
HAL Id: hal-04499940
https://hal.science/hal-04499940v1

Preprint submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Winning tickets from two Collatz graphs’ structures.
Hubert Schaetzel

To cite this version:

Hubert Schaetzel. Winning tickets from two Collatz graphs’ structures.. 2024. �hal-04499940�

https://hal.science/hal-04499940v1
https://hal.archives-ouvertes.fr


WINNING TICKETS FROM TWO COLLATZ GRAPHS'

STRUCTURES

HUBERT SCHAETZEL

Abstract. The Collatz conjecture states that, starting with any strictly
positive integer, the (3x+1) algorithm leads systematically to the same
cycle (1, 4, 2, 1, · · · ) after a �nite number of steps. The only poten-
tial exceptions to this rule on the positive side of Z∗ are the existence
of either separate cycles or separate in�nite divergent series. We will
analyse the constraints and impediments on these types of objects using
the underlying structures and laws linked to the Collatz algorithm. We
will �rst prove the link of any integer to a tree structure with a unique
root consisting of a cycle, therefore con�rming the impossibility of some
open series of integers coming down from in�nity and growing back up
to in�nity. We will then prove that the previously mentioned cycle is
unique within the natural numbers by examining the two limit cases de-
duced from the parity vectors of the smallest element of any cycle with
w elements, by using the cycles' rational formal solutions and by exploit-
ing the Diophantine approximations' theory and a result linked to the
property of the gcd of rational numbers that allows here to encompass
all intermediary cases.
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1. The algorithm

Let us have i an index and ui an integer di�erent from zero (positive or
negative). The Collatz algorithm consist in dividing ui by 2 if ui is even and
to multiply it by 3 and adding 1 otherwise in order to get ui+1 recursively.

ui+1 =

{
ui/2 if ui ≡ 0 (mod 2),

3ui + 1 if ui ≡ 1 (mod 2).

According to the Collatz conjecture, starting with any integer in N∗, this
algorithm leads to the same cycle (1, 4, 2, 1, · · · ).

2. Conventions and vocabulary

Vocabulary. Part 1.
We use standard graph vocabulary and a few additional conventions

• vertex : any integer,
• successor : a successor vertex is obtain by applying the Collatz algo-
rithm to an integer; an integer has one immediate successor; when
speaking of successor in the singular we mean the immediate succes-
sor,

• antecedent : an antecedent vertex is obtain by applying the Collatz
algorithm to an integer in the reverse way (upturn or upwards); an
integer has one or two immediate antecedents according to its value;
when speaking of antecedent in the singular we mean an immediate
antecedent,

• active vertex : a green or blue integer (an integer equal to 1 or 2
modulo 3),

• inactive vertex : a yellow vertex (an integer equal to 0 modulo 3),
• link : an edge between two vertices,
• active link : a link giving a blue or green antecedent,
• branch : a set of vertices connected by some links,
• inactive branch : a branch with only yellow vertices,
• graph : an arbitrary initial choice of a vertex or cycle and then all
the vertices and links formed by its successors and antecedents,

• inactive graph : a graph with ultimately only inactive ascendant
branches; note : such graph has only a �nite number of branches,

• root : the cycle or unique vertex (the latter being proven impossible)
at the bottom of a graph,

• rank : the upturn step of antecedents from the root ; by extension,
the term is also used for the number of upturn steps starting from
some chosen integer,

• graph crown : the set of vertices and links of a graph except its root
(or initial integer).



WINNING TICKETS FROM TWO COLLATZ GRAPHS' STRUCTURES 3

Color code. Let us consider the values of the integers modulo 3. We as-
sociate the green color to the 1 (mod 3) integers, the blue color to the 2
(mod 3) integers and the yellow color to the 0 (mod 3) integers.

1 (mod 3) 2 (mod 3) 0 (mod 3)

Vocabulary. Part 2.

• integers : N∗ designates the natural numbers, while N includes 0.
The same convention holds for Z∗ and Z for integers.

• stopping time : executing the Collatz algorithm, the step when the
absolute value of the resulting integer is equal or smaller than the
chosen initial integer.

• odd step : a multiplicative operation (3x+1) on x. The total number
of odd steps is noted v at the stopping time.

• even step : a division operation (x/2) on x. The total number of
even steps is noted w at the stopping time.

Note. We will use regularly, in the second part of the article, the term
"asymptotically" for diverse events. The reader will notice that such cases
may however often occur quite soon despite its intrinsic remote meaning.

Part 1. The trees' structure

3. Graph crowns

Let us have the color code de�ned previously. There are 1 or 2 immediate
antecedents for any integer and it is then straightforward to get the modulo
values of these immediate antecedents and corresponding colors according to
the six cases given in �gure 1.

Figure 1. Collatz reverse algorithm : List of antecedents'
modulo values.

The initial set of integers, of course, is chosen in order to cover a complete
set of congruences:
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Case 1 0 (mod 3)
Case 2 1 (mod 3) 1 (mod 6)
Case 3 4 (mod 6) 4 (mod 18)
Case 4 10 (mod 18)
Case 5 16 (mod 18)
Case 6 2 (mod 3)

It is likewise easy to verify that the antecedents' set is also a complete set
of congruences:

Case 1 0 (mod 6)
Case 3 1 (mod 6)
Case 2 2 (mod 6) 2 (mod 12)
Case 3 8 (mod 12) 8 (mod 36)
Case 4 20 (mod 36)
Case 5 32 (mod 36)
Case 4 3 (mod 6)
Case 6 4 (mod 6)
Case 5 5 (mod 6)

Lemma 1. There is no blue antecedent to a blue vertex.

Proof. Case 6 in �gure 1 is the only alternative. It shows green vertices as
antecedents. □

Lemma 2. A green vertex may have a green antecedent vertex. But the later
cannot have another green antecedent.

Proof. Case 3 followed by case 2 in �gure 1 is the only alternative and shows
a blue vertex after two consecutive green vertices. □

Lemma 3. Any branch is linked to an active branch.

Proof. Recall, by our earlier de�nitions, a inactive branch contains only yel-
low vertices. The antecedent of a yellow vertex is unique (case 1 of �gure
1) and is yellow, therefore the branch is inactive up to in�nity once a yellow
vertex appears. But the bottom yellow vertex of that branch has necessarily
a green successor which is linked upwards to a blue vertex (case 4 of �gure 1)
and then again upwards to a green vertex (case 6 of �gure 1). This last green
vertex is equivalent to 4 (mod 6) and therefore has always 2 antecedents pro-
viding the début of an active branch as for there on, whatever follows, one
encounters always at least a blue or a green vertex as antecedent, a yellow
vertex never appearing alone (but with a blue vertex as shown in case 4). □

4. Roots

Figure 1 shows that any integer has two or three links. The 3 links' pattern
is the one that allows roots to thrive with a crown graph. The objective of
this section is to prove that this blossom will always occurs : Any root has
a crown graph.
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Lemma 4. The two lemmas 1 and 2 apply also in a cycle.

