
HAL Id: hal-04499952
https://hal.science/hal-04499952v1

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing mean changes by maximal ratio statistics
Jovita Gudan, Alfredas Račkauskas, Charles Suquet

To cite this version:
Jovita Gudan, Alfredas Račkauskas, Charles Suquet. Testing mean changes by maximal ratio statis-
tics. Extremes, 2022, 25 (2), pp.257-298. �10.1007/s10687-021-00423-5�. �hal-04499952�

https://hal.science/hal-04499952v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Testing mean changes by maximal ratio statistics

Jovita Gudan · Alfredas Račkauskas ·
Charles Suquet

Received: date / Accepted: date

Abstract We propose a new test statistic MRγ,n for detecting a changed
segment in the mean, at unknown dates, in a regularly varying sample. Our
model supports several alternatives of shifts in the mean, including one change
point, constant, epidemic and linear form of a change. Our aim is to detect
a short length changed segment `∗, assuming `∗/n to be small as the sample
size n is large. MRγ,n is built by taking maximal ratios of weighted moving
sums statistics of four sub-samples. An important feature of MRγ,n is to be
scale free. We obtain the limiting distribution of ratio statistics under the null
hypothesis as well as their consistency under the alternative. These results are
extended from i.i.d. samples under H0 to some dependent samples. To sup-
plement theoretical results, empirical illustrations are provided by generating
samples from symmetrized Pareto and Log-Gamma distributions.

Keywords change-point detection · changed segment in the mean · epidemic
change · Hölder norm statistics · regularly varying random variables · scan
statistics

Mathematics Subject Classification (2010) 62G10 · 60F17

This research is supported by the Research Council of Lithuania, grant No. S-MIP-17-76.
All estimates were obtained using the software R.

J. Gudan (corresponding author)
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225
Vilnius, Lithuania.
E-mail: jovita.gudan@mif.vu.lt

A. Račkauskas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225
Vilnius, Lithuania.
E-mail: alfredas.rackauskas@mif.vu.lt

Ch. Suquet
Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France.
E-mail: charles.suquet@univ-lille.fr



2 Jovita Gudan et al.

1 Introduction

For each n ≥ 1, we consider the model

Ynk = µnk +Xk, k = 1, 2, . . . , n, (1)

where (µnk) ⊂ R and (Xk, k ≥ 1) is a stationary sequence of zero mean
random variables. Throughout the paper, we denote by X a generic random
variable identically distributed with Xk. Our aim is to construct a test for the
hypothesis

H0 : µn1 = · · · = µnn = 0 (2)

against the alternative

HA : µnk = µn(k)1I∗(k), k = 1, . . . , n, (3)

where I∗ := {k∗ + 1, . . . , k∗ + `∗} for some k∗ = k∗n ≥ 0 and `∗ = `∗n ≤ n.
The model (3) includes several types of alternatives that are widely dis-

cussed in the literature. In the case where µn(k) = µ∗n, k = k∗+ 1, . . . , k∗+ `∗,
we have the so called changed segment of length `∗ model. The case µn(k) =
fn(k/n), where fn(t) = 0 if t 6∈ [t∗, t∗ + h∗], models epidemic type devia-
tion from the usual state with h∗ called the duration of the epidemic state. If
the function µn(k) is linearly increasing in the interval (k∗, k∗ + `∗], then one
speaks about the so called smooth-abrupt type change-point model. Note that
the special cases k∗ = 0 or `∗ = n− k∗ in (3) give a simple one change point.

Motivated by the detection of a short length changed segment, we assume
throughout that `∗ < n/4.

Statistical change point tests are of interest in many areas of applications,
e.g., finance, climate studies, medicine, neuroscience, hydrology, sensor net-
works, to name a few. There is a huge literature on testing changes of a mean
in a sequence of random variables, see, e.g., Basseville and Nikiforov [1], Csörgo
and Horváth [7], Brodsky and Darkhovsky [4], Chen and Gupta [5] for some
basics on various methods and models. Previous research related to changed
segment type models has been done by Levin and Kline [18], Commenges,
Seal and Pinatel [6], Yao [29], Gombay [13], Ramanayake and Gupta [27],
Račkauskas and Suquet [25], Enikeeva et al. [8], Račkauskas and Wendler [26],
to name a few. Of course, formally the changed segment type alternative may
be viewed as a special case of multiple change points model. But tests designed
to a special type could be more efficient, see Gombay [13] for an example.

In this paper we assume that X is regularly varying with index a > 0,
denoted X ∈ RVa, in the sense that the tail balance condition

P (X > x) ∼ px−aL(x) and P (X ≤ −x) ∼ qx−aL(x), x→∞, (4)

is satisfied, where L is a slowly varying function, and p, q ∈ (0, 1), p+ q = 1.
We refer to [3] for basics on regular variation of random variables. We

denote by an the 1/n quantile of |X|, that is

an := inf{x ∈ R : P (|X| ≤ x) ≥ 1− 1/n}. (5)
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It is well known that an = n1/aL1(n) for some slowly varying function L1.
The test statistics constructed in this paper are motivated by asymptotic

properties of the moving sums

Sk,` = Yn,k+1 + · · ·+ Yn,k+`, ` = 1, 2, . . . , n; k = 0, 1, . . . , n− `,

with weight `γ , that is

T (γ)
n := max

1≤`≤n
`−γ max

0≤k≤n−`
|Sk,`| . (6)

Statistics T (γ)
n has been investigated in [25] for γ ≤ 1/2 − 1/a and in [21]

for γ > 1/2 − 1/a. The choice of the parameter γ, constrained by the tail
behavior of X, help to find the minimal detectable length of changed segment.

Assuming n = 4m, we divide the sample Yn1, . . . , Ynn into four equal parts
and introduce for γ ≥ 0 the maximal ratio statistics

MRγ,n := max
{
Tn1

Tn3
,
Tn3

Tn1
,
Tn2

Tn4
,
Tn4

Tn2

}
, (7)

where

Tnj = T
(γ)
nj := max

1≤`≤m
`−γ max

(j−1)m≤k≤jm−`
|Sk,`| , j = 1, . . . , 4.

The idea behind this definition is that under alternative (3) if `∗ < n/4, then
the changed segment appears either in one quarter or in two adjacent quarters
of the sample only. Then, at least one of the arguments of the max in (7)
should be significantly bigger than under H0. Not surprisingly, we shall see
that under H0, the asymptotic behavior of MRγ,n is determined by the one
of T (γ)

n . The main advantage of MRγ,n is its invariance under any common
normalization of the Tnj ’s by homogeneity. In particular, we do not need to
compute or estimate an or the standard deviation of X. Another interesting
feature is that the independence of the four blocks (under H0 with i.i.d. Xi’s)
helps for the explicit computation of the limiting distribution. This can be
somewhat extended beyond the i.i.d. setting since, for the linear processes
considered in Th. 3, the limiting distribution “forgets” the filter.

Before going on, we have to mention that (7) should be considered as an
informal definition of MRγ,n because we deliberately forgot to put an exception
in formula for the case where one of the Tnj vanishes, which may happen with
positive probability for each n if the distribution of X is not continuous.

Section 2 exposes and comments our main theoretical results. In Th. 1, we
obtain the limiting distribution under H0 of MRγ,n. The situation is conve-
niently pictured by a two phases diagram (in the coordinates system (a, γ)).
Above the arc of hyperbola with equation γ = 1/2 − 1/a (in the “Fréchet
phase”), the limiting distribution is related to Fréchet distribution with a very
simple formula for the distribution function, while below (in the “Brownian
phase”), the limiting distribution is the one of some functional of the Brownian
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motion and computable (up to now) only approximately by Monte-Carlo meth-
ods. On the boundary between the two phases, that is when γ = 1/2−1/a, the
asymptotic behavior in distribution of MRγ,n depends on the slowly varying
function L in (4).

In view of practical applications, e.g., in times series context, it is of some
interest to investigate the extension of Th. 1 to dependent variables. For the
Brownian phase, we prove in Th. 2 that such an extension is valid as soon as
(Xk)k≥1 satisfies a Hölderian functional central limit theorem. This provides a
large anthology of weak dependence settings for the extension. For the Fréchet
phase, the only results known up to now for the asymptotic distribution of
T

(γ)
n are due to Mikosch and Moser [20]. We obtain in Th. 3 the asymptotic

distribution of MRγ,n under H0 for the MA(q) model and some regularly
varying linear processes investigated in [20]. In both cases, it is noticeable
that the limiting distribution is the same as for the i.i.d. setting.

Th. 4 is devoted to the consistency under alternative HA. It relies on the
hypothesis that for some normalizing sequence (cn)n≥1, c−1

n T
(γ)
n = OP (1) un-

der H0. This is satisfied in the i.i.d. setting as well as in all the dependence
settings involved in Th. 2 and Th. 3. It provides a sufficient condition on `∗
and µn insuring the convergence to 1 of the power of the test. If all the values
of µn are equal to some µ∗ = µ∗(n) inside I∗, Th. 4 provides also a condi-
tion separating the (`∗, µ∗) for which the test with MRγ,n is asymptotically
consistent.

A simulation study of the test under H0 with maximal ratio statistics
MRγ,n is presented in Section 3. In the i.i.d. settings, we generate samples from
the symmetrized Pareto and Log-Gamma distributions to study the effects of
various parameters of the model on the empirical power of the test. This is
complemented by a short study of the test in the setting of a moving average
and an autoregressive processes.

In Section 4 we provide a complete picture of the asymptotic behavior
of T (γ)

n which includes already known results from [21, 25] and prove some
additional results for the boundary case γ = 1/2 − 1/a. Finally the proofs of
theoretical results presented in Section 2 are detailed in Section 5.

2 Theoretical results

2.1 Preliminaries

As already mentioned, the concern about (7) is that the definition of RVa does
not forbid that for some X ∈ RVa, the corresponding T (γ)

n satisfies P (T (γ)
n =

0) > 0 for every n. For instance, the symmetric random variable X with
distribution given by P (X = 0) = 1

3 and P (X > x) = 1
3 if x ∈ [0, 1], P (X >

x) = 1
3x
−a if x > 1, verifies (4) with p, q = 1

2 and the slowly varying (at
infinity) L given by L(x) = 2

3x
a for x ∈ (0, 1], and L(x) = 2

3 for x > 1. Under
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H0, noticing that T (γ)
n = 0 if and only if all the Xi, i = 1, . . . , n, are null, we

obtain, for independent Xi’s distributed as X, that P (T (γ)
n = 0) = 3−n.

To remedy this drawback, we will redefine MRγ,n with the help of the
following map M . Let D be the open set of R4

+

D := {(t1, t2, t3, t4) ∈ R4
+; t1t2t3t4 6= 0}.

We denote by M the map R4
+ → R+ defined by

M(t1, t2, t3, t4) :=
{(

t1
t3
, t3t1 ,

t2
t4
, t4t2

)
if (t1, t2, t3, t4) ∈ D,

0 if (t1, . . . , t4) ∈ R4
+ \D.

(8)

M is continuous on D and the set of its discontinuities is the intersection of
R4

+ with the union of the four hyperplanes with equation tj = 0, so is of null
Lebesgue measure in R4

+. Therefore, M preserves the weak convergence of a
sequence (Vn)n≥1 of random vectors in R4

+ provided that its limit V satisfies
P (V /∈ D) = 0, see Corollary 1 to Th. 5.1 on p. 31 in [2]. Throughout the paper
we will refer to this property as “measurable mapping”. Another important
property of M is homogeneity, that is M(ct1, ct2, ct3, ct4) = M(t1, t2, t3, t4)
for any c > 0.

