integration.
The triboelectric sensor array’s construction in the context
of the AI-guided tactile perception smart finger model [145]
alsowas observed to increase the accuracy rate of identifying
material types and roughness to 96.8 %. It is noteworthy to
mention that the smart finger models could easily overcome
the challenges faced by traditional artificial haptic-based
tactile sensing technology. These all studies highlight the
vital role data science and machine learning play in the
design of sensors for vision and tactile applications.
6.2. Olfaction and gustation system sensing via

biomimicry
The utilization of biosensors as a novel method is be-

coming more popular in the exploration of taste and smell
sensing mechanisms, as well as investigations of ligands and
modulators. These biosensors are usually created through
the amalgamation of functional biological components from
taste and olfactory systems with diverse transducers [146,
147]. A new type of electronic device called an electronic
nose (or e-nose), has been developed to mimic the human
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Figure 8: Comparison between the biological gustatory system
and electronic tongue (e-tongue) technology. In the context
of the biological gustatory system (left portion of the figure),
the bioreceptors located in the tongue first acquire the data
about the taste, and this data is transferred via neurons to the
brain where it is processed and analyzed. Then the individual
recognizes the taste type or category. Presented on the right
side of the figure is the AI-aided biomimetic sensor system. This
sensor system known as e-tongue employs signal generators to
generate electrical signals of different profiles corresponding to
the input taste type, signal processing devices (data processors)
to enable the signals readable by a machine learning algorithm,
and the ANN to analyze the machine-readable data. The
activation function in the output layer of ANN defines it as
a classifier model so that it can quantitatively describe the
type of taste through the computer system. e-tongue can also
be constructed by replacing ANN with other machine learning
models such as support vector machine and random forest.

olfactory recognition system by utilizing an array of elec-
tronic sensors which is gaining popularity as a prominent
example of an artificial olfactory system [148]. The devel-
opment of electronic noses has been made possible due to
the advancement in aroma-sensor technology, electronics,
biochemistry, and artificial intelligence, which can measure
and characterize volatile scents emitted from various sources
for a variety of purposes. These devices were designed to
imitate the mammalian olfactory system, which can generate
consistent measurements and allow for the identification and
categorization of fragrance combinations while removing
the need for human operators to avoid exhaustion [149, 150,

151, 152, 153, 154]. In order to enhance the performance of
these biosensors, computational neural networkmodels have
been utilized in combination with biosensing techniques.
One example is the application of K-serial models, which are
non-linear neuronal network models based on the concept of
groups of nerve cells, as components of neuronal networks
at various anatomical levels of olfactory systems [155].
Usually, an electronic nose setup comprises a collection of
sensors, an information processing unit like an ANN, digital
pattern-recognition algorithms embedded in software, and
reference-library databases [156, 157, 158, 159]. An ANN
was developed byWang et al. based on the olfactory system’s
mechanism for classifying odors [104]. Electronic noses
have a wide range of applications in various fields such as the
food and beverage industry, quality control, environmental
monitoring, medical diagnostics, and many more. In the
context of cancer research, E-nose tools are frequently used
to search for a typical "breath print" that can, at a prelimi-
nary level, distinguish between cancer patients and healthy
controls, and, if fruitful, to compare the exhaled breath
composition of various groups of cancer patients according
to the severity of their condition [105]. This method could
detect cancer at an early stage by looking at the unbalance
in breath composition. This would open the door for a less
invasive replacement for the pricey, inconvenient, and intru-
sive technologies currently employed for this purpose [160].
Compared to the laborious and inconvenient techniques of
gas chromatography-mass spectrometry the electronic nose
(E-nose) device is cost-effective and convenient and can
detect low levels of volatile metabolites linked to various
conditions and differentiate between them without requiring
the identification of individual chemical compounds [161,
162]. Jiang et al utilized the RandomForests (RFs) algorithm
to construct regression models and predict fatty acid profiles
of pecans. Based on their findings, they concluded that RF
could be a highly effective method for analyzing electronic
nose (e-nose) data [163].