Proof. The Collatz algorithm is the same in any circumstances (in cycles as
in linear branches). □

Lemma 5. There is no root with one vertex. The only root with two vertices
is (−1,−2). The only root with three vertices is (1, 2, 4). There is no root
with four vertices. The only root with �ve vertices is (−5,−14,−7,−20,−10).
There is no root with six vertices.

Proof. Let us verify all the 21 possibilities for one vertex u0 → u−1 = u0
going from the initial integer upwards antecedents: we get u0 → u0 =
or(2u0, (u0−1)/3). Hence u0 = or(0,−1/2) and therefore no solutions in Z∗.
The 22 possibilities for two vertices are u0 → u−1 → u−2 = u0 so that u0 →
or(2u0, (u0 − 1)/3) → or(4u0, 2(u0 − 1)/3, (2u0 − 1)/3, ((u0 − 1)/3− 1)/3).
Hence u0 = or(0,−1,−2,−1/2). Only −1 and −2 are in our domain of de�-
nition Z∗ and give e�ectively a cycle with two vertices. For three vertices, the
23 initial solutions are (0, 1, 2,−4/7, 4,−5/7,−8/7,−1/2) where only (1, 2, 4)
are in Z∗ and is e�ectively a cycle with 3 vertices. For four vertices, the
24 initial solutions are (0, 1/5, 2/5, −4/5, 4/5,−1, −8/5,−13/25, 8/5,−7/5,
−2,−14/25,−16/5, −17/25,−26/25,−1/2) where only (−1,−2) are in Z∗

and is e�ectively a cycle, but only with 2 vertices, a redundancy with the
previous search. Similarly, one can resolve the �ve and six vertices' cases. □

Another cycle with 18 vertices is known in Z− to this day. Of course,
to solve it with the given previous method would be quite cumbersome and
painful due to the 218 = 262144 equations to solve. The 4 known cycles are
represented in �gures 3 to 6.

Lemma 6. There is no root containing a yellow vertex.

Proof. The antecedent of an integer equal to 0 (mod 3) is unique and double
its value (case 1 of �gure 1). The next antecedent likewise and so up to
in�nity. Thus it cannot cycle back to its initial value. □

Lemma 7. In a root, there cannot be 2 blue vertices next to each other. In
a root, there can be possibly 2 green vertices next to each other, but not 3.

Proof. This is an immediate result of lemma 4 and �gure 1. □

Lemma 8. In a root, a blue vertex has no link towards the outside of the
root. In a root, an isolated green vertex has always a link towards the outside
of the root. In a root, a pair of green vertex has one and only one of the
vertex with a link towards the outside of the root.

Proof. One gets again all the information from �gure 1. For the blue vertex,
which can only have two links (case 6), the two have to be inner links to
get a cycle. For the isolated green vertex, the only contradictory case would
be case 2, but then its value is equal to 1 (mod 6) and it is therefore linked
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to the green vertex on the top of case 3 which will have a blue link to the
outside. □

Lemma 9. Any root has active links towards the outside.

Proof. For roots with less than six vertices, refer to �gures 3 to 5 to con�rm
the claim. We know by �gure 1 (cases 3, 4 and 5) that outside links from
roots can only grow from green vertices. So then suppose that yellow vertices
are growing out from two possible most narrow links. Figure 2 shows the
two only possible cases of pieces of roots one can get on these premises. For
each separate case in this �gure, the vertices on the left side are those within
the root itself and the vertices on the right side are the �rst items out of that
root. White vertices may be green or blue, it doesn't matter. From �gure 1,
we know that the annotated green vertices must equal 10 (mod 18) as the
only case with two antecedents of which one is yellow is case 4. We then
consider the following two alternatives.

Case 1: Start from the �rst green vertex towards the top equal to 10+18k1.
It is even thus the vertex underneath is equal to 5+ 9k1. The next vertex is
then either equal to (5 + 9k1)/2 or 16 + 27k1. This vertex in the same time
must equal 10+18k2. Therefore either 3(k1−4k2) = 5 or 3(3k1−2k2) = −2
which are both impossible with k1, k2 ∈ Z.

Case 2: Start again from the �rst green vertex equal to 10 + 18k1. The
vertex underneath is equal to 5 + 9k1. The next vertex is then either equal
to (5 + 9k1)/2 or 16 + 27k1. The next vertex is then either (5 + 9k1)/4,
3(5 + 9k1)/2 + 1, (16 + 27k1)/2 or 3(16 + 27k1) + 1. This last vertex in
the same time must equal 10 + 18k2. Therefore either 9(k1 − 8k2) = 35,
3(3k1 − 4k2) = 1, 9(3k1 − 4k2) = 4 or 3(9k1 − 2k2) = −13 which are again
all impossible. So we cannot have "adjacent" yellow vertices stemming from
a root. We know also from lemma 8 that a supplementary intermediate
blue-green-blue vertices' sequence without external link is impossible. Now
considering a complete root, we know by lemma 7 that there are at least
half of green vertices in any root. If these green vertices are systematically
by pairs (which is certainly an absurd situation that we have not seek to
object), there are anyway still at least 1/3 of the vertices in the root having
links with a crown graph. Now from the above discussion, less then half of
these links are yellow. Therefore, the number of active links is at least 1/6
of the root's cardinal. Thus with more than 6 vertices, a root has necessarily
active links. □

For the four known cycles, as the reader can check directly, all the �rst
links towards the outside of the root are active links. Shalom Eliahou [1] has
proven that any unknown cycle in N∗ would contain at least 17026679261
vertices (for the elements of the cycle only) and therefore would have, thanks
to our own above study, more than 2837779877 active links.
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Figure 2. Pieces of roots.

Figure 3. Cycle 1.

5. Graphs

Now that we know that any root has a crown graph, let us go further on
this blossoming pattern.

Lemma 10. A graph has one and only one root.
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Figure 4. Cycle 2.

Figure 5. Cycle 3.

Proof. Let suppose the existence of a graph with two or more roots and
let consider two of them. Applying the inverse algorithm, at some stage
upwards among all the rami�cations, there will be a common antecedent to
two distinct vertices. As there is only one successor to a given integer, there
is a contradiction to the way the Collatz algorithm works. Therefore only
one unique root is the rule for any graph. □

Lemma 11. Any integer belongs to a graph.

Proof. This is lemma 3 □

Lemma 12. There is no inactive graph.

Proof. This is again lemma 3. According to �gure 1, any active vertex has
at least one active antecedent. Therefore:

Case 1: Starting from any active vertex, the cardinal of the successive
antecedents is the same or increases, and this an in�nite number of times.
Hence, the graph is not inactive.
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Figure 6. Cycle 4.

Case 2: Starting from any inactive vertex, its successors (in downwards
Collatz algorithm) are divided by 2 as long as the result is even, otherwise
the successor gets green and is hence an active vertex bringing us back to
case 1. □

Theorem 1. Any integer belongs to an active graph with a unique root.

Proof. This is the aggregated result of lemmas 9, 10, 11 and 12. □

This proves our �rst point that there is no divergent series stemming from
some given integer nor some series coming down from in�nity and growing
back up to in�nity. There is always a root on the base of a Collatz tree
structure and this root is unique.

Part 2. The parity vectors' structure

6. Cycles' classification

Lemma 13. The composition of linear functions is a linear function.