Now we redefine MRγ,n by

MRγ,n := M (Tn1, Tn2, Tn3, Tn4) , (9)

with the same Tni’s as in (7).
Next, we gather some notations used in the sequel of the paper. For any

sequence (Zi)i≥1, we introduce for integers 0 ≤ u < v, the generic notation

T (γ)(u, v, Z) := max
1≤`≤v−u

`−γ max
u≤k≤v−`

∣∣∣∣∣
k+∑̀
i=k+1

Zi

∣∣∣∣∣ , (10)

with the following special abbreviations (n, m, j, q being integers, 1 ≤ j ≤ 4)

T (γ)
n (Z) := T (γ)(0, n, Z), n ≥ 1,

T
(γ)
n,j (Z) := T (γ)((j − 1)m, jm,Z), n = 4m,m ≥ 1,

T
(γ)
n,j,q(Z) := T (γ)((j − 1)m, jm− q, Z), n = 4m,m ≥ 1, q > 1. (11)

In particular, T (γ)
n (X) is equal to T (γ)

n under H0. It is worth noticing that
when applied with a finite deterministic sequence (x1, . . . , xn), T (γ)

n (x) induces
a norm on Rn.
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2.2 Asymptotic behavior of MRγ,n under H0

In the first theorem we consider the case of independent random variables,
whereas Th. 2 and Th. 3 are some extensions under dependence.

Theorem 1. Assume for model (1) that (Xk)k≥1 are i.i.d., in RVa with ex-
ponent a > 1. The following statements hold under (H0):

a) if γ > max{0, 1/2− 1/a},

lim
n→∞

P (MRγ,n > x) =
{

1 if x < 1,
4xa(1 + xa)−2 if x ≥ 1;

(12)

b) if a > 2 and 0 ≤ γ < 1/2− 1/a,

lim
n→∞

P (MRγ,n > x) =

1 if x < 1

1−
[
1− 2

∫∞
0 Fγ(xy) dFγ(y)

]2
if x ≥ 1,

(13)

where
Fγ(y) = P

(
sup

0≤s<t≤1

|W (t)−W (s)|
|t− s|γ

≤ y
)
, y > 0, (14)

is the distribution function of the γ-Hölder norm of a standard Wiener
process W = (Wt, t ∈ [0, 1]);

c) If a > 2 and γ = 1/2− 1/a, then (12) holds provided

lim
t→∞

taP (|X| > t) =∞, (15)

whereas (13) holds provided

lim
t→∞

taP (|X| > t) = 0; (16)

d) If a > 2, γ = 1/2− 1/a and

sup
t>0

taP (|X| > t) <∞,

then MRγ,n = OP (1) as n→∞.

Now, we discuss the extension of Th. 1 to various dependence settings. Let
us start with the extension for the Brownian phase, i.e., the convergence (13),
assuming a > 2 and 0 ≤ γ ≤ 1/2 − 1/a. The relevant theoretical tool is the
Hölderian functional central limit theorem introduced hereafter.

We assume throughout that EXk = 0, k ≥ 1. With the usual convention∑
k∈∅ := 0, we denote by ξn = (ξn(t), t ∈ [0, 1]) the polygonal partial sums

process defined by

ξn(t) :=
[nt]∑
k=1

Xk + (nt− [nt])X[nt]+1, t ∈ [0, 1],
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that is the random polygonal line with vertices (k/n,
∑k
i=1 Xi), 0 ≤ k ≤ n.

In what follows, for any 0 < γ < 1 and any segment [b, c] of R, we denote by
Hoγ [b, c] the space of continuous functions f on [b, c] such that

ωγ(f, δ) := sup
0<t−s≤δ
s,t∈[b,c]

|f(t)− f(s)|
(t− s)γ −−−→

δ→0
0.

Endowed with the norm ‖f‖γ := |f(b)| + ωγ(f, c − b), Hoγ [b, c] is a separable
Banach space.

We say that (Xk)k≥1 satisfies the Hölderian functional central limit theo-
rem with exponent γ, in short HFCLT(γ), if for some positive constant σ > 0,
n−1/2σ−1ξn converges in distribution in Hoγ [0, 1] to a standard Brownian mo-
tion W . This property is possible only for γ < 1/2 because of the Hölderian
regularity ofW . The first HFCLT for the i.i.d. case goes back to Lamperti [17].
The final result for this case is: (Xk)k≥1 satisfies the HFCLT(γ) if and only if
limt→∞ taP (|X1| > t) = 0, where 1/a = 1/2 − γ, [23, 24]. Several extensions
of the HFCLT are known in the setting of dependent Xk’s under a moment
condition, possibly stronger than above, e.g., E |X1|a+ε < ∞, and an ade-
quate behavior of some “dependence rate”. First results of this type may be
found in Hamadouche [14] for strong mixing or associated (Xk)k≥1. The case
of linear processes with short memory is treated in [16]. Nearly non stationary
AR(1) case is studied in [19]. HFCLT for strictly stationary martingale dif-
ference sequences, stationary strong mixing, ρ-mixing, τ -dependent sequences
are investigated by Giraudo [10–12]. A general method to prove an HFCLT is
provided by Th. 3 and Cor. 4 in [16].

Now we are in a position to provide the key to the extension of the con-
vergence (13) to the case of dependent Xk’s. It is worth noticing that in the
following theorem, the assumption of regular variation is not needed.

Theorem 2. Assume that the sequence of random variables (Xk)k≥1 satisfies
the HFCLT(γ) for some 0 < γ < 1

2 . Then MRγ,n verifies the convergence (13).

When the limiting distribution of the ratio statistics MRγ,n is governed by
the Fréchet distribution instead of the HFCLT, the possibility of extensions
of Th. 1 to dependence setting seem to be narrower than in Th. 2. This is
not surprising since the investigation of the limiting distribution of T (γ)

n un-
der dependence is more recent. The first results in this direction and to our
best knowledge the only ones up to now, are due to Mikosch and Moser [20]
and concern in particular the case of finite moving average MA(q) or more
generally linear processes built on an i.i.d. regularly varying noise sequence,
which inherit the regular variation property. The authors also treat the case of
strictly stationary processes (Xt) with multiplicative noise, that is of the form
Xt = σtZt where (Zt) is an i.i.d. sequence, (σt) a strictly stationary sequence
of non-negative random variables such that σt and Zt are independent for
each t, including the cases of GARCH processes and some stochastic volatility
models. In what follows, we present an extension of Th. 1 (a) to the linear
processes considered in [20].
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Let (Xt, t ∈ Z) be the linear process defined by

Xt =
∞∑
j=1

ψjεt−j , t ∈ Z, (17)

where (εt)t∈Z is an i.i.d. zero mean noise sequence of regularly varying random
variables with index a > 1.

Recall that a sufficient condition in order that the series in (17) converges
almost surely and Xt ∈ RVa, see [22, Lemma A.3] or [20, Lemma 3.1], is

∞∑
j=0
|ψi|p <∞, where p =

{
2 for a > 2,
a− δ for some δ > 0, for a ≤ 2.

(18)

Theorem 3. Under the null hypothesis (2) with γ > max(0, 1/2 − 1/a), the
following hold:
i) if (Xt) is a moving average of order q > 1, that is ψq 6= 0 and for every
j > q, ψj = 0, then convergence (12) is verified;

ii) if (Xt)t∈Z is the linear process defined by (17) with the coefficients ψj
satisfying

∞∑
j=1
|ψj | <∞, (19)

then the convergence (12) is verified.
We notice that for a > 1, (19) implies (18), so the series in (17) converges

almost surely and Xt ∈ RVa.

2.3 Asymptotic consistency

Under alternative hypothesis the following consistency type result holds. It is
worth noticing here that this consistency theorem is valid in the i.i.d. setting
of Th. 1 as well as under the dependence settings considered in Th. 2 and
Th. 3. For the notation T (γ)

n (X), see the abbreviations (11).
Theorem 4. Let γ ≥ 0. Assume X ∈ RVa, a > 1. Then for model (1), under
alternative hypothesis (3), with `∗ < n/4, the following hold:
i) if for some normalizing sequence (cn)n≥1, c−1

n T
(γ)
n (X) = OP (1) and

1
`∗γcn

∣∣∣∣∣∑
i∈I∗

µni

∣∣∣∣∣ −−−−→n→∞
∞, (20)

then
MRn,γ

P−−−−→
n→∞

∞, (21)

so the test is asymptotically consistent.
In the case where all the µni for i ∈ I∗ are equal to some µ∗ = µ∗(n),
that is µ = µ∗1I∗ , (20) may be replaced by

c−1
n `∗(1−γ)µ∗ −−−−→

n→∞
∞; (22)
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ii) assume that µ = µ∗1I∗ and

Vn := c−1
n

(
T

(γ)
n1 (X), . . . , T (γ)

n4 (X)
)

D−−−−→
n→∞

V, with P (V ∈ D) = 1. (23)

If, moreover,
c−1
n `∗(1−γ)µ∗ −−−−→

n→∞
0, (24)

then MRγ,n = OP (1), so the test is not asymptotically consistent.

Some remarks on the performance of the test are in order here. To simplify
the discussion, we restrict ourselves to the case where all µni are equal to the
same µ∗ = µ∗(n) 6= 0 for i ∈ I∗ and the Xk’s are i.i.d.. An examination of the
assumptions in Th. 1 show that in each case, c−1

n T
(γ)
n (X) = OP (1) with

cn = max(an, n1/2−γ). (25)

Then, under the assumptions of Th.4,

MRγ,n

{ P−−−−→
n→∞

∞ if |µ∗|`∗1−γc−1
n →∞,

= OP (1) if |µ∗|`∗1−γc−1
n → 0.

(26)

In practice, one is interested in the ability of the test to detect an epidemics
when it is present. Intuitively, this detectability increases with the length `∗
and the amplitude |µ∗|.

But even an epidemics of length 1 is detectable if the corresponding ampli-
tude is significantly higher than max1≤i≤n |Xi|. This is clear when cn = an for
n large since then, under the choices of γ by Th. 1, (26) provides the condition
|µ∗|a−1

n → ∞ and we know that max1≤i≤n |Xi| = OP (an) when X1 ∈ RVa.
With the choices of γ allowed by the case where cn = n1/2−γ for n large,
this detection is possible only with γ = 1/2− 1/a because then (26) provides
the condition |µ∗|n−1/2+γ = |µ∗|n−1/a → ∞, and when supx≥1 L(x) < ∞,
an = O(n1/a). Clearly, the same detectability conditions hold for an epidemic
of length `∗ not depending on n.

On the opposite side, epidemics with a small amplitude |µ∗| should require
to be detected larger lengths and this can be quantified by (26). To fix the idea,
let us focus on the special case where |µ∗| > 0 is constant (i.e., not depending
on n). In this setting, the detectability condition provided by (26) becomes

l∗1−γc−1
n −−−−→

n→∞
∞.

Let us remark at once that the choice γ ≥ 1 has to be discarded here because
it implies l∗1−γc−1

n → 0. Now, it is easily seen that the detectability condition
when cn = an ultimately reduces to

a1/(1−γ)
n = o(`∗) with


0 < γ < 1 if 1 < a ≤ 2,
1
2 −

1
a < γ < 1 if a > 2,

γ = 1
2 −

1
a if a > 2 and limx→∞ L(x) =∞.
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In particular, when a > 2, the minimal length detectable when cn = an ulti-
mately is obtained from the third subcase above and satisfies

a
2a

2+a
n = n

2
2+aL1(n)

2a
2+a = o(`∗),

noticing that when limx→∞ L(x) =∞, L1(n)→∞.
Next, it is easily seen that the detectability condition when cn = n1/2−γ

ultimately writes
n

1−2γ
2−2γ = o(`∗).