Similarly, the electronic tongue is designed to imitate
the functions of the human tongue to detect taste sensa-
tions which are achieved by utilizing sensor arrays that are
combined with chemometrics to detect and measure the
presence of dissolved substances in liquid sample [164].
A comparison between the biological gustation system and
Electronic tongue technology is demonstrated in figure 8.
In the biological gustatory system, the taste receptors detect
taste, which is then processed and then the taste is identified
in the brain’s olfactory cortex through the neurons. Similarly,
in electronic tongue technology, an electronic sensor array
detects taste, which is then processed through a preprocessor
for feature extraction, and then analyzed using artificial
intelligence (data analysis, pattern recognition, and machine
learning algorithms) through an Artificial Neural network to
identify and classify the input taste using extracted digital
signatures [165].
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6.3. In food processing, awareness, quality, and
safety

For quality assurance and control objectives, biosensors
have been widely used in the food sector. The current food
sector faces a serious problem with food safety. The food
chain can be contaminated with pathogens, toxins, aller-
gens, etc., during different steps of production as they may
build up in food while it is being stored or may even be
created in the food through chemical reactions [166]. Food
components with ultra-low concentrations can be detected
using biosensors in a way that is highly sensitive, exact, and
selective. After food production is complete, conventional
techniques such as chromatography, mass spectrometry, ul-
traviolet detection, or fluorescence techniques are used to
analyze the product [167, 168]. These conventional methods
have a number of drawbacks. The first issue is that because
the analysis is done at the end of the process, tainted products
may go through the entire production chain or even be sold
before contamination is discovered. Second, these analysis
techniques are time-consuming, expensive, labor-intensive,
call for huge sample quantities, and demand specialized staff
[169]. A potential substitute that would enable food samples
to be screened before the production process is complete is
provided by biosensors[169]. Additionally, biosensors offer
quick on-site monitoring and current data regarding the
manufacturing process [170].

The objective of Eyvazi et al [171] study is to dis-
cuss the recent advances in designing and utilizing portable
biosensors for the identification of biological contaminants
in food, including bacteria, fungi, and related toxins. These
pathogenic microorganisms can proliferate in food without
any apparent alterations in smell, appearance, or flavor,
potentially reaching harmful levels.

A quick and effective biosensor was created by Korecka
et al [172] to screen milk samples for Salmonella contami-
nation. Bacterial cells were isolated using immunomagnetic,
and then a conjugate, or particular IgG molecule labeled
with an electrochemical indicator, was used in the procedure
afterward. Liu et al [107] utilized multiple machine learning
(ML) algorithms to analyze and classify various properties
of wine by processing data obtained from metal oxide semi-
conductor sensors. After testing several algorithms, SVM
showed the highest performance in classifying different wine
vintages and fermentation processes. Similarly, researchers
have conducted a specific study where they developed an
algorithm that leveraged hyperspectral imaging to identify
and detect fecal contamination on leafy greens [173]. Vari-
ous ML algorithms including Bayesian network, regression,
decision tree, clustering, deep learning, and artificial neural
networks are employed in predicting crop yield [174, 175,
176]. Additionally, Arora and Mangipudi [177] introduced
the use of support vector machine classifiers and artificial
neural network models for identifying the nitrosamine pres-
ence in red meat food samples where their analysis of the
predictive modeling results revealed that the deep learning
model achieved the highest testing accuracy among the
different models considered.

6.4. Disease diagnoses and health monitoring
With the current state of healthcare, the use of biosen-

sor technology in healthcare applications has the potential
to improve the efficiency of diagnostic and treatment pro-
cesses. Artificial intelligence (AI) techniques ranging from
machine learning to deep learning play a critical role in
many health-related fields, such as enhancing new clinical
systems, managing patient information and records, and
diagnosing different diseases [178, 179]. Diagnostic tech-
nologies, which underpin nearly 70% of medical decisions,
are one of the market’s major segments for biosensors [180].
Furthermore, AI and biosensors advance medical and life
sciences. The application of medical imaging enhances diag-
nostics and personalized treatments through ML analysis of
vast datasets. Integrated into IoT, biosensors enable real-time
monitoring of physiological and chemical signals, supported
by accelerated AI and edge computing [181].