Proof. The lemma is obvious, but let us develop the precise result. Let us
have Tk(x) = akx + bk, k = 1 to i, a series of linear functions and let us
consider CTi(x) = Ti ◦ Ti−1 ◦ ... ◦ T1(x). Then CT1(x) = a1x+ b1, CT2(x) =
a2a1x+a2b1+b2, ... and CTi(x) = aiai−1...a1x+aiai−1...a2b1+aiai−1...a3b2+
...+ aiai−1...ai−3bi−4 + aiai−1ai−2bi−3 + aiai−1bi−2 + aibi−1 + bi. □

Lemma 14. The composition of j linear functions with ak = 1/2 and bk = 0
and i− j linear functions with ak = 3/2 and bk = 1/2, in that speci�c order,
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is equivalent to the linear function :

LTi(x) =
3i−j

2i
(x+ 1− (

2

3
)i−j) (1)

Proof. We have Tk(x) = (3x + 1)/2, k = 1 to i − j and Tk(x) = x/2, k =
i−j+1 to i. Using the previous lemma, we get LTi(x) = (3i−jx+3i−j−120+
3i−j−221 + 3i−j−322 + ...+ 332i−j−4 + 322i−j−3 + 312i−j−2 + 302i−j−1)/2i =
3i−j2−i(x+3−1(1+(2/3)1+(2/3)2+ ...(2/3)i−j−1)). Thus the former result.

□

Lemma 15. The function HTi(x) = LTi(x)/x is an hyperbolic function,
therefore strictly monotonous, de�ned everywhere except for x = 0. Its value
is equal to 1 for the unique solution :

x = −
1− (23)

i−j

1− 2j(23)
i−j

Posing v = i− j the number of 3x+1 multiplications and w = i the number
of divisions by 2, we get also :

x = −
1− (23)

v

1− 2w−v(23)
v

(2)

Proof. We have Tk(x) = 3i−j2−i(1+(1−(2/3)i−j)(1/x)) which is obviously a
hyperbolic function. Its derivative is equal to −3i−j2−i(1− (2/3)i−j)(1/x2),
therefore of the sign of the constant expression −(1 − (2/3)i−j). Solving
Tk(x) = 1 gives immediately the result x given in the lemma. □

Lemma 16. Let us pose

w = ⌊ ln(3)
ln(2)

v⌋+ 1− incr (3)

using the �oor function and incr being an integer. Then
if incr > 1, −2 < x < 0,
if incr < 0, 0 < x < 1.

Proof. Let us go back to equation 2. We get immediately x = −(1− (2/3)v)/
(1− 2w/3v). For small values de v, we verify the proposition numerically
and �gure 7 illustrates the point. If v >> 1, as v diverges, the numerator
1−(2/3)v will tend towards 1−. Then 0 > x > −1/(1−1/2) = −2 if 2w/3v <
1/2. Solving 2w/3v < 1/2, we get w < (ln(3)/Ln(2))v − 1. Then replacing
w with the expression of the lemma, we get ⌊(ln(3)/Ln(2))v⌋ + 1 − incr <
(ln(3)/Ln(2))v − 1, therefore 1 ≤ ⌊(ln(3)/Ln(2))v⌋ − (ln(3)/Ln(2))v + 2 <
incr which is the announced lower limit value of incr. Studying the second
condition, we observe that 0 < x < −1/(1 − 2) = 1 if 2w/3v > 2. Solving
2w/3v > 2, we get w > (ln(3)/ln(2))v+1. Then replacing w with the expres-
sion of the lemma, we get ⌊(ln(3)/Ln(2))v⌋+1− incr > (ln(3)/Ln(2))v+1,
therefore 0 ≥ ⌊(ln(3)/Ln(2))v⌋ − (ln(3)/Ln(2))v > incr which is this time
the announced highest limit value of incr. □
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Note. The value of x tends towards −1 when incr increases asymptotically
(incr → +∞). The value of x tends towards 0 when incr decreases asymp-
totically (incr → −∞).

Note. The �gures 8 and 9 illustrate the two cases incr = 0 and incr = 1. The
ordinates are in these two cases in logarithmic scales (ln(x) for incr = 0 and
ln(-x) for incr = 1).

Figure 7.
Solutions to HTw(x) = 1,
incr = −3,−2,−1, 2 and 3.

Figure 8. Solutions to HTw(x) = 1, incr = 0.

Lemma 17. The previous solution x is the largest in absolute value to the
equation PTk(y)/y = 1, where PTk(y) is any permutation of the composition
Ti◦Ti−1◦...◦T1(x) keeping here the same number of (3x+1)/2 multiplications
and x/2 divisions.

Proof. Let us have a = 3i−j−120 + 3i−j−221 + 3i−j−322 + ... + 332i−j−4 +
322i−j−3+312i−j−2+302i−j−1, thus HTi(x) = (3i−jx+a)/2ix = 1 has solu-
tion x = a/(2i−3i−j). Here the denominator has a �xed value and therefore
the absolute value of x is maximal if the absolute value of a diminish when
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Figure 9. Solutions to HTw(x) = 1, incr = 1.

the permutation is applied (giving a smaller alternative value y). In order to
get the �nal composition of the linear functions, we apply a �nite number of
elementary permutations such that each one switches two members 3n12m1

and 3n22m2 to 3n1−12m1+1 and 3n2+12m2−1, where n1 > n2 and m1 < m2,
systematically reducing the value of the initial a (because 3 > 2). Thus the
result. □

Theorem 2. The Collatz algorithm may lead to a cycle in N∗ if and only
if the number of (3x+1) multiplications, noted v, to the number of (x/2)
divisions, noted w, meets the condition

Type1 : w = ⌊ ln(3)
ln(2)

v⌋+ 1 (4)

and may generate a cycle in Z− N if and only if it meets the condition

Type0 : w = ⌊ ln(3)
ln(2)

v⌋. (5)

Proof. According to the lemmas 16 and 17, which hold in ℜ and therefore
also in Z, the largest absolute value y to equation PTw(y) = 1 is smaller
then 2 (for any value of incr di�erent from 0 or 1), a �nite interval that one
can easy totally explore numerically for solutions and check that there are
none. One can then conclude on the value of w in Z∗ using again lemma 16
which distinguish the two cases on incr. □

Note. Checking the known cycles (except 0 which meets the type 1), using
ln(3)/ln(2) ≈ 1.58496, we get the following numerical results
Type 1 : y = 1, v = 1, w = 2 and 2 = ⌊(ln(3)/ln(2)).1⌋+ 1,
Type 0 : y = −1, v = 1, w = 1 and 1 = ⌊(ln(3)/ln(2)).1⌋,
Type 0 : y = −5, v = 2, w = 3 and 3 = ⌊(ln(3)/ln(2)).2⌋,
Type 0 : y = −17, v = 7, w = 11 and 11 = ⌊(ln(3)/ln(2)).7⌋.
The reader may refer to the �gures 3 to 6 to check that the cycles meets the
number of (3x+1) multiplications and (x/2) divisions.
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7. Limit cases

Lemma 18. The ratio ln(3)/ln(2) is irrational.