Noticing that 1−2γ
2−2γ is a decreasing function of γ on [0, 1/2 − 1/a], we can

conclude that the minimal length detectable for the choices of γ allowed when
cn = n1/2−γ ultimately satisfies

n
2

2+a = o(`∗).

The simulations presented in Section 3 show that when a > 2, the empirical
power of the test is maximal for γ close to 1/2 − 1/a. This observation is in
accordance with the above result which shows that when a > 2, the minimal
detectable length `∗γ which separates consistency and non-consistency of the
test is obtained for γ = 1/2 − 1/a. Indeed, for a given length `∗ of epidemics
in the simulated sample, the probability of rejection of H0 increases with the
ratio `∗/`∗γ .

Consider now the general case where both `∗ and µ∗ vary with n. It is
convenient here to see the epidemics as a rectangular signal hidden in a noise.
We can then choose a function τ(µ∗, `∗) non-decreasing in each of its arguments
and try to interpret the detectability condition in terms of τ . Particularly,
we can choose some norm of the rectangular signal. The L1 and L2 norms
correspond to τ1(µ∗, `∗) = `∗|µ∗| and τ2(µ∗, `∗) =

√
`∗|µ∗|, respectively. The

latter is the square root of the energy of the signal. For this one, the minimal
value of τ2 provided by (26) for the detection of the signal depends essentially
on a non-increasing function of the relative length of the signal `∗/n, namely,

√
`∗|µ∗| � max(L1(n), 1)

( n
`∗

)1/a
,

obtained with γ = 1/2− 1/a. In [9] a similar problem of testing the presence
of a constant change in mean within an interval of a given size was considered
for the model with independent Gaussian noise.

Here, the following condition that separates the detectable signals with
mean µn from the non-detectable ones was obtained by using the minimax
approach,

√
l∗|µn| �

√
2σ
√

log n

l∗
, l∗/n→ 0, n→∞,

where σ is the noise variance. To obtain a final result of this type for noise
in RVa remains an open question. One may remark, nevertheless, that it is
possible to reach some logarithmic rate for the function of relative length of
the signal with our ratio statistics if we can afford some excursion outside the
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framework of regular variation of the Xk’s. This can be done like in [25] by
using the Hölderian functional central limit theorem with generalized weight
function ρ, see [24], assuming some exponential moments for the noise. To this
end, we replace T (γ)

n by T (ρ)
n := max1≤`≤n ρ(`/n)−1 max0≤k≤n−` |Sk,`|. Here

under H0, T (ρ)
n = OP (n1/2). A simple adaptation of the proof of Th. 4 leads to

the condition dn := `∗µ∗n−1/2ρ(`∗/n)−1 →∞ under an adequate assumption
on the tail of X1. In particular, if for some β > 1/2 and every positive λ,
E exp(λ|X1|1/β) < ∞, then one can choose ρ(h) = h1/2| log(ch)|β for some
constant c > 0 and this leads to the detection sufficient condition

√
`∗|µ∗| = dn logβ

(
c
n

`∗

)
, with dn →∞.

3 Tests with the maximal ratio statistics

3.1 Critical values

In this section, we consider model (1), where X ∈ RVa with a > 1. The null
hypothesis H0 is rejected in favour of the alternative HA when

MRγ,n ≥ Bα, (27)

where the asymptotic critical value Bα has the preassigned asymptotic level
of significance α. Due to Th. 1, Bα > 1 is determined by the equation

4Baα(1 +Baα)−2 = α (28)

if γ > max{0, 1/2− 1/a} and by the equation∫ ∞
0

Fγ(Bαy) dFγ(y) = 1
2 −

1
2
√

1− α (29)

if a > 2 and 0 ≤ γ < 1/2 − 1/a, where the function Fγ is defined in (14).
The distribution of Fγ was evaluated on a grid of size 1000 and by running
Monte-Carlo simulations with 400 runs. The results are presented in Table 5
given in the Appendix.

If one takes γ = 1/2−1/a, then the choice of the critical value Bα depends
on the either of conditions (15), (16).

From equation (28) we find

Bα :=
[
α−1(2− α+ 2

√
1− α)

]1/a
.

Hence, in the case γ > max{0, 1/2− 1/a}, Bα depends on γ only indirectly. If
1 < a ≤ 2, then the test can be written as

sup
0<γ≤1

MRγ,n ≥
[
α−1(2− α+ 2

√
1− α)

]1/a
.
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And if a > 2, then the test can be written as

sup
1/2−1/a<γ≤1

MRγ,n ≥
[
α−1(2− α+ 2

√
1− α)

]1/a
.

To find approximate values of Bα satisfying (29), we proceed as follows. We
consider i.i.d. standard normal random variables Z1, Z2, . . . , ZN with N = 4m
and define T (γ)

Nj (Z), 1 ≤ j ≤ 4 as in the abbreviations (11). Put also

QN (x) := P
(
M
(
T

(γ)
N1 (Z), . . . , T (γ)

N4 (Z)
)
> x

)
, x > 0.

Then the limit tail distribution of MRγ,n is limN→∞QN (x), x > 0.
We note in passing that by absolute continuity of the distribution of the

Zi, T (γ)
Nj (Z) > 0 a.s. for j = 1, . . . , 4, so M

(
T

(γ)
N1 (Z), . . . , T (γ)

N4 (Z)
)
≥ 1 almost

surely, whence QN (x) = 1 for 0 < x < 1 and the same holds for its limit. By
independence and identical distributions,

1−QN (x) =
(

1− P
(

max
{
T

(γ)
N1 (Z)
T

(γ)
N2 (Z)

,
T

(γ)
N2 (Z)
T

(γ)
N1 (Z)

}
> x

))2

.

For x ≥ 1, the events {T (γ)
N1 (Z)/T (γ)

N2 (Z) > x} and {T (γ)
N2 (Z)/T (γ)

N1 (Z) > x}
are disjoint, hence

P

(
max

{
T

(γ)
N1 (Z)
T

(γ)
N2 (Z)

,
T

(γ)
N2 (Z)
T

(γ)
N1 (Z)

}
> x

)
= P

(
T

(γ)
N1 (Z)
T

(γ)
N2 (Z)

> x

)
+P
(
T

(γ)
N2 (Z)
T

(γ)
N1 (Z)

> x

)
.

By identical distribution of
(
T

(γ)
N1 (Z), T (γ)

N2 (Z)
)
and

(
T

(γ)
N2 (Z), T (γ)

N1 (Z)
)
,

QN (x) = 1−
(

1− 2P
(
T

(γ)
N1 (Z)
T

(γ)
N2 (Z)

> x

))2

, x ≥ 1. (30)

Hence, we find approximate asymptotic critical values Bα = Bα(γ) by solving

P
(
Z

(γ)
N > Bα(γ)

)
= 1

2
(
1−
√

1− α
)
,

where Z(γ)
N := T

(γ)
N1 (Z)/T (γ)

N2 (Z).
The distribution of Z(γ)

N was evaluated on a grid of size 10000 and by
running a Monte-Carlo simulation with 3000 runs. The results are presented
in Table 6 given in the Appendix.
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3.2 Simulation study: independent random variables

To illustrate the finite sample behavior of test (27) with independent ran-
dom variables, we conduct an experiment using Monte-Carlo simulations.
We use the symmetrized Pareto and Log-Gamma distributions to gener-
ate X regularly varying with index a. Data are generated by the model
Ynk = µ∗n1{k∗+1,··· ,k∗+`∗}(k) +Xk.

To investigate the effect of test (27) on various alternative conditions we
consider samples of sizes n = 200, 300, 600, 1000 with various relative lengths
of changed mean segment `∗/n, adapting the parameter γ to match the various
cases in Th. 1. The power of the test is estimated with 1000 repetitions. The
nominal size was chosen as α = 0.05, 0.1.

3.2.1 Performance of the test with varying parameters of tail index a,
amplitude µ∗n and relative length `∗/n

First, to illustrate the effect of the tail index a on empirical power scores,
we take only two values of the parameter of regular variation, a = 2.5 and
a = 5, since clearly, bigger values of a cause higher empirical power of test (7).
Figure 1 illustrates the empirical power in setting (13) for different values of
a for the samples generated from Pareto distribution with n = 300, `∗/n =
j/30, j = 1, ..., 7, µ∗n = 0.2c, c = 1, ..., 10 and α = 0.05.

More precisely, for the values γ = 0.09 and γ = 0.29, Figure 1 depicts
the variation of the empirical power as a function of one of the parameters
amplitude µ∗n and relative length `∗/n for several fixed values of the other.
The choice of the parameter γ in this case is made arbitrarily since under
setting (13) the requirement for γ to be less than the threshold 1/2 − 1/a is
fulfilled. From both types of figures it can be seen that the greater the index
a, the amplitude of the change µ∗n or the length of the changed segment `∗,
the bigger the empirical power of the test when fixing any two of these three
parameters. The intuitive explanation is as follows (see also the comments
after Th. 4):

– tail parameter a: the lower the index a, the heavier tail the generated
sample. Consequently, it is complicated for the test to distinguish epidemic
periods when there are many large values in the sample, thus the power of
the test may be naturally lower;

– the amplitude of the change µ∗n: anew, the effect on the test of µ∗n is the
same as with parameter a: a lower mean value may indicate a lower power
of the test (7);

– the length of the changed segment `∗: it is also clear in this case that a
shorter length of the changed segment may reduce the test performance.

Of course the three parameters can offset each other in favor of the test
power. For example, although the amplitude µ∗n is small and the length of the
changed segment `∗ is also short, the test power improves significantly with a
larger parameter a. Figure 5 in the Appendix represents the latter simulation,
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but with a significance level α = 0.1, from which it can be seen that all the
findings are valid in this case as well, but test (7) performs condiderably better.

3.2.2 Performance of the test with varying parameter γ and sample size n

So far, only one part of the maximal ratio test with various parameters has
been examined, i.e., under the setting (13). However, the performance of the
test with particular realization can be controlled via the parameter γ allowing
distinct limiting distributions.
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Fig. 1: Empirical power of the test under the setting (13) with α = 0.05

Figure 2 depicts the empirical power of test (7) under various γ =
0.01, 0.1, 0.2, 0.29, 0.3∗ refer to (15), 0.3∗ refer to (16), 0.31, 0.5, 0.7, 0.9 val-
ues with tail index a = 5, α = 0.05, sample size of 1000, changed mean
segment of 0.2 for Pareto and 0.3 for Log-Gamma distributions, and 1000
Monte-Carlo simulations. In such a scenario, due to Th. 1, the threshold
γ = max(1/2 − 1/a, 0) = max(1/2 − 1/5, 0) = 0.3 (red vertical line) divides
the alternative into four settings: (12), (13), (15) and (16). Remarkably, the
effect of γ is quite strong in the results of the empirical power of the test where
it’s the highest when γ is very close to 1

2 −
1
a from the left. Figure 6 in the

Appendix illustrates the latter simulation with α = 0.1 and the distinction
between two limiting distribution is even more evident, when, again, the per-
formance of the test is superior when γ is very close to 1

2 −
1
a under limiting

distribution (13).
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Fig. 2: Empirical power of the test under various γ values with α = 0.05

Now, we investigate the role of the parameter γ in more depth by ac-
counting other parameters. The detailed exploration under various settings
in Th. 1 is illustrated in Figure 4 with samples of a size n = 300 from the
Log-Gamma distribution with tail index a = 2.5 and α = 0.05 under different
relative lengths `∗/n = j/30, j = 1, ..., 7, and sizes of changed mean segments
µn = 0.2c, c = 1, ..., 10. In Figure 4a and 4b the depicted situation is under
setting (12), in Figure 4c and 4d under setting (13), in Figure 4e and 4f under
setting (15), Figure 4g and 4h under setting (16).