Biosensors-based IoT networking systems have become
increasingly important in digital healthcare in recent times.
IOT-based systems like AI-assisted wearable biosensor net-
works (WAIBN), biosensors, electronic health records, Re-
mote patientmonitoring(RPM), predictive analytics, blockchain-
based systems, and virtual health care portals [182] are
introducing a comprehensive and innovative approach to
patient care, through these systems it enables real-time
monitoring and effective management of patient health and
has the potential to revolutionize patient treatment and
improve patient outcomes [183]. Figure 9 illustrates the
overview of the implementation of IoT biomedical sensors
and biosensors networks to optimize artificial intelligence
systems in addressing healthcare issues, where multiple
sensors including ECG, body temperature, blood sugar,
glucose, EEG, airflow, body position, EMG, and galvanic
skin sensors are incorporated into each of three implemented
IOT sensor nodes. Data is collected from the patient by these
sensor nodes and transmitted to the database server through
the aid of sink nodes. Both the doctor’s monitoring devices
and the prescription system are linked to the database server.
Once the server receives the relevant patient information
associated with the patient ID, the doctor can suggest an
appropriate prescription for the specific patient [182].

The increasing prevalence of diabetes in healthcare
makes it crucial to regularly monitor blood glucose levels.
An AI-based system was created by Khanam et al. [184]
to precisely detect human glucose levels, using five input
features including age, pregnancy, bodymass index, glucose,
and insulin levels to train the system. The data set was eval-
uated using machine learning algorithms such as RF, NN,
DT, and KNN with hidden layers. The results demonstrated
that all models provided an accurate measure of glucose,
with a precision exceeding 70 % [184]. Kim et al developed
a wearable biosensor that can simultaneously monitor both
the glucose level in the interstitial fluid (ISF) and the alcohol
level in sweat. By utilizing the anode to trigger sweat
secretion and the cathode to extract the ISF, the biosensor
functions as a unified tool that can measure both substances
concurrently [185]. As the effectiveness of AI-integrated
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Figure 9: An overview of the implementation of IoT biomedical sensors and biosensor networks to optimize artificial intelligence
systems in addressing healthcare issues. The prescription system and sink nodes are connected via the internet to the Database
server in real-time. This image is adapted from Khan et al. [182].

CGM biosensors can be very good [66], future research
works need to be aimed at designing WAIBN. Designing
compact physiological sensors using computational (ML)
approaches is challenging, typically relying on heuristics
and expert training. This has been achieved by creating
ultrathin skin-conformal patches and interactive textiles cap-
turing sEMG, EDA, and ECG signals [186, 187]. Similarly,
the development of a liver disease prediction model by
Wu et al. [188] involved the use of four distinct machine
learning algorithms (RF, NB, ANN, and linear regression).
Among these algorithms, the RF classifier produced the
most accurate results, achieving a top accuracy rate of 87.48
%. Nam et al presented the Internet of Things concepts
and digital biomarkers and explored their connections with
current trends, including artificial intelligence. Furthermore,
they explored how artificial intelligence could potentially
contribute to leveraging IoT for the identification of chronic
illnesses [189].

In their recent studies (Srinivasu et al., [190, 191]), a
successful approach was introduced to aid physicians in
diagnosing skin ailments more efficiently. By incorporating

MobileNet V2 and Long Short Term Memory (LSTM) into
neural networks, the model attained an accuracy rate of 85%,
surpassing other advanced deep learning neural network
models. The technique employed by this system allowed
for the analysis, processing, and organization of image data
based on multiple characteristics, resulting in increased pre-
cision and faster outcomes when compared to conventional
methodologies.

Koshimizu et al.(2020) [106] have presented the appli-
cation of artificial intelligence in managing pulse or blood
pressure. They utilized large-scale data to predict the like-
lihood of high blood pressure and highlighted the use of
an ANN to control blood pressure. Their study aimed to
demonstrate the benefits of using an ANN in hypertension
management and its potential to generate medical evidence
for the effective treatment of high blood pressure. Due to the
abilities of large-scale data analysis and pattern recognition,
ANNs can predict future outcomes by leveraging past pa-
tient data and forecasting the probability of complications,
disease advancement, or the response to specific treatments
[192].
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The growing interest in maintaining a healthy lifestyle
and improving overall well-being has led to a surge in
research and development of wearable biosensing tech-
nologies from both the academic and industrial sectors
[193, 194]. There is currently a strong focus on integrat-
ing WAIBN, primarily due to their excellent abilities in
denoising, pattern recognition, and detecting abnormalities
[195, 196, 197].