Proof. Let us suppose ln(2)/ln(3) = p/q, where p and q are integers. Then
q.ln(2) = p.ln(3), so that ln(2q) = ln(3p) and �nally 2q = 3p, which is
obviously false. Thus ln(3)/ln(2) /∈ Q. □

Lemma 19. Let us consider x0 any positive integer. Applying v odd steps
and w even steps in some order of the Collatz algorithm to x0, the nearest
result y0 to the initial integer x0 among all combination of the said odd and
even steps, is equal to

y0 =
3v

2w
x0 +

1

2w−v
((
3

2
)v − 1) (6)

Proof. Applying �rst all the (3x+1)/2 multiplications, we get y0 = (3vx0 +
3v−120 + 3v−221 + 3v−322+ ... +312v−2 + 302v−1)/2v/2w−v = (3v/2w)x0 +
(1/2w−v)((3/2)v − 1). Applying �rst all the (x/2) divisions, we get y0 =
(3vx0+3v−12w−v+3v−22w−v+1+3v−32w−v+2+ ... +312w−2+302w−1)/2w−v/2v

= (3v/2w)x0 + ((3/2)v − 1). The other combinations give intermediary val-
ues between these two results and the �rst expression is the nearest result
y0 to x0 because of the additional ratio (1/2w−v) smaller then 1 in front of
((3/2)v − 1). □

Lemma 20. The ratio xw/x0, where x0 > 0 and xw is resulting from a
Collatz algorithm is systematically such that

xw
x0

>
3v

2w

Proof. The nearest y0 to x0 means that xw/x0 ≥ y0/x0. Thus using the
previous lemma result

xw
x0

≥ y0
x0

=
3v

2w
+

1

x0

1

2w−v
((
3

2
)v − 1) >

3v

2w
.

□

Lemma 21. Let us have x0, xw, v and w some �xed strictly positive values
meeting the condition of lemma 20, that is 3v/2w < xw/x0. The function
f(k) = (xw + k.3v)/(x0 + k.2w) is continuous over positive or null k, de-
creasing monotonously from xw/x0 towards 3v/2w, the later an asymptotic
value.

Proof. The function f(k) is a hyperbolic function which is unde�ned at the
unique strictly negative value k = −x0/2

w, therefore is continuous on R+.
The derivative is f ′(k) = (x0.3

v − xw.2
w)/(x0 + k.2w)2, therefore of the sign

of x0.3
v − xw.2

w which is strictly negative by the chosen hypothesis. The
function therefore evolves over R+ monotonously from xw/x0 at k = 0 to
the limit value 3v/2w when k → ∞. □
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Lemma 22. Let us have some positive integer x0 and xw its result by the
Collatz algorithm at its stopping time. If the stopping time is �nite then the
ratio xw/x0 is such that 1/2 < xw/x0 ≤ 1.

Proof. By de�nition of the stopping time, we have xw/x0 ≤ 1. The last step
of the algorithm is necessarily an even step which either gives exactly the
value of x0 or a strictly greater value of its half. Using (3x+ 1)/2 multipli-
cations and (x/2) divisions, each step of the process includes a division by 2,
therefore w is the appropriate index to count them and v will be the number
of multiplications. □

Lemma 23. Let us consider the set {x0+k.2w, k ∈ Z}. Then, if xw exist for
a �nite w, the elements of the set {xw+k.3v, k ∈ Z} are the resulting values of
the initial set at their respective stopping time and moreover x0 < 2w (recall
also that 0 < x0 by hypothesis) and 1/2 < (xw + k.3v)/(x0 + k.2w) ≤ 1.

Proof. This is mostly a well-known result but is worth reviewing. By hypoth-
esis, it is clear that the elements resulting from x0 being divisible w times by
2 then x0 + k.2w is also divisible in the same condition w times. Moreover
at each step the distance 2t between the intermediary results xi + k.2t is
constant and equal to 2w−s3m where s is the number of steps at that stage
and m the number of (x+1)/2 multiplications, hence a distance 203v at the
stopping time. Now for k = 0, the number of steps v and w is necessarily
such that 3v/2w ≤ 1 (in fact 3v/2w < 1 by lemma 18) but in the closest way
as a division by 2 is always the last step of the stopping time process and
therefore 3v/2w > 1/2. Now according to lemma 21, xw/x0 > 3v/2w so that
x0.3

v−x0.xw < xw.2
w−x0.xw and so x0(3

v−xw) < xw(2
w−x0) is equivalent

to (3v − xw)/(2
w − x0) < xw/x0 because x0 < 2w providing the �rst sample

of the (xw + k.3v)/(x0 + k.2w) were k is negative. Here k = −1 < −x0/2
w

which is the unde�ned abscissa of the hyperbolic function. Therefore, as
we know that the function is strictly decreasing, the ratio is increasing from
(3v − xw)/(2

w − x0) up asymptotically towards 3v/2w as k → −∞. □

Theorem 3. At its stopping time, for a �nite non-cyclic event, the number
of (3x+1) multiplications, noted v, to the (x/2) divisions, noted w, is such
that

w = ⌊ ln(3)
ln(2)

v⌋+ 1 (7)

over the whole domain Z.

Proof. According to lemma 23, 1/2 < (xw + k.3v)/(x0 + k.2w) ≤ 1 and the
elements of set x0 + k.2w, k ∈ Z have all the same number of odd and even
steps at the stopping time. We get also, for k = 0, 1/2 < 3v/2w ≤ 1 which

is equivalent to w = ⌊ ln(3)ln(2)v⌋+ 1. □

Lemma 24.
1

2
<

3v

2w
< 1 ⇔ w = ⌊ ln(3)

ln(2)
v⌋+ 1
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Proof. The only point to complete from the previous proof is that 2w

3v ̸= 1
which is obvious. □

Having established the type of most of the integers, let us study the un-
derlying structure derived from the stopping time w which depends on v by

the relationship w = ⌊ ln(3)ln(2)v⌋+ 1. Starting from the set Z, let us remove all

the elements such that {v = 0, w = 1} that are in the interval [0, 2w−1 = 1[.
Only 0 complies and the other elements satisfying {v = 0, w = 1} are sep-
arated by a distance 2w = 2, therefore the even integers. Then we discard
the elements such that {v = 1, w = 2} in the interval [0, 2w − 1 = 3[, where
only 1 meets the requirement and those separated by a distance 2w = 4 from
the formers, hence all 1 mod 4 integers. Going to step {v = 2, w = 4}, we
consider the integers in interval [0, 2w − 1 = 15[, where only 3 meets the
requirement and the complement separated by a distance 2w = 16, hence all
3 mod 16 integers. At next step {v = 3, w = 5}, we consider the integers in
interval [0, 2w−1 = 31[, where only 11 and 23 meets the requirement and all
those separated by a distance 2w = 32, hence all 11 mod 32 and 23 mod 32
integers. This removal process is illustrate in the table underneath by low-
ering the initial integers to the corresponding v−indexed line. Of course the
integers −1, −5 and −17 in red in the second line can never be a�ected as

those comply with w = ⌊ ln(3)ln(2)v⌋ instead of w = ⌊ ln(3)ln(2)v⌋+ 1.