For all the settings in Th. 1, the empirical power of the test is much larger,
when the length of changed mean segment is longer and the amplitude µ∗ of
the change is bigger. This result is straightforward. Nevertheless, in the same
circumstances, the tests under setting (13) have higher empirical power than
the tests under (12), (15) or (16) settings. Figure 7 in the Appendix illustrates
the latter simulation with α = 0.1.

Let us return to the tail parameter a. In reality, its true value is seldom
known, so various estimators are used to evaluate a. We choosed here the
well known Hill’s estimator [15]. When analyzing both settings (12) and (13),
the choice of γ is arbitrary. Moreover, settings (15) and (16) give the same
limiting distribution as settings (12) and (13), respectively. Accordingly, the
performance of the test with Hill estimator is analyzed only for the settings (15)
and (16), when γ depends directly on the parameter a via γ = max( 1

2 −
1
a , 0).

Figure 3 portrays the empirical power of the test with evaluated parameter â
from Hill estimator where samples of a size n = 300 are generated from Log-
gamma distribution with true tail parameter a = 2.5. Results are estimated
with α = 0.05. Most of the time, Hill estimator is bigger than the true value of
a by E â = 4 under the setting (15) (see Figure 3a and 3b). For this reason, the
solution of (28), which directly depends on the parameter a, is smaller than
the true critical value. For example, for α = 0.05, the true critical value is
equal to B0.05 = 3.82 and the evaluated critical value is approximately equal
to E B̂0.05 ≈ 2.56. Consequently, the performance of the test is slightly better
when a is evaluated from Hill estimator. Figure 8 in the Appendix illustrates
the latter simulation with α = 0.1.
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Fig. 3: Empirical power of the test under settings (15) (top row) and (16)
(bottom row) when parameter a is estimated from Hill estimator with α = 0.05

As mentioned earlier, the lower is the index a, the heavier is the tail of the
generated sample. For this reason it is interesting to investigate type I errors.
Figure 9 in the Appendix illustrates false positive probability of the test with
Log-Gamma distribution under settings (12) and (13) with various values of
th parameter a , n = 300, α = 0.05.

Table 4 given in the Appendix summarizes the performance of test (7)
under the Log-Gamma and Pareto distributions with regular variation index
a = 5, sample size of n = 200, 600, 1000, amplitude of the change µ∗ = 0.3,
with length `∗ of approximately 1

7 ,
1
5 ,

1
4 of the sample size n. Increasing sample

size, length and amplitude of the change also increase the empirical power.
However, the choice of the parameter γ depends on the threshold 1

2 −
1
a where

the empirical power is the highest when γ is very close to the threshold from
the left, regardless of sample size or length of changed segment.
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Fig. 4: Empirical power of the test under various settings with α = 0.05. The
top row corresponds to the situation under setting (12), second row corre-
sponds to the situation under setting (13), third row corresponds to the situ-
ation under setting (15) and bottom row corresponds to the situation under
setting (16).
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3.3 Simulation study: dependent random variables

This section briefly investigates the performance of test (7) under some de-
pendency settings used in Th. 2 and Th. 3 as the findings differ little from
the above ones. To illustrate the finite sample behavior of test (7) we use the
autoregressive and the moving average processes

AR(p) : Xt =
p∑
j=1

φjXt−j + ε
(i)
t ; MA(q) : Xt =

q∑
j=1

ψjε
(i)
t−j + ε

(i)
t ,

where φ1 = 0.5, ψ1 = 0.5 for p, q = 1 and φ1 = 0.5, φ2 = 0.25, ψ1 = 0.5,
ψ2 = −0.25 for p, q = 2. The innovations ε(i)t are i.i.d. from symmetrized
Pareto (denoted as i = 1) and symmetrized Log-gamma (denoted as i = 2)
distributions with the parameter a = 2.5. For the change in mean, we consider
Ynt = µ∗n1{t∗+1,··· ,t∗+`∗}(t) +Xt with various values of µ∗n.

As mentioned in Section 2, Th. 2 and Th. 3 generalizes the extension to the
dependence case. The illustrations of the latter theorems are analyzed accord-
ing to the parameters selected in the previous section. More precisely, Table
1 portrays the empirical power of the maximal ratio test under various alter-
natives corresponding to Th. 2 with n = 300, `∗/n = j/30, j = 1, 5, 7, µ∗n =
0.2c, c = 1, ..., 10 and α = 0.05. Parameter γ is chosen to be equal to 0.09.
AR(p) and MA(q) processes are generated with Pareto and Log-gamma inno-
vations having a tail index a = 2.5 in both cases. First, the performance of the
maximal ratio test seems superior for processes with Pareto innovations and
when the order of the process is smaller for both AR(p) and MA(q). More-
over, the empirical power of an autoregressive process seems higher than with
a moving average process. However, other findings are similar to the ones of
independent case as the detectability of a change increases with the length `∗
and the amplitude µ∗.

Next, we examine the realization of maximal ratio test under conditions of
Th. 3, which are shown in Table 2. Except for γ, all the parameters are the same
as for the latter simulation. Our choice of γ, restricted by γ > max(0, 1/2 −
1/a), is here γ = 0.11. Note that a = 2.5. As in the independent case, the
empirical power of the maximal ratio test is significantly smaller under the
same conditions, but greatly improves with higher values of the length `∗

and the amplitude µ∗n of the change. However, it does not reach the level
specified in the setting (13). And again we come to the same conclusion that
the empirical power is the highest when the alternative limiting distribution
has the form (13). For comparison with i.i.d. case, see Table 3.
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AR(1) AR(2)) MA(1) MA(2)

`∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70

Log-Gamma
innovations

α = 0.05

µ∗n = 0.2 0.4792 0.4981 0.4673 0.3854 0.3971 0.3700 0.4233 0.4038 0.4246 0.3390 0.3481 0.3998
µ∗n = 0.6 0.4536 0.5096 0.5585 0.3835 0.4990 0.5496 0.3911 0.4865 0.5665 0.3788 0.4702 0.5764
µ∗n = 1 0.5009 0.6308 0.6587 0.3873 0.6490 0.7768 0.4242 0.6500 0.7579 0.3977 0.6615 0.7808
µ∗n = 1.6 0.4886 0.7452 0.8452 0.4034 0.8375 0.9187 0.4309 0.8394 0.9097 0.4025 0.8673 0.9444
µ∗n = 2 0.5019 0.8462 0.8889 0.4337 0.9327 0.9762 0.4640 0.9019 0.9504 0.4280 0.9404 0.9841

α = 0.1

µ∗n = 0.2 0.5748 0.5529 0.5734 0.4848 0.5087 0.4980 0.5095 0.5067 0.5466 0.4508 0.4606 0.4673
µ∗n = 0.6 0.5483 0.6038 0.6121 0.4877 0.5625 0.6458 0.4953 0.5663 0.6081 0.4754 0.5615 0.6339
µ∗n = 1 0.5521 0.6962 0.7401 0.4640 0.7365 0.8264 0.5284 0.7279 0.7986 0.4782 0.7625 0.8333
µ∗n = 1.6 0.5890 0.8212 0.8780 0.4943 0.9038 0.9593 0.5133 0.8750 0.9484 0.4924 0.9096 0.9563
µ∗n = 2 0.5653 0.8798 0.9425 0.5369 0.9423 0.9831 0.5322 0.9308 0.9692 0.5417 0.9673 0.9861

Pareto
innovations

α = 0.05

µ∗n = 0.2 0.5701 0.5760 0.5685 0.5246 0.5029 0.5129 0.5417 0.5337 0.5764 0.4688 0.5029 0.5169
µ∗n = 0.6 0.5597 0.6635 0.6756 0.5152 0.6644 0.7113 0.5559 0.6490 0.7113 0.4773 0.6721 0.7163
µ∗n = 1 0.5748 0.7490 0.7956 0.5095 0.8240 0.8829 0.5218 0.8038 0.8681 0.4981 0.8192 0.8909
µ∗n = 1.6 0.6392 0.8423 0.9256 0.5492 0.9221 0.9722 0.5464 0.9000 0.9702 0.5786 0.9404 0.9742
µ∗n = 2 0.6136 0.8942 0.9534 0.5814 0.9731 0.9871 0.6080 0.9625 0.9772 0.5824 0.9683 0.9921

α = 0.1

µ∗n = 0.2 0.6705 0.6606 0.6409 0.6127 0.6019 0.6349 0.5862 0.6144 0.6161 0.5900 0.5827 0.6022
µ∗n = 0.6 0.6326 0.7183 0.7411 0.5786 0.7029 0.7996 0.6259 0.7192 0.7907 0.5729 0.7317 0.8056
µ∗n = 1 0.6259 0.8000 0.8482 0.6042 0.8673 0.9246 0.6354 0.8385 0.8889 0.5407 0.8606 0.9236
µ∗n = 1.6 0.6761 0.9106 0.9335 0.6487 0.9529 0.9891 0.6420 0.9442 0.9802 0.6439 0.9587 0.9841
µ∗n = 2 0.6638 0.9337 0.9782 0.6610 0.9740 0.9921 0.6723 0.9663 0.9871 0.6581 0.9798 0.9940

Table 1: Empirical power of the test under Th. 2 conditions with a = 2.5,
γ = 0.09 and n = 300

AR(1) AR(2)) MA(1) MA(2)

`∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70 `∗ = 10 `∗ = 50 `∗ = 70

Log-Gamma
innovations

α = 0.05

µ∗n = 0.2 0.0947 0.0779 0.0833 0.0275 0.0298 0.0377 0.0511 0.0510 0.0556 0.0256 0.0288 0.0337
µ∗n = 0.6 0.0947 0.1058 0.1200 0.0398 0.0673 0.0843 0.0407 0.0769 0.1131 0.0350 0.0635 0.1111
µ∗n = 1 0.0814 0.1615 0.1786 0.0398 0.1692 0.2351 0.0473 0.1779 0.2431 0.0379 0.1625 0.2609
µ∗n = 1.6 0.0890 0.2606 0.3730 0.0388 0.3404 0.4970 0.0473 0.3087 0.4732 0.0341 0.3644 0.5804
µ∗n = 2 0.0758 0.3510 0.5020 0.0559 0.4788 0.6776 0.0587 0.4279 0.6131 0.0521 0.5154 0.7312

α = 0.1

µ∗n = 0.2 0.1723 0.1846 0.1925 0.1146 0.1000 0.1141 0.1430 0.1337 0.1458 0.1013 0.1038 0.0982
µ∗n = 0.6 0.1771 0.2077 0.2470 0.0881 0.1779 0.2341 0.1420 0.2058 0.2381 0.1089 0.1990 0.2232
µ∗n = 1 0.1705 0.2673 0.3849 0.1023 0.3135 0.4415 0.1402 0.2933 0.3780 0.1117 0.3404 0.4712
µ∗n = 1.6 0.1884 0.4163 0.5685 0.1288 0.5471 0.7123 0.1383 0.5250 0.6399 0.1288 0.5827 0.7560
µ∗n = 2 0.2112 0.5279 0.6875 0.1307 0.6837 0.8413 0.1383 0.6769 0.7788 0.1326 0.7125 0.8690