Numerous recent studies have shown that analyzing
cancer-associated biomarkers in a patient’s bodily fluids has
the potential to enable early detection of cancer [198, 199,
200]. Biosensor devices, which comprise a biorecognition
element and a transducer, can be utilized to detect biomark-
ers for diagnosing specific diseases [201, 202]. Within
this framework, point-of-care (POC) biosensors are quick,
sensitive, portable, user-friendly, affordable, and precise
devices that can identify cancer cells even before the onset
of symptoms [203, 204]. Likewise, Identifying different
types of cancer at an early stage increases the likelihood of
effective treatment, resulting in a greater chance of survival
and decreased mortality rates. Additionally, it provides more
economical treatment alternatives [205, 206, 207, 208, 209].
Among women, breast cancer poses a serious health risk.
Worldwide, breast cancer is the fourth leading cause of
cancer deaths in women, making it the most prevalent
type of cancer [210]. Alsharif [211] has provided an in-
depth review on the topic of medical applications of con-
ventional computer-aided detection systems and AI-based
technologies in the sector of breast imaging. The main
emphasis of the article is on identifying, segmenting, and
categorizing lesions, as well as analyzing breast density and
evaluating the risk of cancer. Vashistha et al. [212] have
mentioned that artificial intelligence approaches are at the
center when it comes to the design of futuristic biosensors
for cardiac health care. Figure 10 presents a concept of
how the biosensors, biomarkers, and AI technique can be
integrated to perform the holistic diagnosis of cardiovascular
diseases and conditions [212]. The bio-receptors present in
the biosensors can interact with the analyte and recognize it.
As biomarkers can provide information about the specific
state of cardiovascular health, the changes in their levels
in the samples (urine, blood, sweat, serum, tears, etc.) are
detected as an electrical signal. The primary signal data or
collected secondary data is then analyzed with AI technique
(e.g. machine learning) to make a robust prediction (pres-
ence or absence of the particular cardiovascular disease). It
is noteworthy to mention that the utilization of AI can enable
real-time cardiovascular health monitoring tasks.
6.5. In environment monitoring

With the increase in global population and rapid cli-
mate change, there is a growing requirement for affordable
and straightforward biosensors to monitor the environment.
Standalone conventional analytical methods such as gas and
liquid chromatography often face significant challenges in
terms of time and expense, which limits their frequent ap-
plication. In this context, bio-applicable sensors can present

themselves as supportive tools to the existing analytical
methods for environmental monitoring applications, due to
their ability to detect analytes in complex matrices with high
sensitivity and specificity in a relatively short time and at a
reasonable cost. Pollutants exist in various forms, including
chemical, physical, biological, and radiological compounds,
and have a widespread presence in the environment, includ-
ing the air, soil, andwater. These pollutants have a significant
impact on all living systems, particularly human health, and
life, and can cause a range of adverse health effects [213].
One way to monitor environmental pollutants is through
the use of specialized biosensors that employ a physical or
chemical transducer coupled with a biological or biomimetic
component capable of binding the analyte in a reversible
manner where the sensing signals for the targeted pollutants
from the sample are generated qualitatively and quantita-
tively by the detector, which identifies and converts the
resulting reactions [214, 76]. Human activities and techno-
logical advancement have resulted in a variety of chemi-
cals and by-products being released into the environment.
These substances, such as pesticides, heavy metals [215],
nitrate compounds [216], and polycyclic aromatic hydro-
carbons(PAHs) are well-known environmental pollutants
[217] that can harm the environment. Recent developments
in biosensors have led to the creation of whole-cell metal
biosensors for detecting heavy metals. A whole-cell metal
biosensor is a specialized biosensor that employs living
cells usually microorganisms like bacteria, which have been
genetically modified to detect and quantify the presence or
level of metal ions and are developed based on the metal
stress signal/transduction pathways found in bacteria within
the cells and are used in various applications, including
environmental monitoring, industrial processes, by detecting
and monitoring of metal contaminants [218, 219]. These
biosensors react solely to the fraction of metal ions that
are present, as demonstrated by Ivask et al. [220] who
used a recombinant luminescent bacterial sensor. Belaidi
et al [221] took the initial strides in creating a biosensor
that utilizes two detection mechanisms. Their innovative
approach involved combining electrochemical and optical
detection techniques and relied on distinct responses from
various algae to identify pesticides present in water samples.
The results were encouraging, prompting the development
of a biosensor mimicking this design, with the ability to
identify multiple pollutants concurrently. The introduction
of dual detection mechanisms in biosensors represents a
significant advancement in environmental monitoring, fa-
cilitating faster and more precise detection of pollutants in
various matrices such as soil and air.

