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Abstract: Yb:CALYGLO crystals with a dopant concentration of 5 at.% were successfully grown using
the Czochralski method. The crystal samples were extensively studied to analyze their structure,
room temperature and low temperature spectra, and laser properties. The highest absorption cross-
section at 977 nm was calculated to be 1.83 × 10−20 cm2 for σ polarization and 5.32 × 10−20 cm2

for π polarization. Similarly, the emission cross-section was determined to be 1.38 × 10−20 cm2 at
980 nm for σ polarization and 2.28 × 10−20 cm2 at 981 nm for π polarization, with a full width at
half maximum (FWHM) of 50.3 nm and 89.5 nm, respectively. The fluorescence lifetime of the 5 at.%
Yb:CALYGLO crystal at 2F5/2 was measured to be 1.10 ms. Additionally, gain cross-sections were
calculated for different β values. In the continuous laser experiment, the crystal demonstrated a laser
output of 20.15 W at 1057 nm, with a slope efficiency of 53.3%. These experimental findings indicate
that the lattice of Y3+ in the crystal is partially replaced by Lu3+ and Gd3+, resulting in a broader
spectrum. Consequently, this crystal shows promising potential as a gain medium for ultrashort
pulse laser crystals.

Keywords: Yb:CALYGLO; Czochralski method; low temperature spectra; ultrafast laser

1. Introduction

The 2023 Nobel Prize in Physics was awarded for a revolutionary method. This
method allows the generation of extremely short pulses of light, enabling the precise
measurement of rapid electron movements and energy changes. The development of
ultrashort pulse lasers has garnered significant interest in various fields including science,
industry, medicine, and the military due to their vast potential for application [1–7].

In the near-infrared band, Yb3+ ions have simpler energy levels compared to Nd3+

ions, consisting of only two manifolds. Furthermore, there are no higher excited state
energy levels above the upper level, resulting in the absence of excited state absorption,
fluorescence up-conversion, and concentration quenching effects. Additionally, Yb3+ doped
laser material exhibits a strong absorption band near 940 nm, which can be efficiently
pumped by InGaAs LD within the 930–980 nm range, and demonstrates high coupling [8].
Moreover, the large emission bandwidth of Yb3+ is advantageous for the generation of
ultrashort pulse lasers. Numerous Yb3+ doped host materials have been reported in this
field, including GdScO3 [9], YAG [10,11], Y2O3 [12], Lu2O3 [13], CALGO [14,15], etc.

The CaYAlO4 crystal belongs to the tetragonal system, and its spatial group is I4/mmm.
Due to the charge difference and random distribution between Ca2+ ions and Y3+ ions
leading to their disordered lattice structure, the results indicate that the spectral band of
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the CaYAlO4 crystal has obvious uneven broadening [16]. Therefore, when the lattice is
doped with Yb3+, its absorption and emission spectra will be non-uniformly broadened,
which is conducive to the realization of ultrashort pulse laser output. At the same time, the
CaYAlO4 crystal itself is considered as one of the most promising ultrafast laser gain media
for commercial development due to its high structural disorder and excellent thermal
properties [17]. It has been reported continuously that the shorter pulse laser duration was
achieved via the Kerr-lens mode locking (KLM) technique from CaLnAlO4 lasers [18–21]. It
has been reported that the addition of Lu3+ ions in CaLnAlO4 matrix materials increases the
disorder of the crystal lattice. The random distribution between Ca2+ ions, Y3+ (Gd3+) ions,
and Lu3+ ions will further broaden the spectral band of active RE3+ doping ions [22,23]. At
the same time, in Gd-based oxides, the ionic radii of Lu3+ and Yb3+ are closer in Lu-based
oxides, making doping easier to achieve. Simultaneously, there is a weaker dependence of
thermal properties on the doping level. [24]. In recent years, more “mixed” crystals have
also been continuously explored [25–27].

In this paper, a single crystal of Yb:CaY0.85Lu0.05Gd0.05AlO4 with a Yb concentration
of 5 at.% was grown using the Czochralski method. The study focused on the growth
and structure of the Yb:CALYGLO crystal, as well as the spectral properties of Yb3+ in
the crystals at room and low temperatures. Additionally, CW laser experiments were
conducted on the crystal at room temperature. In CALYO crystals, the substitution of Y3+

lattice sites with Lu3+ and Gd3+ ions was performed to enhance disorder and broaden the
spectrum of doped ions, ultimately enabling the generation of ultrashort pulse laser output.