Pareto
innovations

α = 0.05

µ∗n = 0.2 0.1676 0.1635 0.1647 0.1042 0.1192 0.1240 0.1297 0.1337 0.1300 0.1070 0.1029 0.1240
µ∗n = 0.6 0.1439 0.1952 0.2460 0.0985 0.1827 0.2688 0.1222 0.2106 0.2728 0.0909 0.1875 0.2510
µ∗n = 1 0.1525 0.3135 0.3988 0.0975 0.3500 0.4415 0.1468 0.3029 0.4593 0.0994 0.3519 0.4762
µ∗n = 1.6 0.1515 0.4510 0.5615 0.1117 0.5673 0.7034 0.1515 0.5519 0.6806 0.1212 0.5644 0.7460
µ∗n = 2 0.1913 0.5529 0.6766 0.1392 0.6856 0.8353 0.1591 0.6442 0.8105 0.1392 0.7115 0.8581

α = 0.1

µ∗n = 0.2 0.2661 0.2750 0.3165 0.2027 0.1923 0.2431 0.2188 0.2663 0.2450 0.2140 0.2067 0.1915
µ∗n = 0.6 0.3125 0.3317 0.3869 0.2093 0.3596 0.4018 0.2528 0.3260 0.4286 0.2083 0.3567 0.4196
µ∗n = 1 0.3153 0.4779 0.5268 0.2235 0.5154 0.6339 0.2188 0.4904 0.6379 0.2311 0.5356 0.6706
µ∗n = 1.6 0.3097 0.6404 0.7371 0.2604 0.7404 0.8720 0.2680 0.7308 0.8442 0.2453 0.7615 0.8671
µ∗n = 2 0.3030 0.7067 0.8433 0.2803 0.8375 0.9296 0.2898 0.7942 0.8968 0.2718 0.8356 0.9385

Table 2: Empirical power of the test under Th. 3 conditions with a = 2.5,
γ = 0.11 and n = 300

AR(1) AR(2) MA(1) MA(2) iid

Pareto
innovations

γ = 0.29
α = 0.05 0.78 0.8242 0.7883 0.8192 0.8742
α = 0.1 0.8133 0.8525 0.845 0.8533 0.9117

γ = 0.31
α = 0.05 0.6233 0.6891 0.645 0.6758 0.7425
α = 0.1 0.7292 0.7641 0.7433 0.7633 0.8458

Table 3: Empirical power of the test under Th. 2 and Th. 3 conditions with
changed mean segment µ∗n = 0.5, a = 5, length `∗ =

√
n, where n = 300

4 Asymptotic of the weighted maximal increment

Now we present theoretical results about the asymptotic behavior of T (γ)
n for

γ ∈ [0, 1] under H0 for i.i.d. X,X1, . . . Throughout this section, T (γ)
n =T (γ)

n (X).
If X ∈ RVa and γ > max{0, 1/2 − 1/a}, the limit distribution of T (γ)

n is
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found in [21]. In the following theorem we recall the result and add the case
γ = 1/2− 1/a, a > 2 as well.

Theorem 5. Assume that X,X1, X2, . . . are i.i.d. random variables, X ∈ RVa

with a > 1, and EX = 0.

(a) If γ > max{0, 1/2− 1/a}, then

lim
n→∞

P
(
a−1
n T (γ)

n ≤ x
)

= exp(−x−a) =: Φa(x), x ≥ 0. (31)

(b) If a > 2, γ = 1/2− 1/a and

lim
t→∞

taP (|X| > t) =∞, (32)

then (31) holds as well.

Statement (a) is proved in [21]. To prove (b) one needs to do some mod-
ifications in the proof of (a) only. For the reader’s convenience, we provide
all the details. The following auxiliary results are the main ingredients of the
proof.

Lemma 6. Assume that X ∈ RVa, a > 1 and EX = 0. Let X1, X2, . . . be
independent copies of X, S0 = 0, Sk =

∑k
i=1 Xi, k ≥ 1. Then for any γ ≥ 0

and h ≥ 1,

lim
n→∞

P

(
a−1
n max

1≤`≤h
`−γ max

0≤k≤n−`
|Sk+` − Sk| ≤ x

)
= Φa(x), x > 0.

Lemma 7. Let (Yi) be a sequence of i.i.d. random variables. Then, for any
b > 0, γ ≥ 0, h ≥ 1 and H ≤ n,

P

 max
h≤`≤H

`−γ max
0≤k≤n−`

∣∣∣ k+∑̀
j=k+1

Yj

∣∣∣ > b

 ≤ 2
J0∑
j=J1

Qj ,

Qj := 2jP
(

max
1≤k≤2n2−j

∣∣∣ k∑
j=1

Yj

∣∣∣ > b(n2−j)γ
)
,

where J0 = log2(n/h), J1 = log2(n/H) + 1 and log2 x denotes the dyadic loga-
rithm.

Lemma 8. Let X ∈ RVa, a > 1.

(i) For any 0 < s < a,

E |X|s1{|X|>yan} ≤
2a
a− s

asnn
−1ys−a, (33)

for n large enough, uniformly in y ∈ [1,∞).
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(ii) For any s > a,

E |X|s1{|X|≤yan} ≤
2a
s− a

asnn
−1ys−a, (34)

for n large enough, uniformly in y ∈ [1,∞).
First two lemmas are proved in [21] (see, Lemma 2.2 and Lemma 3.3

therein), whereas the third one is proved in [28] (see Lemma 2.4 therein).

Proof of Th. 5 (b). By Lemma 6, we only need to prove that for each ε > 0,

lim
h→∞

lim sup
n→∞

Qn(h, ε) = 0, (35)

where
Qn(h, ε) := P

(
max
h≤`≤n

`−γ max
0≤k≤n−`

∣∣Sk+` − Sk
∣∣ > εan

)
.

Here and throughout the proof we take γ = γa = 1/2 − 1/a. To our aim, we
consider the truncated random variables

X ′i = Xi1{|Xi| ≤ hγan}, X̃i = X ′i − E (X ′i), i = 1, . . . , n,

and the corresponding partial sums

S′k =
k∑
i=1

X ′i and S̃k =
k∑
i=1

X̃i, k ≥ 1

with S′0 = S̃0 = 0. From Lemma 7, we conclude

Qn(h, ε) ≤ P
(

max
1≤k≤n

|Xk| ≥ hγan
)

+ P

(
max
h≤`≤n

`−γ max
0≤k≤n−`

|S′k+` − S′k| > εan

)

≤ P
(

max
1≤k≤n

|Xk| ≥ hγan
)

+2
log2(n/h)∑
j=1

2jQnj(h, ε),

where
Qnj(h, ε) := P

(
max

1≤k≤2n2−j
|S′k| > ε(n2−j)γan

)
.

Since
lim
n→∞

P ( max
1≤k≤n

|Xk| > hγan) = 1− exp(−h−γa) −−−−→
h→∞

0,

the proof of (35) reduces to

lim
h→∞

lim sup
n→∞

log2(n/h)∑
j=1

2jQnj(h, ε) = 0. (36)

Noticing that EX ′ = E (X − X1{|X|>hγan}) = −E (X1{|X|>hγan}) because
EX = 0, we have by Lemma 8 (i)

|E (S′k)| ≤ k|E (X ′)| ≤ kE
(
|X|1{|X|>hγan}

)
≤ k 2a

a− 1ann
−1hγ(1−a).
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This yields

max
1≤k≤2n2−j

|S′k| ≤ max
1≤k≤2n2−j

|S̃k|+ 2n2−j 2a
a− 1ann

−1hγ(1−a).

Moreover, as j ≤ log2(n/h), we have 2−j ≤ 1 ≤ (n2−j)γ since γ ≥ 0. Hence
for h large enough and uniformly in j ≤ log2(n/h),

max
1≤k≤2n2−j

|S′k| ≤ max
1≤k≤2n2−j

|S̃k|+
ε

2(n2−j)γan.

Hence for h large enough and uniformly in j such that 2j ≤ n/h,

Qnj(h, ε) ≤ Q̃nj(h, ε),

where
Q̃nj(h, ε) := P

(
max

1≤k≤2n2−j
|S̃k| > (ε/2)(n2−j)γan

)
.

Fix p > a. Since (|S̃k|, k ≥ 1) is a submartingale, by Doob and Markov in-
equalities we obtain

Q̃nj(h, ε) ≤
(

p

p− 1

)p(2
ε

)p (
(n2−j)γan

)−pE ∣∣∣S̃2n2−j
∣∣∣p .

By Rosenthal inequality,

E
∣∣∣S̃2n2−j

∣∣∣p ≤ cp[(n2−j)p/2(E (|X|21{|X|≤anhγ})
p/2 +n2−jE |X|p1{|X|≤anhγ}

]
,

where the constant cp > 0 depends on p only. Applying Lemma 8, we obtain

E
∣∣∣S̃2n2−j

∣∣∣p ≤ cp[(n2−j)p/2(EX2)p/2 + n2−j 2a
p− a

apnn
−1hγ(p−a)

]
.

This leads to

Q̃nj(h, ε) ≤ Cp
(

2
ε

)p
[(n2−j)γan]−p

[
(n2−j)p/2σp + n2−j 2a

p− a
apnn

−1hγ(p−a)
]

= Cp

(
2
ε

)p [
σpa−pn (n2−j)−γp+p/2 + 2a

p− a
n−1hγ(p−a)(n2−j)−γp+1

]
,

where Cp := (1 − 1/p)−pcp and σ2 = EX2. Hence, recalling that γ = γa =
1/2− 1/a and p > a, we obtain
log2(n/h)∑
j=1

2jQnj(h, ε) ≤
log2(n/h)∑
j=1

2jQ̃nj(h, ε)

≤ Cp
(

2
ε

)p σpnp/aa−pn log2(n/h)∑
j=1

2−(p/a−1)j + 2a
p− a

n−γphγ(p−a)
log2(n/h)∑
j=1

2γpj


≤ Cp
(

2
ε

)p [ 2p/a

2p/a − 2
σpa−pn np/a + 2p/2+1a

(p− a)(2p/2 − 2p/a)
h1−a/2

]
.
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We see, that when a > 2, (36) and hence (35) are valid provided that
limn→∞ a−1

n n1/a = 0. This is guaranteed by condition (32). Indeed, as an =
inf{x ∈ R;P (|X| > x) ≤ 1/n}, P (|X| > 2an) ≤ n−1, so choosing t = 2an
in (18) gives 2aaanP (|X| > 2an) → ∞, hence 2aaann−1 → ∞ or equivalently
n1/aa−1

n → 0.

The following theorem proved in [25] is the key of the proof of (b) in Th. 1.

Theorem 9. Let a > 2. Assume that EX = 0 and

lim
t→∞

taP (|X| > t) = 0. (37)

Then for 0 ≤ γ < 1/2− 1/a,

lim
n→∞

P (n−1/2+γσ−1T (γ)
n ≤ x) = P (T (γ) ≤ x), x ≥ 0,

where σ2 = EX2 and

T (γ) := sup
0≤s<t≤1

|W (t)−W (s)|
|t− s|γ

, (38)

W denoting a standard Brownian motion on [0, 1].