In a study by [222], researchers have explored the classi-
fication of water contamination, categorizing water as either
clean or polluted, through the utilization of machine learning
techniques and IoT devices. The study presented a real-time
monitoring system for detecting contamination in water,
although the data collected was limited to a specific area.
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Figure 10: An all-inclusive diagnostic approach utilizing various biomarkers, biosensors, and AI-driven methods is schematically
sketched in the figure. [212]. As shown in the top-right of the figure, the bio-receptors (enzymes, tissues, antibodies, cell receptors,
etc.) present in the biosensors interact with the analyte and detect or recognize it. Urine, saliva, blood, sweat, interstitial fluid,
tears, serum, etc. can contain biomarkers providing information about cardiovascular health. The specific changes in the levels
of the biomarkers are quantified as electric signals when measured with sensors driven by thermoelectric, piezoelectric, etc. The
collected primary data from signals or other secondary data is analyzed with ANN, and thus prediction can be made via AI.

The utilization of ML and IoT technologies for water clas-
sification holds great promise in addressing the hazards as-
sociated with waterborne diseases and pollution. This study
highlights the potential of classification techniques to assist
in monitoring efforts by providing precise, cost-effective,
and real-time monitoring of water contamination in a wider
range of water sources. Due to their accuracy, reliability, and
predictive capabilities, ML algorithms can provide insights
into potential changes or fluctuations in water quality and
help in proactive decision-making, allowing stakeholders
to take preventive measures or implement interventions in
advance to aim to uphold or enhance water quality [223].

Figure 11 illustrates a system designed to address sev-
eral challenges associated with environmental monitoring
issues, including temperature, humidity, radiation, dust, and
UV signals [224]. Such environmental monitoring systems
[224] rely on a wireless sensor network (WSN) to create
an interface between IoT devices and data that is captured
by various types of AI-based smart sensors [225, 226]. The
WSN backbone serves as the infrastructure for transmitting
data from the sensors to the IoT devices [224], which allows
for remote monitoring of environmental conditions. The
use of data-driven smart biomimetic sensors, bioapplicable
sensors, including but not limited to image, MEMS, and
wearable sensors [226], and IoT devices are a promising
technology for efficient and accurate environmental moni-
toring, aiding in mitigating environmental risks by enabling

real-time monitoring and analysis of environmental indica-
tors.
6.6. In agriculture

The agriculture sector serves as the foundation of the
modernworldwhich requires ongoing development to achieve
higher levels of productivity and quality. Farmers encounter
several challenges throughout the process of crop produc-
tion, such as crop diseases and pest infestations, inadequate
storage management, and insufficient access to irrigation
and drainage facilities. Research and development efforts are
focused on enhancing the quality and output of agricultural
products through the implementation of "smart farming"
practices, which involve connecting and making agricultural
processes more intelligent [227, 228]. This would require
incorporating digital technologies, such as the IoT, to enable
real-time monitoring and analysis of soil, water, and weather
conditions, as well as pest and disease detection. In the
realm of agriculture, AI is an emerging technology that
has taken today’s agriculture system to a different level.
AI technology is being utilized to aid in the prompt de-
tection and identification of pest infestations, illness, and
nutrient deficiencies in farms [229, 230]. By implementing
AI technology as part of agricultural practices, farmers can
access almost real-time monitoring of potential problems,
facilitating improved crop yields and reducing the use of
unnecessary chemicals, leading to more sustainable farming
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Figure 11: The image depicts a Smart Environment Monitoring (SEM) system that tackles multiple environmental issues through
the application of wireless sensor networks (WSNs) and IoT devices [224]. As depicted in the inset, heterogeneous gas sensors,
humidity sensors, temperature sensors, infrared sensors, dust sensors, and UV sensors are some of the commonly utilized sensors
in an SEM system.

practices [231]. Sohrabi et. al [232] reviewed the recent
advancement in sensing assays that utilize metal-organic
framework (MOF) structures for the detection of pesticides.