2. Materials and Methods
2.1. Crystal Growth

The 5 at.% Yb:CaY0.85Lu0.05Gd0.05AlO4 crystal was successfully grown by the Czochral-
ski method. The raw materials were Lu2O3, Gd2O3, CaCO3, Al2O3, Y2O3, Yb2O3 powder,
with a purity of 99.999%. They were weighed according to the formula:

2 CaCO3 + 0.05 Yb2O3+ 0.85 Y2O3 + 0.05 Lu2O3 + 0.05 Gd2O3 + 1 Al2O3

→ 2 CaYb0.05Y0.85Lu0.05Gd0.05O4 + 2 CO2 ↑.

After the dry powder mixing method was used to achieve uniform mixing, the mixture
was then molded into a bar shape and sealed. The bar was cooled under 100 MPa using
a cold isostatic pressing machine for 3 min, resulting in a solid block. Subsequently, the
block was placed in a muffle furnace and subjected to a presintering process at 1300 ◦C
in an air atmosphere for 20 h. Following this, furnace charging and crystal growth were
carried out. CaYAlO4 crystals with a size of 5 × 5 × 25 mm3 in the crystalline a-axis were
used as seed crystals for growth. During the growth process, the pulling rate was 1 mm/h,
and the rotation rate was 15 rpm. To prevent the iridium crucible from oxidizing due
to the oxygen in the air, a protective atmosphere of high-purity N2 was used. Once the
seed crystal was connected, the power was slightly increased to promote necking, which
effectively prevents dislocation and impurities from entering the crystal. After the growth
was completed, the crystal was cooled to room temperature for 48 h before being taken out.
Finally, the Yb:CALYGLO crystal was obtained, as depicted in Figure 1. The crystal exhibits
color centers and appears light yellow, which can be eliminated through annealing.
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Figure 1. Photograph of as-grown 5 at.% Yb:CALYGLO crystal.

2.2. X-ray Diffraction and ICP-AES Measurement

The German Bruker D2 type X-ray powder diffractometer was used to perform XRD
testing on the Yb:CALYGLO single crystal. Cu-Kα radiation was used as the radiation
source. The scanning range (2θ) was 5◦ to 90◦, and the step size was 0.01◦. The XRD
instrument was operated at a setting voltage of 30 kV and a current of 10 mA. The sample
used for XRD testing is a small part of the grown Yb:CALYGLO single crystal processed
into powder.

In order to understand the segregation of each doping ion in the crystal, induc-
tively coupled plasma atomic emission spectrometry (ICP-AES) was used to measure the
Yb:CALYGLO crystal. The plasma emission spectrometer (model: Advantage, Thermo,
Manasquan, NJ, USA) used for testing was used to determine the element content. The
sample was cut off about 1.0 g from the head of the grown Yb:CALYGLO crystal and
then ground into powder for testing. The segregation coefficient can be calculated using
Formula (1), and the Yb3+ concentration (Cs) in the sample used for spectral measurement
can be determined using Formula (2).

Km =
Ct

C0
(1)

Cs = C0Km(1 − g)Km−1 (2)

where C0 is the concentration of Yb3+ when batching; Ct is the concentration of Yb3+ at
the starting position of crystal growth, g is the crystal crystallization rate, and C0 is the
segregation coefficient. The segregation coefficients of Yb3+, Gd3+, Lu3+, and Y3+ were
calculated to be 0.65, 0.81, 0.58, and 1.01, respectively. The segregation coefficients of Yb3+

and Lu3+ ions are similar because they have similar ionic radii, so the difficulty of doping
is similar. For Yb3+ ions, the calculated result of Cs in the Yb:CALYGLO crystal is 3.4%, and
the doping ion concentration per unit volume can be calculated to be 4.34 × 1020 cm2. The
measurement results and calculated segregation coefficients of Yb3+, Lu3+, Gd3+, and Y3+

elements in the Yb:CALYGLO crystal are shown in Table 1.

Table 1. The weight proportions and calculated segregation coefficient K of Yb3+, Gd3+, Lu3+, and
Y3+ in Yb:CALYGLO crystal samples.

5 at.%
Yb:CALYGLO

Crystal

Measured
Yb3+(wt%)

Measured
Gd3+(wt%)

Measured
Lu3+(wt%)

Measured
Y3+(wt%)

0.90 4.02 1.80 30.69

Km of Yb3+ Km of Gd3+ Km of Lu3+ Km of Y3+

0.65 0.81 0.58 1.05
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2.3. Spectra Measurments

The samples for spectral measurements were cut from the as-grown bulk crystals
and two surfaces perpendicular to the a-axis were polished. The polarized absorption
spectra were measured with the UH4150 ultraviolet visible near-infrared spectrophotometer
produced by Hitachi, Tokyo, Japan, and the measurement range is 850–1100 nm. The
polarized fluorescence spectra and fluorescence decay curves were obtained by the FLS1000
fluorescence spectrometer (Edinburgh, Livingston, UK) under the excitation of 905 nm
light source. The cryogenic environment was achieved using a cryostat (model SU 12) with
helium closed-circulation flow produced by Oxford Instruments Ltd. (Raligh, NC, USA).
The test was conducted at room temperature and low temperature.