Theorem 10. Let a > 2 and γ = 1/2 − 1/a. Assume that EX = 0. The
sequence (n−1/aT

(γ)
n )n≥1 is stochastically bounded if and only if

A := sup
t>0

taP (|X| > t) <∞. (39)

Proof. We estimate for arbitrary b > 0 the probability

Pn(b) = P
(
n−1/aT (γ)

n > b
)
.

First, we truncate the random variables Xj at the level bn1/a by setting

X̃i := Xi1(|Xi| ≤ bn1/a), X ′i := X̃i − E X̃i, i = 1, . . . , n.

Recalling the abbreviations (11), this gives

P
(
n−1/aT (γ)

n > b
)
≤ P

(
max

1≤i≤n
|Xi| > bn1/a

)
+ P

(
n−1/aT (γ)

n (X̃) > b
)
.

Next, T (γ)
n (X̃) ≤ T

(γ)
n (X ′) + T

(γ)
n (E X̃) and by stationarity, T (γ)

n (E X̃) =
n1−γ |E X̃|.

Since EX = 0, |E X̃| =
∣∣EX1{|X| > bn1/a}

∣∣, so using (39) and the ele-
mentary equality E |X|1{|X| > c} = cP (|X| > c) +

∫∞
c
P (|X| > t) dt, leads to

|E X̃| ≤ Aa
a−1b

1−an1/a−1. Consequently,

n−1/aT (γ)
n (X̃) ≤ n−1/aT (γ)

n (X ′) + Aa

a− 1n
1/a−1/2b−a+1.
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By Lemma 6,

P (n−1/aT (γ)
n (X ′) > b) ≤ 2

logn∑
j=1

2jP
(

max
1≤k≤2n2−j

∣∣∣ k∑
i=1

X ′i

∣∣∣ > bn1/a(n2−j)γ
)
.

Proceeding as in the proof of Th. 5, see the estimation of Q̃nj(h, ε), we obtain

P (n−1/aT (γ)
n (X ′) > b) ≤ cpb−p

for b ≥ 1, and complete the proof of sufficiency.
As for the necessity of (39), we just notice that the stochastic boundedness

of n−1/aT
(γ)
n yields n1/a max1≤k≤n |Xk| = OP (1) which for i.i.d. Xk’s implies

the boundedness of L, giving (39).

5 Proofs of the theorems on MRγ,n

5.1 Proof of Th. 1

First we prove (a). Since the random variables Tnj , j = 1, . . . , 4 are indepen-
dent and recalling that n = 4m, we have by Th. 5 a)

a−1
m (Tn1, Tn2, Tn3, Tn4) D−−−−→

m→∞
(T1, T2, T3, T4),

where D−→ denotes the convergence in distribution and T1, T2, T3, T4 are inde-
pendent random variables with Fréchet distribution:

P (Tj ≤ x) = exp(−x−a), x > 0,

for any j = 1, . . . , 4. By measurable mapping,

MRγ,n
D−−−−→

n→∞
MRγ = M(T1, T2, T3, T4) a.s.= max

(
T1

T3
,
T3

T1
,
T2

T4
,
T4

T2

)
.

Since the random variables max(T1/T3, T3/T1) and max(T2/T4, T4/T2) are in-
dependent and identically distributed,

P (MRγ ≤ x) = P 2
(

max
(
T1

T3
,
T3

T1

)
≤ x

)
.

Next, we observe that P (MRγ ≤ x) = 0 for x < 1, whereas for x ≥ 1,{
max

(
T1

T3
,
T3

T1

)
≤ x

}
=
{

1
x
≤ T1

T3
≤ x

}
.

Hence for x ≥ 1,

P (MRγ ≤ x) = P 2
(

1
x
≤ T1

T3
≤ x

)
.
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The distribution function of the ratio T1/T3 of two independent Fréchet ran-
dom variables with the same parameter a is easy to derive:

P (T1/T3 ≤ x) = P (T1 ≤ xT3) =
∫
R+

(∫
R+

1{u≤xv} dPT1(u)
)

dPT3(v)

=
∫
R+

exp
(
−(xv)−a

)
dPT3(v)

=
∫ ∞

0
exp

(
−(xv)−a

)
av−a−1 exp

(
−v−a

)
dv

=
∫ 1

0
t(x
−a) dt = 1

1 + x−a
.

Hence

P

(
1
x
≤ T1

T3
≤ x

)
= 1

1 + x−a
− 1

1 + xa
= xa − 1
xa + 1 .

This yields

P (MRγ > x) =
{

1 if x < 1,
4xa(1 + xa)−2 if x ≥ 1,

and completes the proof of (a).
Similarly, one proves (b). Since the random variables Tnj , j = 1, . . . , 4, are

independent, we have by Th. 9

m−1/2+γσ−1(Tn1, Tn2, Tn3, Tn4) D−−−−→
m→∞

(
U

(γ)
1 , U

(γ)
2 , U

(γ)
3 , U

(γ)
4

)
,

where U (γ)
1 , U

(γ)
2 , U

(γ)
3 , U

(γ)
4 are independent random variables with the same

distribution as T (γ) defined by (38). By measurable mapping,

MRγ,n
D−−−−→

n→∞
MRγ

a.s.= max
(
U

(γ)
1

U
(γ)
3

,
U

(γ)
3

U
(γ)
1

,
U

(γ)
2

U
(γ)
4

,
U

(γ)
4

U
(γ)
2

)
.

Since max
(
U

(γ)
1 /U

(γ)
3 , U

(γ)
3 /U

(γ)
1

)
and max

(
U

(γ)
2 /U

(γ)
4 , U

(γ)
4 /U

(γ)
2

)
are inde-

pendent and identically distributed random variables,

P (MRγ ≤ x) = P 2

(
max

(
U

(γ)
1

U
(γ)
3

,
U

(γ)
3

U
(γ)
1

)
≤ x

)
= P 2

(
1
x
≤ U

(γ)
1

U
(γ)
3
≤ x

)
.

Observing that

P

(
U

(γ)
1

U
(γ)
3
≤ x

)
=
∫ ∞

0
Fγ(xy) dFγ(y),

we complete the proof of (b) following the same steps as for (30).
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The statement (c) combines both proofs of cases (a) and (b) together with
Th. 5 and Th. 9.

Finally, (d) follows from Th. 10, noting that with A defined by (39),

P (n−1/aT (γ)
n ≤ δ) ≤ P (n−1/a max

1≤k≤n
|Xk| ≤ δ) ≤

(
1− A

δan

)n
→ exp{−Aδ−a}

as n→∞, so n−1/aT
(γ)
n is OP (1) and bounded away from 0 in probability.

5.2 Proof of Th. 2

Let Ho4,γ denote the product Hölder space endowed with ‖ ‖4,γ , where

Ho4,γ :=
4∏
j=1
Hoγ
[
j − 1

4 ,
j

4

]
, ‖(f1, f2, f3, f4)‖4,γ := max

1≤j≤4
‖fj‖γ .

Clearly, Ho4,γ is a separable Banach space. For f ∈ Hoγ [0, 1] and j = 1, . . . , 4,
denote by Rjf the restriction of f to the segment [(j − 1)/4, j/4], put R0

jf :=
Rjf −f((j−1)/4). We remark in passing that ωγ(Rjf, δ) = ωγ(R0

jf, δ). Next,
we define Φ(f) := (R0

1f,R
0
2f,R

0
3f,R

0
4f). The linear map Φ : Hoγ [0, 1]→ Ho4,γ is

continuous since ‖Φ(f)‖4,γ ≤ ‖f‖γ . To complete these functional preliminaries,
we introduce the map Ψγ : Ho4,γ → R4

+,

(f1, f2, f3, f4) 7−→
(
ωγ

(
f1,

1
4

)
, ωγ

(
f2,

1
4

)
, ωγ

(
f3,

1
4

)
, ωγ

(
f4,

1
4

))
.

As each ωγ involved in this formula is absolutely scalable and subadditive,
these properties are inherited by Ψγ . It follows that Ψγ is Lipschitzian, hence
continuous on Ho4,γ .

Recalling that n = 4m, we express T (γ)
nj in terms of ξn as

T
(γ)
4m,j = (4m)−γ max

1≤`≤m
max

(j−1)m≤k≤jm−`

∣∣ξn (k+`
4m
)
− ξn

(
k

4m
)∣∣(

`
4m
)γ .

Since for a polygonal line function g on the segment [b, c], ωγ(g, c−b) is reached
at two vertices, see Lemma 3 in [19], this can be recast as

T
(γ)
4m,j = 4−γm−γωγ

(
Rjξ4m; 1

4

)
= 4−γm−γωγ

(
R0
jξ4m; 1

4

)
, j = 1, . . . , 4.

It follows that for n = 4m,

n−1/2+γσ−1
(
T

(γ)
n1 , . . . , T

(γ)
n4

)
= (Ψγ ◦ Φ)

(
n−1/2σ−1ξn

)
.

As (Xk)k≥1 satisfies the HFCLT(γ), this gives, by measurable mapping,

n−
1
2 +γσ−1

(
T

(γ)
n1 , . . . , T

(γ)
n4

)
D−−−−→

n→∞

(
ωγ

(
R0

1W,
1
4

)
, . . . , ωγ

(
R0

4W,
1
4

))
. (40)
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In view of the independence of the increments of W , the four components of
the above limiting random vector are independent random variables. To find
the marginal distribution we observe that

ωγ

(
R0
jW,

1
4

)
= sup

0<t−s≤ 1
4

s,t∈[ j−1
4 , j4 ]

|W (t)−W (s)|
(t− s)γ

= sup
0<v−u≤1
u,v∈[0,1]

∣∣W ( j−1
4 + v

4
)
−W

(
j−1

4 + u
4
)∣∣(

v−u
4
)γ

= 4γωγ(Vj , 1),

where
Vj(u) := W

(j − 1
4 + u

4

)
−W

(j − 1
4

)
, u ∈ [0, 1].

Vj is a centered Gaussian process on [0, 1] with Vj(0) = 0, independent incre-
ments and EVj(u)2 = u/4. Hence Wj := 2Vj is a standard Brownian motion
on [0, 1]. Noticing that ωγ

(
R0
jW,

1
4

)
= 4γ

2 ωγ(Wj , 1), we can rewrite (40) as

2
4γ n

−1/2+γσ−1
(
T

(γ)
n1 , . . . , T

(γ)
n4

)
D−−−−−−−→

n=4m→∞

(
ωγ

(
W1,

1
4

)
, . . . , ωγ

(
W4,

1
4

))
,

whereW1, . . . ,W4 are independent standard Brownian motions on [0, 1]. Since
n = 4m, the normalization above is 2

4γ n
−1/2+γσ−1 = m−1/2+γσ−1. Now,

putting

U
(γ)
j := ωγ

(
Wj ,

1
4

)
, j = 1, . . . , 4,

the proof is completed exactly as the proof of Th. 1 (b).
In the i.i.d. case, the proof was simpler due to the independence of the

components for each n which enabled us to apply directly the HFCLT com-
ponentwise. In the above proof we use only asymptotic independence which is
encoded in the independence of the increments of the Brownian motion.

The constant σ in the definition of HFCLT(γ) is not necessarily equal to
EX2

1 . For instance, in the strong mixing case or in the associated case, see
e.g. [14], σ2 = EX2

1 +
∑∞
i=2 EX1Xi.

In [12], Giraudo obtains an extension of the HFCLT with a limit √ηW
where the random variable η is independent of W . The above proof can be
adapted to this case via Fubini arguments (keeping the same η for the four
subsegments of [0, 1]). Clearly, η disappears in the computation of MRγ .