7. Challenges and Future Directions
Exploration of the current state-of-the-art ML-enabled

biosensors necessitates a nuanced discussion encompass-
ing both hindrances and avenues for advancement. Current
communication technologies potentially applied in wear-
able biosensors are Bluetooth, NFC, and the 5G cellular
network [233]. The adoption of AI-assisted biosensors in
human applications highlights the importance of digital
literacy, particularly for elderly populations. Despite the
benefits, digital literacy and visual impairments hinder the
widespread acceptance of WAIBN [234, 235]. To tackle
this challenge, the trend is shifting from sensors needing
user input to those that work with fewer interactions. This
change might help users by making devices less demanding
while still giving accurate feedback [236]. Continued im-
provements in wearables aim to bridge the performance gap
and enhance their role. WAINB combined with telehealth
platforms is poised to reshape how health care is delivered,
requiring teamwork across disciplines. These advancements
envision smart homes equipped with integrated monitor-
ing systems and diverse sensors, aiding residents to live
independently while staying healthy. Such digital health
advancements could extend to assisted living facilities and
hospital-at-home settings, easing caregiving burdens [237].

However, human involvement remains crucial for training,
interpretation, and response to data. Similarly, biosensors
hold potential for agriculture and food industries but face
hurdles. Concerns revolve around toxicity and environmen-
tal impact. Creating portable versions is vital for remote
areas’ accessibility, aiding cost reduction and environment-
induced disease prevention. Affordable and stabilizing bio-
materials like chitosan reduce fabrication costs [238]. While
existing commercial sensors work well few biosensors ad-
dress sustainable agriculture as most focus on common food
contaminants only.

Uncertainty propagation is a problem that arises in every
sector, including the application area of biodomain sensors.
One of the major future directions regarding the utilization
of AI techniques in context of biodomain sensors integrated
with multiphysical models is the task of uncertainty quan-
tification. Multiphysics models integrating diverse physical
phenomena will continue to involve intricate relationships
and interactions. AI sensors, continually monitoring and
adapting parameters using real-time data, will advance these
models [239]. This ongoing dynamic adjustment will further
elevate model accuracy, offering an increasingly realistic
portrayal of the studied systems. The uncertainty quantifi-
cation will be useful in the sector of additive manufacturing
[239, 240] of biomaterials and bioactive materials. AI sen-
sors can collect diverse and high-dimensional data streams.
By integrating this data into multiphysics models [241, 242],
AI can assist in fusing information from various sources,
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potentially improving the validation process of thesemodels.
These data fusion and validation tasks aid in capturing
uncertainties stemming from different data sources and their
interactions within the system. AI-enabled and multiphysics
model governed sensors will be able to facilitate the assess-
ment and quantification of propagated uncertainties . Such
integrated techniques can handle probabilistic analyses, con-
sidering uncertainties in input parameters and their effects
on the model’s output [243]. AI sensors gather continuous
data for real-time model adaptation and prediction, crucial
for identifying anomalies, predicting system behavior, and
suggesting corrective actions. Integrated with multiphysics
models, they forecast potential failures in industrial settings
due to uncertain conditions, allowing timely maintenance.
This capability aids in understanding uncertainty propaga-
tion and designing preventive measures against failures and
accidents [242]. Moreover, AI together with multiphysical
models, when deployed in sensors, can aid in decision-
making by quantifying uncertainties and their potential im-
pacts on outcomes. The information from XAI is valuable
for risk assessment and optimization strategies, enabling
more informed and robust decision-making processes [244].
Currently, the endeavours for uncertainty quantification via
integrated AI- and multiphysical models governed sensors
has been more widespread in areas well beyond biodomain
sensors. In future, efforts will have to made to apply those
concepts in the areas of biodomain sensors.