3. Results and Discussion
3.1. Structure Measurement

Figure 2 shows the XRD pattern of the Yb:CaY0.85Lu0.05Gd0.05AlO4 crystal and the
XRD standard card of CaYAlO4. It can be seen from the figure that the diffraction peak
of the 5 at.% Yb:CALYGLO crystal with doping concentration is basically consistent with
that of the PDF#81-0472 standard card. This indicates that after Lu3+, Ga3+, and Yb3+ are
doped to replace the lattice position of Y3+, the lattice structure of CaYAlO4 has not changed
significantly, and it is still a tetragonal system with a space group of I4/mmm.
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Figure 2. X-ray diffraction spectra of 5 at.% Yb:CALYGLO crystal and standard card of CALYO.

Using Jade software 4.6.0 (Jade Software Corporation, San Jose, CA, USA) to calculate,
in the standard card, the lattice constant of CALYO crystal a = b = 0.3645 nm, c = 1.1874 nm,
and the cell volume V = 0.1577 nm3. 5 at.% Yb:CaY0.85Lu0.05Gd0.05AlO4 crystal lattice
constant a = b = 0.3623 nm, c = 1.1550 nm, cell volume V = 0.1516 nm3. It can be seen from
the comparison that the lattice constants after Yb3+, Lu3+, and Gd3+ replace the lattice sites
of Y3+ are slightly smaller than those of pure crystals. At the same time, the diffraction
peak of the Yb:CaY0.85Lu0.05Gd0.05AlO4 crystal shifts to the right compared with that of the
standard card. Due to the radius of Yb3+ (0.086 nm), the radius of Gd3+ (0.105 nm) and the
radius of Lu3+ (0.085 nm) are smaller than the radius of Y3+ (0.111 nm); the introduction of
Yb3+, Lu3+, and Gd3+ resulted in slight changes in crystal cell parameters.

3.2. Optical Absorption Spectra

The absorption cross-section is calculated by Equation (3):

σabs(λ) =
ln10
L·N0

·OD(λ) (3)

where L is the sample thickness, OD(λ) is the optical density at the test wavelength, and N0
is the concentration of doped ions.



Crystals 2024, 14, 120 5 of 12

Figure 3a shows the polarization absorption spectra of the Yb:CALYGLO crystal in
the wavelength range of 850–1100 nm at low temperature. The main absorption peak at
980.4 nm is a zero phonon line, which corresponds to the transition of Yb3+ ions from the
2F7/2 ground state to the 2F5/2 excited state. The peaks of low-temperature absorption in
both polarization directions are at 980.4 nm, and the absorption cross-sections peaks in the
σ and π polarization directions are 3.98 × 10−20 and 9.38 × 10−20 cm2, respectively. For
zero phonon lines near 980 nm, as the temperature decreases, the peak becomes sharper
and easier to distinguish. At lower temperatures, the phonon transitions corresponding to
the peak patterns become clearer. This feature was also found in Yb:YAG crystals [28].

Crystals 2024, 14, x FOR PEER REVIEW 5 of 12 
 

 

Figure 3a shows the polarization absorption spectra of the Yb:CALYGLO crystal in 
the wavelength range of 850–1100 nm at low temperature. The main absorption peak at 
980.4 nm is a zero phonon line, which corresponds to the transition of Yb3+ ions from the 
2F7/2 ground state to the 2F5/2 excited state. The peaks of low-temperature absorption in 
both polarization directions are at 980.4 nm, and the absorption cross-sections peaks in 
the σ and π polarization directions are 3.98 × 10−20 and 9.38 × 10−20 cm2, respectively. For 
zero phonon lines near 980 nm, as the temperature decreases, the peak becomes sharper 
and easier to distinguish. At lower temperatures, the phonon transitions corresponding to 
the peak patterns become clearer. This feature was also found in Yb:YAG crystals [28]. 

Figure 3b shows the polarization absorption spectra of the Yb:CALYGLO crystal at 
room temperature. The absorption spectrum has strong polarization, which is caused by 
the anisotropy of the crystal. According to the test results, the absorption cross-section in 
the π polarization direction is mostly larger than the absorption cross-section in the σ po-
larization direction. The absorption cross-sections peaks in the σ and π polarization direc-
tions are 1.83 × 10−20 and 5.32 × 10−20 cm2, respectively. This absorption cross-section is 
larger than that of Yb:CALYO [29], and FWHM for σ and π polarizations are 9.59 and 
10.08 nm. The Yb:CALYGLO crystal has a large full width at half maxima (FWHM), indi-
cating that the Yb:CALYGLO crystal can be pumped more efficiently with LD to achieve 
high conversion efficiency. 