5.3 Proof of Th. 3

We notice that for a > 1, (19) implies (18), so the series in (17) converges
almost surely and Xt ∈ RVa.
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Proof of Th.3 i). Here the sequence of observations is (Xi)i≥1 where

Xi = X
(q)
i :=

q∑
j=1

ψjεi−j .

By [20, Th. 3.2],

a−1
m T

(γ)
n,j (X(q)) D−−−−−−−→

n=4m→∞
cγ,qTj , j = 1, . . . , 4

where Tj has the Fréchet distribution with parameter a and

cγ,q := max
1≤`≤q

`−γ max
1≤k≤q−`+1

∣∣∣∣∣
k+`−1∑
i=k

ψi

∣∣∣∣∣ .
Unfortunately, the random variables T (γ)

n,j (X(q)), j = 1, . . . , 4 are dependent,
so we cannot deduce from the above weak convergences the convergence of the
vector a−1

m

(
T

(γ)
n,1 (X(q)), . . . , T (γ)

n,4 (X(q))
)
. To avoid this drawback, we remove

of each of the blocks the q last variables Xq
i , replacing T

(γ)
n,j (X(q)) by the

corresponding T
(γ)
n,j,q(X(q)), defined by (11), which are independent. Let us

check this. In the spirit of (11), we denote by mf(u, v, Z) the set of random
variables of the form f(Zu+1, . . . , Zv) where f is real valued, defined on some
Borel subset of Rv−u+1 and Borel measurable. Then for i ≥ 1, X(q)

i ∈ mf(i−
q − 1, i− 1, ε), whence

T
(γ)
n,j,q(X

(q)) ∈ mf
(
(j − 1)m, jm− q,X(q)) ⊂ mf

(
(j − 1)m− q, jm− q − 1, ε

)
⊂ mf

(
(j − 1)m− q, jm− q, ε

)
.

So the four random variables T (γ)
n,j,q(X(q)) are independent as measurable func-

tions of disjoint subsequences of the independent sequence (εt)t∈Z. A similar
result could be obtained by removing only the q − 1 last variables Xq

i in each
block. Our preference for the q last variables leads to some writing simplifica-
tion below.

Now, exactly as in the proof of Th. 1, by independence of components,

a−1
m−q

(
T

(γ)
n,1,q(X(q)), . . . , T (γ)

n,4,q(X(q))
)

D−−−−−−−→
n=4m→∞

cγ,q(T1, T2, T3, T4), (41)

where T1, . . . , T4 are i.i.d. with Fréchet distribution with parameter a. As
R4

+ \ D, the discontinuities set of M , has null measure for the distribution
of (T1, . . . , T4), this gives by measurable mapping and homogeneity of M ,

M
(
T

(γ)
n,1,q(X(q)), . . . , T (γ)

n,4,q(X(q))
)

= M
(
a−1
m−q

(
T

(γ)
n,1,q(X(q)), . . . , T (γ)

n,4,q(X(q))
))

D−−−−−−−→
n=4m→∞

M(T1, T2, T3, T4).
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Now, to prove Th.3 i), it is enough to prove the convergence in probability
to zero ofM

(
T

(γ)
n,1,q(X(q)), . . . , T (γ)

n,4,q(X(q))
)
−M

(
T

(γ)
n,1 (X(q)), . . . , T (γ)

n,4 (X(q))
)

or by homogeneity that of

M
(
a−1
m−qT

(γ)
n,1,q(X(q)), . . . , a−1

m−qT
(γ)
n,4,q(X(q))

)
−M

(
a−1
m T

(γ)
n,1 (X(q)), . . . , a−1

m T
(γ)
n,4 (X(q))

)
.

This last convergence in turn is implied by

a−1
m T

(γ)
n,j (X(q))− a−1

m−qT
(γ)
n,j,q(X

(q)) P−−−−−−−→
n=4m→∞

0, j = 1, . . . , 4. (42)

To check (42), we will prove the L1 convergence, which reduces the problem
in checking that E |∆n| tends to zero, where

∆n := a−1
n T (γ)

n (X(q))− a−1
n−qT

(γ)
n−q(X(q)).

Noticing that T (γ)
n (X(q)) ≥ T

(γ)
n−q(X(q)) ≥ 0 and that (a−1

n ) is non-increasing
in n, we get

E |∆n| ≤ E
(
a−1
n T (γ)

n (X(q))
)
− an−q

an
E
(
a−1
n−qT

(γ)
n−q(X(q))

)
+
(

1− an−q
an

)
E
(
a−1
n−qT

(γ)
n−q(X(q))

)
.

As (an) is a regularly varying sequence, it is easily seen that an−q/an tends
to 1, so the problem is reduced in proving the convergence of moment

E
(
a−1
n T (γ)

n (X(q))
)
−−−−→
n→∞

E (cγ,qT ) , with P (T ≤ x) = exp(−x−a), x > 0.

Since we already have the convergence in distribution by [20, Th. 3.2], we
need only to check the uniform integrability. To this aim we will prove that
for 1 < r < a,

sup
n≥1

E
(
a−1
n T (γ)

n (X(q))
)r

<∞. (43)

Now, we observe that

T (γ)
n (X(q)) = max

1≤`≤n
`−γ max

0≤k≤n−`

∣∣∣∣∣∣
k+∑̀
i=k+1

q∑
j=1

ψjεi−j

∣∣∣∣∣∣
= max

1≤`≤n
`−γ max

0≤k≤n−`

∣∣∣∣∣∣
q∑
j=1

ψj

k+∑̀
i=k+1

εi−j

∣∣∣∣∣∣
≤

q∑
j=1
|ψj | max

1≤`≤n
`−γ max

0≤k≤n−`

∣∣∣∣∣
k+∑̀
i=k+1

εi−j

∣∣∣∣∣ .



30 Jovita Gudan et al.

By convexity of t 7→ tr, puting K :=
∑q
j=1 |ψj |, we get

T (γ)
n (X(q))r ≤ Kr−1

q∑
j=1
|ψj |

(
max

1≤`≤n
`−γ max

0≤k≤n−`

∣∣∣∣∣
k+∑̀
i=k+1

εi−j

∣∣∣∣∣
)r

.

By stationarity of (εt)t∈Z, max1≤`≤n `
−γ max0≤k≤n−`

∣∣∣∑k+`
i=k+1 εi−j

∣∣∣ has the

same r-moment as max1≤`≤n `
−γ max0≤k≤n−`

∣∣∣∑k+`
i=k+1 εi

∣∣∣. This implies that

E
(
a−1
n T (γ)

n (X(q))
)r
≤ KrE

(
a−1
n max

1≤`≤n
`−γ max

0≤k≤n−`

∣∣∣∣∣
k+∑̀
i=k+1

εi

∣∣∣∣∣
)r

= KrE
(
a−1
n T (γ)

n (ε)
)r
.

By (4.5) in [28, Th. 4.2], E
(
a−1
n T

(γ)
n (ε)

)r
tends to ET r

1 , so (43) follows and
the proof of i) is complete.

Proof of Th.3 ii). Now, the observations Xi have the representation

Xi =
q∑
j=1

ψjεi−j +
∞∑

j=q+1
ψjεi−j = X

(q)
i +

∞∑
j=q+1

ψjεi−j .

We introduce the following random vectors of R4
+.

Vm :=
(
T

(γ)
m,1(X), . . . , T (γ)

m,4(X)
)
, V (q)

m :=
(
T

(γ)
m,1(X(q)), . . . , T (γ)

m,4(X(q))
)
,

V := (T1, . . . , T4).

If we prove the weak convergence of a−1
m Vm to cV for some constant c, then the

convergence (12), i.e., the weak convergence of M(Vm) to M(V ), follows by
measurable mapping and homogeneity of M . For the choice of c, it is natural
to try with

c = cγ,∞ := lim
q→∞

cγ,q = sup
`≥1

`−γ sup
k≥1

∣∣∣∣∣
k+`−1∑
i=k

ψi

∣∣∣∣∣ , (44)

which is finite in view of (19).
To establish the weak convergence of a−1

m Vm to cγ,∞V , it suffices to prove
that

lim
m→∞

E f(a−1
m Vm) = E f(cγ,∞V ) (45)

for each bounded function f : R4
+ → R such that |f(x) − f(y)| ≤ ‖x − y‖,

x, y ∈ R4
+, where say ‖(x1, . . . , x4)‖ :=

∑4
j=1 |xj |. To this end we note that

∣∣E f(a−1
m Vm)− E f(cγ,∞V )

∣∣ ≤
E ‖a−1

m (Vm − V (q)
m )‖+

∣∣∣E f(a−1
m V (q)

m )− E f(cγ,qV )
∣∣∣+ |cγ,q − cγ,∞|E ‖V ‖.
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From (41) and (42), a−1
m V

(q)
m converges in distribution to cγ,qV , hence

lim sup
n→∞

∣∣E f(a−1
m Vm)− E f(cγ,∞V )

∣∣ ≤ sup
m≥1

E ‖a−1
m (Vm − V (q)

m )‖

+ |cγ,q − cγ,∞|E ‖V ‖. (46)

Next, setting Vm,l := T
(γ)
m,l(X), V (q)

m,l := T
(γ)
m,l(X(q)) for l = 1, . . . , 4,

|Vm,l − V (q)
m,l | ≤

∞∑
j=q+1

|ψj | max
1≤`≤m

`−γ max
(l−1)m≤k≤lm−`

∣∣∣∣∣
k+∑̀
i=k+1

εi−j

∣∣∣∣∣ .
Like in the proof of i), this implies by stationarity of (εt)t∈Z,

E |Vm,l − V (q)
m,l | ≤

 ∞∑
j=q+1

|ψj |

E
(
a−1
m T (γ)

m (ε)
)
.

By (4.5) in [28, Th. 4.2], limm→∞ E
(
a−1
m T

(γ)
m (ε)

)
= ET1, whence C :=

supm≥1 E
(
a−1
m T

(γ)
m (ε)

)
, is finite and therefore

sup
m≥1

E ‖a−1
m (Vm − V (q)

m )‖ ≤ 4C
∞∑

j=q+1
|ψj |.

Thanks to this estimate and (44), letting q tend to infinity in (46) gives

lim sup
n→∞

∣∣E f(a−1
m Vm)− E f(cγ,∞V )

∣∣ = 0,

which proves (45) and completes the proof of Th. 3.

Remark 11. As a by-product of this proof, we obtain a slight improve-
ment of [20, Th. 3.6], where the convergence of a−1

n T
(γ)
n (X) to T1 is proved

under a stronger assumption than (19), namely
∑∞
j=3 |ψj |κj < ∞, where

κj = (j log log j)1/2 if var ε0 < ∞ or j1/r for some r < a, if a < 2 or a = 2,
and var ε0 =∞.

5.4 Proof of Th. 4

Proof of Th.4 i). Denote for, 1 ≤ ` ≤ n, 0 ≤ k ≤ n− `,

Ik,` = {k + 1, . . . , k + `},

and set I∗ = Ik∗,`∗ . For any subset I ⊂ {0, 1, . . . }, we denote by |I| the
number of elements in I. Consider I(j)

m = {(j− 1)m+ 1, . . . , jm}, j = 1, . . . , 4.
If `∗ < n/4, then either I∗ ⊂ I

(j)
m for one of j = 1, . . . , 4 or I∗ ⊂ I(j)

, ∪ I
(j+1)
n
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for one of j = 1, 2, 3. If I∗ ⊂ I
(j)
m , we have, denoting by i the other integer

with same parity as j in {1, 2, 3, 4},

MRn,γ ≥
Tnj
Tni

.