Table 1
v −19 −17 −15 −13 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11

−17 −5 −1
1 −19 −15 −11 −7 −3 1 5 9
2 −13 3
3 −9 11

De�nition. We will call parity vector the binary representation 1 or 0 of the
sequence of odd (as (3x+1)/2 multiplications) and even steps of the Collatz
algorithm applied to some initial integer until the stopping time in the order
of apparition. The parity vector is of size w.

It includes v digits 1 and w − v digits 0.

De�nition. We call a licit parity vector that one that doesn't break any rule
of the Collatz algorithm during an altitude �ight routine.

Let us consider, for example, the parity vector 100. It is not licit because
the number of even steps written here (that is 2) is greater than the correct
value w−v = ⌊(ln(3)/ln(2).v)⌋+1−v here (that is 1+1−1 = 1). The altitude
�ight time is exceeded in this writing. Similarly, writing 10111100 is not licit,
even if we do have globally w−v = ⌊(ln(3)/ln(2).v)⌋+1−v = 7+1−5 = 3, as
the altitude �ight time is met prematurely by writing 10 at the beginning of
the sequence. For some given parity vector, in the same way, one has to check
its validity at each new even intermediate step. For example, with parity
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vector 111111101000100, the three intermediate necessary checks for a pre-
mature non licit parity vector are the following ones between corresponding
parentheses (((11111110)1000)100). We have 8−7 = 1 < ⌊(ln(3)/ln(2).v1⌋+
1−v1 = 12+1−7 = 6, 12−8 = 4 < ⌊(ln(3)/ln(2).v2⌋+1−v2 = 13+1−8 = 5
and 15− 9 = 6 = ⌊(ln(3)/ln(2).v3⌋+1− v3 = 14+1− 9 thus corresponding
e�ectively to a licit parity vector.

This summarizes as follows.

Lemma 25. The rule linking w to v being respected, there are two limit
cases for the licit parity vectors. The �rst one is where the components 1 are
all on the left and the components 0 follow.

11...1︸ ︷︷ ︸
v times

00...0︸ ︷︷ ︸
w-v times

The second is where the components 1 are shifted on the right in such a
way that at each step it stays a licit vector. For those, an easy algorithm is
proposed in order to construct them. It consist to use the limit parity vector
at step v − 1 and replace the last 0 by 1 and complete to the right with the
necessary number of 0 to get w − v of them in total.

10
1100
11010
1101100
11011010
1101101100
...

Proof. The proof is in the lemma's self-explanation. □

Note. Theorem 3 and Table 1 explain why there can be more than one
cycle within the negative integers. It is because the smallest element of the
cycles is "outside" the standard parity vectors' structure which is subject to

w = ⌊ ln(3)ln(2)v⌋+ 1.

8. The Collatz cycles' scarcity

Lemma 26. The smallest rational value solution to the smallest element x0
of a cycle on the N∗ side of Z is equal to

x0 =
3v − 2v

2w − 3v
. (8)

Proof. As solution to a hyperbolic equation, the cycle solution to some given
order combination of odd and even steps is unique. In lemma 19, we got
the following intermediary result y0 = (3v/2w)x0+1/2w−v((3/2)v − 1) when
applying �rst all the (3x+1)/2 multiplications while meeting the relationship
w = ⌊(ln(3)/ln(2)).v⌋ +1. The solution to y0 = x0 is therefore the proposed
one because applying any other combinations of the even and odd steps will
increase the solution x0. □
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Lemma 27. Using a logarithmic scale on the ordinates, the expression f(v) =
3v−2v

2w−3v − 1 is located around the horizontal axis 1, in some apparently sym-

metrical way, with diverging points (towards +∞ or towards 0+) depending

largely on the rational approximations of ln(2)
ln(3) .

Proof. The �gure 10 visualize the lemma for the reader and provides an
answer to the "symmetry" around ordinate 1−axis. The said expression
diverges if and only if 2w − 3v → 0, which is equivalent to 2w/3v → 1.
Replacing w by its value, we get

2⌊(ln(3)/ln(2))v⌋+1

3v = 2⌊(ln(3)/ln(2))v⌋+1−(ln(3)/ln(2))v 2(ln(3)/ln(2))v

3v

= 2⌊(ln(3)/ln(2)).v⌋+1−(ln(3)/ln(2)).v

→ 1

and therefore ⌊ ln(3)ln(2)v⌋ +1− ln(3)
ln(2)v → 0.

These kind of events occurs of course only if ln(3)
ln(2)v approaches an integer

value, so that ln(3)
ln(2)v → n equivalent to ln(2)

ln(3) → v/n for some n ∈ N (and v ∈
N). Let us observe that ln(2)

ln(3) ≈ 0.63092975 and that {53/84 ≈ 0.63095238,
306/485 ≈ 0.630927835, 665/1054 ≈ 0.63092979} and therefore the diverg-
ing locations' representation on the �gure is only approximative with v = 0
mod 53 being one of the proposed locations (in green) and v = 0 mod 306
a stronger one (in red) and v = 0 mod 665 even more so (in yellow) as the
fraction narrows the goal in a better way. □

Figure 10. Data 3v−2v

2w−3v − 1.

Note. The previous lemma shows the importance to get the best rational

approximations of the the real number ln(2)
ln(3) . For any continued fraction, the

best rational approximations are also called the convergents of the continued
fraction [4] and are represented by the Gaussian brackets [5].
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Lemma 28. The coe�cients cfi of the continued fraction of ln(2)
ln(3) follow

fairly a Gauss-Kuzmin discrete probability distribution. That is

p(cfi) → − log2(1−
1

(cfi + 1)2
)

Proof. The Gauss-Kuzmin discrete probability distribution p(cfi) arises as
the limit probability distribution of the coe�cients in the continued frac-
tion expansion of a random variable uniformly distributed in (0, 1) [5]. A
numerical veri�cation, with a small size sample (2000 elements), shows that
the coe�cients of the continued fraction of ln(2)

ln(3) follow fairly that distribu-
tion. □

Lemma 29. The o�set ∆r of ln(2)
ln(3) with its best rational approximations is

approximatively

∆r = (
ln(2)

ln(3)

1

v
)2.