Challenges persist with interference, calibration, and
long-term monitoring. Despite breakthroughs in biotechnol-
ogy, food safety faces issues like sample preparation and
cost reduction. Robust biosensor construction requires spe-
cific probes and effective probe-label interactions [245]. Fu-
ture biosensors could benefit from nanotech, microfluidics,
smartphones, and wireless tech. Emerging technologies like
blockchain and AI will further enhance biosensors for agri-
culture and food safety [246]. Commercializing biosensors
faces challenges, demanding field trials and user awareness.
Adhering to food regulations poses additional hurdles, as
some manufacturers are hesitant to disclose use, causing
conflicts with consumers [247].

Developing biosensors aligned with Sustainable Devel-
opment Goals (SDGs) for environmental monitoring re-
quires quick and low-impact screening. Recent progress has
enhanced detection, but sustainability, portability, and cost
challenges persist. The use of nanomaterial raises cost as
well as environmental concerns alarming safety exploration.
Practical testing in real environmental conditions and safety
assessments of modified biosensors are crucial for SDG-
aligned applications [248, 249]. Developing Synthetic mi-
crobial community (SynCom) biosensors for diverse envi-
ronments is complex due to understanding microbial physi-
ology and integrating them with IoT. Collaboration for regu-
latory compliance is crucial. Breakthroughs in AI, synthetic
biology, and IoT promise to enhance SynCom biosensing. It
offers real-time applications in agriculture, biotherapeutics,
and environmental monitoring thus emphasizing transfor-
mative potential and advantages over traditional biosensors

[250]. Safety and data privacy are a concern for personal ap-
plications as well as industrial applications of AI-interlinked
sensors. Biosensors gather a lot of data, but the existing de-
vices and technology struggle to handle and protect it. Using
ML gives some advantages, aiding in faster processing and
predicting desired application attributes. However, there are
concerns about keeping this data safe [251]. Remote hacking
is a serious safety concern, potentially risking users’ lives.
Data processing and security are harder for many users due
to lower skills of hi-tech and cognitive aging. Strict rules and
support can help improve confidence and use digital safely
[252]. To fully use digital sensing devices, their accuracy
needs post-processing and validation in large-scale trials.
As an example, WAINB encounters challenges in stability,
accuracy, and scope. They’re affected by ambient conditions
like temperature and humidity, thus demanding better pro-
tective coatings. Improving these sensors involves exploring
new assays to monitor a wider range of biomarkers. Certain
devices perform well compared to standard instruments, like
continuous glucose monitors and vital sign measurements
from WAINB [253].

8. Conclusions
In the era of Industry 4.0, sensing technology has re-

ceived huge significance. The advancement of biosensors,
bioinspired sensors, and bioapplicable sensors can be accel-
erated by integrating them with AI technology. This study
reviews the state-of-the-art models for biomimetic sensors
and biosensors. The synergy between machine learning and
sensing technology showcases immense potential in address-
ing uncertainty through AI-guided sensors in complex mod-
els. In an attempt to enable the complete understanding of
diverse interfaces for the integration of sensing technology
with ML and AI-based technologies, several illustrations
and engineering applications available in the literature are
also reviewed. Among the several paradigms of artificial
intelligence, we outline generative machine learning, digital
twins, computer vision, natural language processing, and
text mining as some of the tools that can be utilized for
supporting or aiding the growth and development of sensing
technology in an accelerated manner.

The pervasive integration of AI techniques across var-
ious devices, from computer vision to e-skin, e-tongue,
and e-nose, signifies a transformative phase in technol-
ogy. Moreover, generative AI’s role in identifying suitable
substrate pairs for specific enzymes highlights its pivotal
role in advancing exploration within this domain. These
advancements collectively underscore a profound trajectory
in technological innovation, offering promising avenues for
enhanced sensor capabilities, uncertainty reduction, and so-
phisticated substrate-enzyme interactions.

This paper also highlights the challenges and prospects
of biosensors integrating machine learning. The challenges
of WAINB are digital literacy and visual impairments. In
agriculture and food industries, biosensors encounter is-
sues of toxicity, sustainability, and long-term monitoring,
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requiring cost-effective and stable materials. Concerns about
privacy, security, and accuracy call for stricter rules and
user confidence. Despite their potential to reshape healthcare
and aid independent living, ensuring precision and durability
remains crucial. With their capacity to produce a substantial
amount of useful data; biosensors, bio-inspired sensors, and
bioapplicable sensors will be considered very important in
the development of robust AI techniques.
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