By Th. 5, [max(an, n1/2−γ)]−1Tni = OP (1), whereas

Tnj ≥ `∗−γ
∣∣∣ ∑
k∈I∗

(µn +Xk)
∣∣∣ ≥ `∗−γ∣∣∣ ∑

i∈I∗
µni

∣∣∣−OP (cn)

and the result follows.
If I∗ ⊂ I

(j)
m ∪ I(j+1)

m , then with i 6= j and of same parity, i′ 6= j + 1 and of
same parity as j + 1,

MRn,γ ≥ max
(
Tnj
Tni

,
Tn,j+1

Tni′

)
≥ Tn,j+1 + Tnj

2 max(Tni, Tni′)
.

Both Tni and Tni′ are of order max(an, n1/2−γ) in probability. Since

Tn,j+1 + Tnj ≥ `∗−γ
∣∣∣ ∑
i∈I∗

µni

∣∣∣−OP (cn),

the result follows.

Proof of Th.4 ii). First, we recall that D = (0,∞)4. It is elementary to check
that M is Lispchitzian on every compact subset of D and that in particular
on Kr := [r, 1/r]4, 0 < r < 1,

|M(y1, . . . , y4)−M(x1, . . . , x4)| ≤ 2
r3 max

1≤i≤4
|yi − xi|. (47)

In what follows, we use the abbreviations (11) for sequences of random vari-
ables as well as for sequences of real numbers.

We recall in particular that T (γ)
n (x) induces a norm on Rn. As T (γ)

n =
T

(γ)
n (Y ) = T

(γ)
n (X + µ), where µ represents (µn(k))1≤k≤n, this implies

|T (γ)
n − T (γ)

n (X)| ≤ T (γ)
n (µ). (48)

As µ = µ∗1I∗ , it is easily seen that

T (γ)
n (µ) = `∗(1−γ)|µ∗|. (49)

Let us fix an arbitrary positive ε. By tightness of the distribution of V ,
there exists a compact subset K of D, such that P (V ∈ K) > 1 − ε. Next,
we observe that if r′ < r, Kr ⊂ Kr′ and that D is the union of all the Kr,
0 < r < 1. Moreover, for r 6= r′, the boundaries ∂Kr and ∂Kr′ are disjoint
and the collection {∂Kr; 0 < r < 1} is uncountable. All this implies that we
can replace K by a compact Kr containing K and such that P (V ∈ ∂Kr) = 0:

P (V ∈ Kr) > 1− ε, P (V ∈ ∂Kr) = 0. (50)
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In view of assumption (23), P (V ∈ ∂Kr) = 0 implies that P (Vn ∈ Kr) tends
to P (V ∈ Kr), so there is some integer n1 such that

P (Vn ∈ Kr) > 1− 2ε, n ≥ n1. (51)

Now, by assumption (24), there is some integer n2 such that

c−1
n `∗(1−γ)|µ∗| < r

2 , n ≥ n2. (52)

Putting

V ′n := c−1
n

(
T

(γ)
n1 , . . . , T

(γ)
n4

)
,

we remark that by (48), (49) and the elementary fact that if 0 < s < r < 1,
1/s − 1/r > r − s, for n ≥ n2 the membership of Vn in Kr implies the
membership of V ′n in Kr/2. Consequently,

P (Vn ∈ Kr/2, V
′
n ∈ Kr/2) > 1− 2ε, n ≥ n0 := max(n1, n2). (53)

Accounting (47), (48), (49), (52) and (53) this implies that

P
(
|MRγ,n −M(Vn)| ≤ 8

r2

)
> 1− 2ε, n ≥ n0,

which gives the result by arbitrariness of ε and assumption (23).

Remark 12. As a by-product of this proof, we obtain the following consis-
tency result for the test with the statistics T (γ)

n instead of MRγ,n. Indeed, from
(48) and (49), it immediately follows that if for some normalizing sequence
(cn)n≥1, c

−1
n T

(γ)
n (X) = OP (1), then c−1

n T
(γ)
n tends to infinity in probability if

c−1
n `∗(1−γ)|µ∗| tends to infinity while c−1

n T
(γ)
n = OP (1) if c−1

n `∗(1−γ)|µ∗| tends
to zero. So roughly speaking, the boundary between the detectable and not
detectable epidemics is the same for both test statistics MRγ,n and T (γ)

n .
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Fig. 5: Empirical power of the test under the setting (13) with α = 0.1
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Fig. 7: Empirical power of the test under various settings with α = 0.1. The top
row corresponds to the situation under setting (12), second row corresponds to
the situation under setting (13), third row corresponds to the situation under
setting (15) and bottom row corresponds to the situation under setting (16).
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Fig. 8: Empirical power of the test under settings (15) (top row) and (16)
(bottom row) when parameter a is estimated from Hill estimator with α = 0.1

n = 200 n = 600 n = 1000

`∗ = 35 `∗ = 40 `∗ = 45 `∗ = 80 `∗ = 120 `∗ = 140 `∗ = 165 `∗ = 200 `∗ = 235

Log-Gamma

α = 0.05

γ = 0.01 0.4216 0.4377 0.4420 0.4850 0.6022 0.6581 0.6873 0.7520 0.8006
γ = 0.1 0.3929 0.4061 0.4620 0.4683 0.5968 0.6413 0.6294 0.7520 0.7748
γ = 0.2 0.5714 0.5741 0.5900 0.6514 0.7294 0.7945 0.7980 0.8314 0.8829
γ = 0.29 0.6835 0.7026 0.7130 0.7403 0.8244 0.8567 0.8549 0.8824 0.9415
γ = 0.3∗ 0.6915 0.6848 0.6810 0.6717 0.7285 0.7678 0.7588 0.8157 0.8482
γ = 0.3∗ 0.5099 0.5336 0.5860 0.6074 0.7491 0.7826 0.7833 0.8578 0.9087
γ = 0.31 0.4712 0.5000 0.5310 0.5405 0.6299 0.7194 0.7108 0.7804 0.8165
γ = 0.5 0.4692 0.4881 0.5160 0.5079 0.6801 0.7045 0.6971 0.7824 0.8145
γ = 0.7 0.4821 0.5168 0.4850 0.5396 0.6219 0.7036 0.7216 0.7696 0.8403
γ = 0.9 0.4792 0.5138 0.5060 0.5308 0.6487 0.7016 0.6912 0.7804 0.8244

α = 0.1

γ = 0.01 0.5030 0.5524 0.5660 0.5898 0.7043 0.7460 0.7627 0.8010 0.8472
γ = 0.1 0.4812 0.5296 0.5650 0.5511 0.6918 0.7421 0.7284 0.8088 0.8482
γ = 0.2 0.6260 0.6344 0.6400 0.6567 0.7769 0.8043 0.8049 0.8696 0.8958
γ = 0.29 0.7063 0.7273 0.7560 0.7535 0.8674 0.8587 0.8745 0.9206 0.9504
γ = 0.3∗ 0.7192 0.7194 0.6790 0.7148 0.7841 0.8221 0.8265 0.8549 0.8829
γ = 0.3∗ 0.6488 0.6680 0.7030 0.7201 0.8459 0.8814 0.8784 0.9265 0.9514
γ = 0.31 0.5952 0.6255 0.6660 0.6540 0.7545 0.8053 0.7941 0.8657 0.9058
γ = 0.5 0.6190 0.6383 0.6500 0.6717 0.7832 0.8113 0.8069 0.8853 0.8810
γ = 0.7 0.6022 0.6156 0.6530 0.6576 0.7796 0.7945 0.8147 0.8490 0.8879
γ = 0.9 0.5744 0.6235 0.6530 0.6391 0.7652 0.8103 0.7980 0.8480 0.8859

Pareto

α = 0.05

γ = 0.01 0.8522 0.9042 0.9290 0.9472 0.9884 0.9970 0.9951 0.9990 1
γ = 0.1 0.8383 0.8893 0.9210 0.9357 0.9848 0.9970 0.9912 1 1
γ = 0.2 0.9345 0.9437 0.9610 0.9745 0.9973 1 1 1 1
γ = 0.29 0.9514 0.9664 0.9780 0.9833 0.9982 1 1 1 1
γ = 0.31 0.8899 0.9308 0.9250 0.9419 0.9964 0.9990 0.9951 0.9990 1
γ = 0.5 0.8849 0.9249 0.9340 0.9595 0.9928 0.9990 0.9990 1 1
γ = 0.7 0.8839 0.9160 0.9470 0.9621 0.9964 0.9960 0.9980 0.9990 1
γ = 0.9 0.8849 0.9219 0.9390 0.9657 0.9919 0.9990 0.9980 0.9990 0.9990

α = 0.1

γ = 0.01 0.9167 0.9397 0.9550 0.9648 0.9964 0.9980 1 1 1
γ = 0.1 0.8839 0.9338 0.9520 0.9551 0.9982 0.9990 0.9941 0.9990 1
γ = 0.2 0.9395 0.9654 0.9720 0.9824 0.9982 1 0.9990 1 1
γ = 0.29 0.9692 0.9792 0.9890 0.9930 0.9991 1 1 1 1
γ = 0.31 0.9226 0.9595 0.9630 0.9762 0.9955 1 0.9990 1 1
γ = 0.5 0.9325 0.9654 0.9700 0.9789 0.9982 1 1 1 1
γ = 0.7 0.9375 0.9605 0.9730 0.9877 0.9946 0.9990 0.9990 0.9990 1
γ = 0.9 0.9177 0.9555 0.9730 0.9692 0.9982 1 0.9971 1 1

Table 4: Constant change in mean, µ∗n = 0.3, a = 5, 0.3∗ refer to (15) and 0.3∗
to (16)
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γ\α 0.01 0.025 0.05 0.075 0.1 0.15 0.2
0 2.9541 2.6914 2.3608 2.2338 2.1297 1.9124 1.8734

0.05 2.7869 2.6455 2.5091 2.4334 2.1182 2.0001 1.8852
0.1 3.0655 2.6363 2.4194 2.2677 2.1697 1.9778 1.7648
0.15 2.9574 2.3971 2.0329 2.0086 1.9711 1.8637 1.8004
0.2 2.5323 2.1146 2.0384 1.9896 1.9384 1.8224 1.7526
0.25 2.1312 2.0824 2.0030 1.8593 1.7569 1.7296 1.6374
0.3 2.0613 1.8489 1.7989 1.7331 1.7079 1.6168 1.5263
0.35 1.6921 1.6238 1.6077 1.5399 1.5282 1.4405 1.4162
0.4 1.6583 1.5223 1.4805 1.4561 1.4259 1.3669 1.3411
0.45 1.3999 1.3559 1.3212 1.3053 1.2856 1.2578 1.2219

Table 5: Asymptotic critical values for 0 ≤ γ < 1/2− 1/a, a > 2.

a\α 0.01 0.025 0.05 0.075 0.1 0.15 0.2
4 4.4665 3.5454 2.9717 2.6764 2.4824 2.2277 2.0582
10 1.8197 1.6591 1.5460 1.4826 1.4386 1.3777 1.3347
50 1.1272 1.1066 1.0910 1.0819 1.0754 1.0662 1.0594
100 1.0617 1.0519 1.0445 1.0402 1.0370 1.0326 1.0293

Table 6: Asymptotic critical values for γ > 1/2− 1/a, a > 2.
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Fig. 9: Type I errors of the test under settings (12) and (13) with various
parameter a values, n = 300, α = 0.05
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