Proof. Here the continued fraction cf starts with the Gaussian bracket [0;
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, ...]. Table 2 gives the
corresponding resulting extracted fractions. Using the theory of Diophan-
tine approximations, the Dirichlet theorem states that there exists for any
positive irrational number ir an in�nity of couples (p, q) ∈ N ∗ N∗ such that
| ir− p

q | < a
q2
, a being some �nite value. This theorem is of course optimum

for the best rational approximations. Applying this to ir = ln(2)
ln(3) , we can

thus �nd two in�nite series of integers {vi}, {wri} and an in�nite series of

real numbers {ai} such that ln(2)
ln(3) −

vi
wri

= ai
wr2i

. The index i is here a dummy

index and the values of vi are the one corresponding to v for which we get
the said best approximations. Besides, the denominator wri is either equal
to w or w − 1 according to the cases where ln(3)

ln(2)vi tends to an integer from
beneath or from above. An approximate value |ai| ≈ 1 is then obtained
by numerical veri�cation. Asymptotically wi = ⌊ ln(3)ln(2)vi⌋ + 1 ≈ ln(3)

ln(2)vi and

therefore | ln(2)ln(3) −
vi
wri

| ≈ ( ln(2)ln(3)
1
vi
)2. The �gures 11, 12, 13 and 14 show the

excellent match by making the choice |ai| ≈ 1 which is likely the asymptotic
exact value. In the 3 last �gures, we indicate the values of the coe�cients
of the continued fraction next to the representative points. We remark that
the higher these coe�cients the better the "�ne tuning" at that step with
the exact excepted value. □
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i cf fraction v w approx x0(v) x0(v, w
−)

0 0 0/1 0 1 0 0
1 1 1/1 1 2 1 1 −1
2 1 1/2 1 2 0.5 1
3 1 2/3 2 4 0.66666667 0.71429 −5
4 2 5/8 5 8 0.62500000 16.23077
5 2 12/19 12 20 0.63157895 1.01974 −73.72361
6 3 41/65 41 65 0.63076923 86.7389
7 1 53/84 53 85 0.63095238 1.00419 −479.39702
8 5 306/485 306 485 0.63092784 977.7448
9 2 665/1054 665 1055 0.63092979 1.00009 −22907.85023
10 23 15601/24727 15601 24727 0.63092975 54960.9
11 2 31867/50508 31867 50509 0.63092975 1.00001 −137648.0025
12 2 79335/125743 79335 125743 0.63092975 272871.59
13 1 111202/176251 111202 176252 0.63092975 1.00001 −277761.83
14 1 190537/301994 190537 301994 0.63092975 15502072.2
15 55 10590737/16785921 10590737 16785922 0.63092975 1.00000 −19120269.3
16 1 10781274/17087915 10781274 17087915 0.63092975 81920324.8
17 4 53715833/85137581 53715833 85137582 0.63092975 1.00000 −287969592.7
18 3 171928773/272500658 171928773 272500658 0.63092975 558903955.
19 1 225644606/357638239 225644606 357638240 0.63092975 1.00000 −594045517.

Table 2

Figure 11. Comparison of ap = log10(abs(
ln(2)
ln(3) −

v
wr )) with

2log10(
ln(2)
ln(3)

1
v ).

Lemma 30. The following strictly inequality is true for all v > 2

1

2
<

2w−1 + 2v−1

3v
< 1.

Proof. If v = 0, 2
w−1+2v−1

3v = 3
2 . If v = 1, 2

w−1+2v−1

3v = 1. If v = 2, 2
w−1+2v−1

3v =
10
9 . These cases are excluded.

The equality 2w−1 + 2v−1 = 3v is obviously false as soon as v > 1 for con-
tradiction on parity between the two members of the equation, the �rst one
being even, the second odd. One can then check the inequality for a sig-
ni�cant number of values of v. Using the same approach as in the proof of

lemma 29, we can write rigorously ln(3)
ln(2) −

wri
vi

= ci
vi2

, where |ci| ≈ 1 as soon



20 HUBERT SCHAETZEL

Figure 12. Detail relative to �gure 11.

Figure 13. Detail relative to �gure 11.

Figure 14. Detail relative to �gure 11.

as for example v = 10. That is equivalent to ln(3)
ln(2)vi −wri =

ci
vi

where wri is
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either equal to w or w − 1 according to the cases where ln(3)
ln(2)vi tends to an

integer from beneath or from above. Therefore, getting rid of indices, w =
ln(3)
ln(2)v+or(0, 1)− c

v , |c| ≈ 1. As w = ⌊ ln(3)ln(2)v⌋+1 = ln(3)
ln(2)v+⌊ ln(3)ln(2)v⌋−

ln(3)
ln(2)v+1,

we get or(0, 1) − c
v = ⌊ ln(3)ln(2)v⌋ −

ln(3)
ln(2)v + 1. Therefore if ln(3)

ln(2)v tends to an

integer from beneath, we get c
v = ln(3)

ln(2)v − ⌊ ln(3)ln(2)v⌋ − 1, c ≈ −1 and if ln(3)
ln(2)v

tends to an integer from above, we get c
v = ln(3)

ln(2)v − ⌊ ln(3)ln(2)v⌋, c ≈ 1. This

can be summarized, i being some positive integer that ln(3)
ln(2)v is the nearest

by, with

ln(3)
ln(2)v − ⌊ ln(3)ln(2)v⌋ ≈

c
v if ln(3)

ln(2)v → i+

ln(3)
ln(2)v − ⌊ ln(3)ln(2)v⌋ ≈ 1− c

v if ln(3)
ln(2)v → i−

where c ≈ 1.

Now 2w−1

3v = 2
⌊ ln(3)
ln(2)

v⌋

3v = 2
⌊ ln(3)
ln(2)

v⌋− ln(3)
ln(2)

v
2
ln(3)
ln(2)

v

3v = 2
⌊ ln(3)
ln(2)

v⌋− ln(3)
ln(2)

v
= 2or(−

c
v
,−1+ c

v
).

Then 2w−1+2v−1

3v = 2or(−
c
v
,−1+ c

v
) + 2v−1

3v , hence two cases.

If ln(3)
ln(2)v → i+ provides 2−

c
v + 2v−1

3v = e−ln(2) c
v + 2v−1

3v ≈ 1− ln(2) cv + 1
2(

2
3)

v.

As v is exponentiated in the last term, this one will converges to 0 faster

than the term preceding it. Therefore 2w−1+2v−1

3v → 1−.

If ln(3)
ln(2)v → i− provides 2−1+ c

v + 2v−1

3v = 1
2e

ln(2) c
v + 2v−1

3v ≈ 1
2 +

1
2 ln(2)

c
v +

2v−1

3v

→ 1
2

+
. These are of course limit cases but are the only ones we have to

be concerned with as the intermediary cases' values will land between these
two.

Let us be even more cautious and go back to the approximate value of
c and have a look at the inconsistency of its value if the limit cases were
to be met. If we reconsider the above �rst case, the limit situation would

be to write the equality 2−
c
v + 2v−1

3v = 1. When v increases asymptotically,
bringing the second term on the left side of the equation near 0, obviously
to meet the equality would require to bring the �rst one up near 1 and
therefore c nearer and nearer to 0. More precisely, using ln(1 + x) → x for

small x, will conduct to c = −v
ln(1− 1

2
( 2
3
)v)

ln(2) → v
2ln(2)(

2
3)

v. This contradicts

already the requirement that c is a constant. Let us however measure the
resulting o�set. We get log10(c) → log10(

v
2ln(2)) + v.log10(

2
3) ≈ v.log10(

2
3) ≈

−0.176v. This is to be compared to log10(c) = log10(1) = 0 that we used for

�gure 11. The basis formula | ln(2)ln(3) −
v
wr | ≈ ( ln(2)ln(3)

1
v )

2 for this �gure is to be

replaced by | ln(2)ln(3)−
v
wr | ≈ c.( ln(2)ln(3)

1
v )

2 which is equivalent to log10| ln(2)ln(3)−
v
wr | ≈

log10(c) + log10((
ln(2)
ln(3)

1
v )

2) ≈ −0.176v+ log10((
ln(2)
ln(3)

1
v )

2). This gives an o�set

as represented in �gure 15. The dark blue dashed line is now replaced by the
clear blue dashed line. This is totally incompatible with the Gauss-Kuzmin
discrete probability distribution's red (almost) line (remembering especially
that the representation is in logarithmic scale). Let us not forget here also,
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as mentioned previously [1], that any unknown cycle in N∗ would contain at
least 17026679261 vertices, that is v ≥ 10742638550 or log10(v) ≥ 10.03. At
this stage, to meet the limit case, c ≈ 1 has to be replaced already by the
way o� value c ≈ 1.4 10−1891684748 to compensate (which is quite absurd).

We can resume the former argument for the second case. The result is
then very close from the previous one, with only a change in sign of c and a
slight change in absolute value which does not require further analysis. □

Figure 15. Comparison of ap = log10(abs(
ln(2)
ln(3) −

v
wr )) with

−0.176v + 2log10(
ln(2)
ln(3)

1
v ) (clear blue line).

Theorem 4. There are no cycle of rank v > 1 in N∗.

Proof. Let us consider, for some given rank v > 1, the two limit cases x0 and
x′0 obtained within the domain of the licit parity vectors such as provided
by lemma 25.
We get

x0 =
3v−120 + 3v−221 + 3v−322 + ...+ 312v−2 + 302v−1

2w − 3v

and

x′0 =
3v−120 + 3v−221 + 3v−323 + 3v−424 + 3v−526 + 3v−627 + ...+ 302w−1−or(1,2)

2w − 3v
,

the term or(1, 2) depending on the limit parity vector at rank v ending with
1 or 2 zeroes. We intend to study the greatest common divisor between
numerator (num) and denominator (den) of these expressions. In order to
make the understanding easier let us start with an example. Let us choose
v = 4, w = 7 and one of the corresponding licit parity vector 1110100.
Therefore we get num = 3320+2132+2231+2430 and den = 2w − 3v. Then
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gcd(den, num) = gcd(27 − 34, 2033 + 2132 + 2231 + 2430) (1)
= gcd(27 − 34, 3(3320 + 2132 + 2231 + 2430))
= gcd(27 − 34, 3420 + 2133 + 2232 + 2431)
= gcd(27 − 34, 3420 + 2133 + 2232 + 2431 + 27 − 34)
= gcd(27 − 34, 2133 + 2232 + 2431 + 2730)
= gcd(27 − 34, 33 + 2132 + 2331 + 2630) (2)
= gcd(27 − 34, 33 + 2232 + 2531 + 2630) (3)
= gcd(27 − 34, 33 + 2332 + 2431 + 2530) (4)
= gcd(27 − 34, 33 + 2132 + 2231 + 2430) (1)

We give the detail from step (1) to step (2), the other ones being entirely
similar. In each main steps (1) to (4), the exponents of 3 are unchanged
and decrease from v − 1 = 3 to 0. The only "challenge" is to handle the
exponents of 2. One has to proceed as follows. Start with (0, 1, 2, 4) which
is the initial list of the exponents of 2 and add w = 7 at the end of the
list (0, 1, 2, 4; 7). Shift the list by one to the left and subtract the value of
the �rst item to each number and add w = 7 at the end of the list again
(1−1, 2−1, 4−1, 7−1; 7) ≡ (0, 1, 3, 6; 7). Continue (1−1, 3−1, 6−1, 7−1; 7) ≡
(0, 2, 5, 6; 7). Again (2−2, 5−2, 6−2, 7−2; 7) ≡ (0, 3, 4, 5; 7) until going back
to the initial expression (3 − 3, 4 − 3, 5 − 3, 7 − 3; 7) ≡ (0, 1, 2, 4; 7). Here,
during the process, the total number of subtractions is v = 4 and add to
w = 1+1+ 2+ 3 = 7. Obviously it is a general pattern. Now, for any value
v, if t0 is some smallest elements of a cycle in N, we will have den = 2w − 3v

and num = 3v−120 + 3v−221 + ... + 302w−1−or(1,2) = 2w − 3v. Let us have
(0, i1, i2, i3, ..., iv−1;w) the initial corresponding list of exponents. Then we
inherit of a numerators' list containing v lines which each must correspond
to exact multiples of 2w − 3v

(0, i1, i2, i3, ..., iv−2, iv−1;w)
(0, i2 − i1, i3 − i1, i4 − i1, ..., iv−1 − i1, w − i1;w)
(0, i3 − i2, i4 − i2, i5 − i2, ..., w − i2, w + i1 − i2;w)

...
(0, w − iv−1, w + i1 − iv−1, w + i2 − iv−1, ..., w + iv−3 − iv−1, w + iv−2 − iv−1;w)

before getting back to the initial

(0, i1, i2, i3, ..., iv−2, iv−1;w).

The case that each of the corresponding gcd be equal to 2w−3v bends largely
to absurdity. But let us continue anyway.

We can step by step use these v expressions to reduce by (linear) sub-
tractions and multiplications the powers of 3. That construction leads, in a
systematic way, to expressions between commas containing each 4 members
(if v > 3) as 4 terms disappear at each step being equal by pairs (and yes
the 2 last ones 2w−i4+i1 − 2w−i4+i2 underneath emerge always at the end of
the process whatever the value of v)
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3 + 2iv−1−1 − 2iv−2−1 + 2w−i4+i1 − 2w−i4+i2

and therefore to the following greatest common divisor to be studied

gcd(2w − 3v, 3 + 2iv−2−1(2iv−1−iv−2 − 1)− 2w−i4+i1(2i2−i1 − 1)).

Although interesting by its simplicity, the second component of this gcd is
not systematically smaller than 2w − 3v , an event which would constituted
a lucky �rst condition to prove our aim. Therefore, let us focus instead only
on the two �rst items of the previous list:

(0, i1, i2, i3, ..., iv−1;w)
(0, i2 − i1, i3 − i1, i4 − i1, ..., w − i1;w).

As we mentioned, in order to get a Collatz' cycle, the �rst item corresponds to
a value that equals exactly 2w−3v while the second one must then correspond
to an exact non-zero multiple of the same value. So let us have the two
corresponding terms:

3v−120 + 3v−22i1 + 3v−32i2 + 3v−42i3 + ...+ 312iv−2 + 302iv−1

3v−120 + 3v−22i2−i1 + 3v−32i3−i1 + 3v−42i4−i1 + ...312iv−1−i1 + 302w−i1

The gcd linked ratio r of the second term to the �rst one is

r = 3v−120+3v−22i2−i1+3v−32i3−i1+3v−42i4−i1+...312iv−1−i1+302w−i1

3v−120+3v−22i1+3v−32i2+3v−42i3+...+312iv−2+302iv−1

=
1+ 2i2−i1

31
+ 2i3−i1

32
+...+ 2

iv−1−i1

3v−2 + 2w−i1

3v−1

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1

Now the exponents are issued from a parity vector and therefore we have
systematically i1 = 1. So that

r =
1+ 2i2−1

31
+ 2i3−1

32
+...+ 2

iv−1−1

3v−2 + 2w−1

3v−1

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1

=
1+ 2i1−1

30
+ 2i2−1

31
+ 2i3−1

32
+...+ 2

iv−1−1

3v−2 +( 2
w−1

3v−1 −1)

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1

.

Let us have

c0 =
2i1
31

+ 2i2
32

+ 2i3
33

+ ...+ 2iv−2

3v−2 + 2iv−1

3v−1 and g = 2w−1

3v−1 − 1.

Then

r = 1+3c0/2+g
1+c0

.

Therefore the conditions underneath, if one of them is true, are equivalent

3/2 < r < 2 ⇔ {g > 1/2 and c0 > 2(g − 1)}
⇔ {2w

3v > 1 and c0 > 3(2
w

3v − 4
3)}.

Let us observe that starting with a lower and upper bound on r, we end with
only a lower bound on c0. This is a main simplifying event as we will see
very soon. Meanwhile, let us examine the two limit cases.
For i1 = 1, i2 = 2, i3 = 3, ..., iv−1 = v − 1, we get
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c0 = 1 + 21

31
+ 22

32
+ 23

33
+ ...+ 2v−2

3v−2 + 2v−1

3v−1 − 1

=
1− 2v

3v

1− 2
3

− 1

= 3(23 − 2v

3v )

Now

w = ⌊ ln(3)ln(2)v⌋+ 1 ⇒ 2w

3v > 1
2w−1+2v−1

3v < 1 ⇒ 3(23 − 2v

3v ) > 3(2
w

3v − 4
3)

The �rst implication results from lemma 24. The second implication, an
equivalence in fact, results from lemma 30. Therefore the term r, lying
strictly between 3

2 and 2, cannot be an integer which proves the �rst limit
case. Now for the second case (and all intermediary ones) the term

c1 =
2i1
31

+ 2i2
32

+ 2i3
33

+ ...+ 2iv−2

3v−2 + 2iv−1

3v−1

is necessary superior, as ik ≥ k for all k ∈ 1, 2, ..., v − 1, to the term

c0 = 21

31
+ 22

32
+ 23

33
+ ...+ 2v−2

3v−2 + 2v−1

3v−1

Hence c1 > c0 > 3(2
w

3v − 4
3) proving the second case and all intermediary

cases which corresponding values ci will be strictly between c0 and c1. □

Figure 16 shows a sample of the value of r − 1. It shows the constraint

r → 3
2

+
in the case of the second limit case which is a consequence of

1
2 < 2w−1+2v−1

3v (see lemma 30). Note also the common value r − 1 = 6
5 for

v = 2 in the �rst and second limit cases.
Appendix B provides a computer program to evaluate the ratio r − 1 for

some initial choice of x0 that the reader may implement.

Figure 16. Ratio r − 1.

Theorem 5. The Collatz conjecture is true.

Proof. This is an immediate consequence of the two theorems 1 and 4. □
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The reader may refer to [6] for a longer version of this article with addi-
tional arguments con�rming the Collatz conjecture.

Mainly, we show that any Collatz tree grows at the same asymptotic pace,
a result rather obvious when admitting that the reverse Collatz algorithm is
asymptotically a random process. A second "equal" sized tree should have
then be easily detected in N∗.

Exploiting the 2w periodicity of the integers with equal stopping time and
studying the smallest ones, that we call 2w-seeds, the precise evaluation of
the number of the said seeds, considering a random distribution, allows us to
show that their abscissas in N∗ grows exponentially while the corresponding
abscissa of the smallest element of a cycle grows polynomially which is again
asymptotically incompatible with the Collatz conjecture to be false.
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Appendix A. Continued fraction of Ln(3)/Ln(2)

The following program provides the continued fraction of ln(2)
ln(3) and the

corresponding successive fractions' approximations. For ln(3)
ln(2) , the continued

fraction starts with [1; 1, 1, 2, ...] instead of [0; 1, 1, 1, 2, ...].

PARI/GP progamming code.
\p 5000
{nb = 20;
vct = vector(nb); x = log(2)/log(3);
for(i = 1, nb, vct[i] = x\1;
y = 1/(x-vct[i]); x = y);
print(vct);
for(i = 2, nb, t = i; x = vct[t];
for(j = 2, i, k = t-j+1; x = vct[k]+1/x);
print(numerator(x)" "denominator(x)))}

The following program provides an alternative way to get the continued

fraction of ln(2)
ln(3) and the corresponding successive fractions' approximations.

It may be analogous to the Terence Jackson / Keith Matthews algorithm in
the article "On Shanks' algorithm for computing the continued fraction of
logb(a)" (see reference [2]).

PARI/GP progamming code.
{infty = 10000000000;
e1 = 1; e2 = 0;
v1 = 0; w1 = 1; v2 = 1; w2 = 1;
printtex(cf" "num" "den);
print(0" "v1" "w1);
print(1" "v2" "w2);
for(n = 1, 50, v3 = v1+v2;
for(cf = 1, infty, m = cf;
v3 = v3+v2;
w3 = (log(3)/log(2)*v3)\1+1-e2;
r1 = (w3-w1)/(v3-v1);
r2 = w2/v2;
if(r1 == r2, ,v3 = v3-v2; break));
w3 = (log(3)/log(2)*v3)\1+1-e2;
print(m" "v3" "w3);
e1 = 1-e1; e2 = 1-e2;
v1 = v2; v2 = v3;
w1 = (log(3)/log(2)*v1)\1+e1;
w2 = (log(3)/log(2)*v2)\1+e2)}
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Appendix B. Evaluation of the gcd linked ratio

The following program provides the evaluation of the ratio r− 1 for some
initial values x0 equal to 3 mod 4. The ratio n°1 is always in the interval
]0, 1[ except here if v = 2 for the said initial values.

Note that sometimes the exponentiation sign � won't copy successfully
and has to be retyped manually (4 corrections to implement in that case).

PARI/GP progamming code.
{infty = 10000;
for(i = 1, 10, \\ make choice
x0 = 4*i+3;
parv = addp = shft = vector(1);
t = (3*x0+1)/2 ; parv[1] = 1; shft[1] = 0; v = 1;
for(k = 1, infty, if(t < x0, break,
if(t/2 == t\2, t = t/2;
addp[1] = 0, v = v+1; t = (3*t+1)/2; addp[1] = 1);
parv = concat(parv, addp[1])));
print("Initial value = "x0", v = "v);
print("Parity vector "parv);
w = (log(3)/log(2)*v)\1+1; addp[1] = 0; m = 1;
for(k = 1, v, n = m;
for(j = 1, w-n, if(parv[n+j] == 0, m = m+1, break)); m = m+1; addp[1] = m-1;
shft = concat(shft, addp[1])); shftp = shftn = shft; tot0 = 0.0;
for(k = 1, v, tot0 = tot0+(3 � (v-k))*(2 � shftn[k]));
for(j = 1, v-1,
for(k = 3, v+1, shftp[k-1] = shftn[k]-shftn[2]);
print("Exponents vector "shftp); tot1 = 0.0;
for(k = 1, v, tot1 = tot1+(3 � (v-k))*(2 � shftp[k]));
r = tot1/tot0; print("Ratio n°"j": "r-1); shftn = shftp))}
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