 
Figure 3. The polarized absorption cross-section of 5 at.% Yb:CALYGLO at low temperature (a) and 
room temperature (b). 

3.3. Emission Spectra 
Under 905 nm excitation, the polarized fluorescence intensity of the Yb:CALYGLO 

crystal was measured in the range of 950–1150 nm. According to the measured fluores-
cence intensity, the stimulated emission cross-section of Yb3+ ions in the CALYGLO crystal 
is calculated through the Füchtbauer–Ladenburg (F-L) formula [30]. σ୯ୣ୫(λ) = λହI୯(λ)8πcn୯ଶτ୰∫ λI୯(λ)dλ (4)

where λ is the wavelength, n is the refractive index, I(λ) is the relative emission intensity, 
and τr is the radiative lifetime. The radiative lifetime of the Yb:CALYGLO crystal was cal-
culated to be 529 µs. The radiative lifetime of the Yb:CALYGLO crystal, calculated to be 
529 µs, is determined from the emission cross-section using the reciprocity method (RM) 
[8]. 

Figure 4a shows the stimulated emission cross-sections of different polarizations, 
mainly focusing on the emission bands centered on 950–1150 nm, corresponding to the 
2F5/2 → 2F7/2 emission bands. The main emission spectra peaks in the low-temperature are 
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room temperature (b).

Figure 3b shows the polarization absorption spectra of the Yb:CALYGLO crystal at
room temperature. The absorption spectrum has strong polarization, which is caused by
the anisotropy of the crystal. According to the test results, the absorption cross-section
in the π polarization direction is mostly larger than the absorption cross-section in the σ

polarization direction. The absorption cross-sections peaks in the σ and π polarization
directions are 1.83 × 10−20 and 5.32 × 10−20 cm2, respectively. This absorption cross-
section is larger than that of Yb:CALYO [29], and FWHM for σ and π polarizations are 9.59
and 10.08 nm. The Yb:CALYGLO crystal has a large full width at half maxima (FWHM),
indicating that the Yb:CALYGLO crystal can be pumped more efficiently with LD to achieve
high conversion efficiency.

3.3. Emission Spectra

Under 905 nm excitation, the polarized fluorescence intensity of the Yb:CALYGLO
crystal was measured in the range of 950–1150 nm. According to the measured fluorescence
intensity, the stimulated emission cross-section of Yb3+ ions in the CALYGLO crystal is
calculated through the Füchtbauer–Ladenburg (F-L) formula [30].

σem
q (λ) =

λ5Iq(λ)

8πcn2
qτr

∫
λIq(λ)dλ

(4)

where λ is the wavelength, n is the refractive index, I(λ) is the relative emission intensity,
and τr is the radiative lifetime. The radiative lifetime of the Yb:CALYGLO crystal was
calculated to be 529 µs. The radiative lifetime of the Yb:CALYGLO crystal, calculated to
be 529 µs, is determined from the emission cross-section using the reciprocity method
(RM) [8].

Figure 4a shows the stimulated emission cross-sections of different polarizations,
mainly focusing on the emission bands centered on 950–1150 nm, corresponding to the
2F5/2 → 2F7/2 emission bands. The main emission spectra peaks in the low-temperature are
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observed at 981 nm, 997.5 nm, 1020 nm, and 1045 nm, corresponding to the Stark splitting
of Yb3+ ions from excited state to ground state in CALYGLO crystals. The low-temperature
peak emission cross-sections for σ polarization are 0.51 × 10−20 cm2, 0.83 × 10−20 cm2,
1.01 × 10−20 cm2, and 1.07 × 10−20 cm2, and the peak emission cross-sections for π polar-
ization are 0.50 × 10−20 cm2, 0.89 × 10−20 cm2, 0.94 × 10−20 cm2, and 1.00 × 10−20 cm2.
The peak patterns of low-temperature emission are basically the same in both polarization
directions.

Crystals 2024, 14, x FOR PEER REVIEW 6 of 12 
 

 

observed at 981 nm, 997.5 nm, 1020 nm, and 1045 nm, corresponding to the Stark splitting 
of Yb3+ ions from excited state to ground state in CALYGLO crystals. The low-temperature 
peak emission cross-sections for σ polarization are 0.51 × 10−20 cm2, 0.83 × 10−20 cm2, 1.01 × 
10−20 cm2, and 1.07 × 10−20 cm2, and the peak emission cross-sections for π polarization are 
0.50 × 10−20 cm2, 0.89 × 10−20 cm2, 0.94 × 10−20 cm2, and 1.00 × 10−20 cm2. The peak patterns of 
low-temperature emission are basically the same in both polarization directions. 

Figure 4b shows the stimulated polarization emission cross-sections of the Yb:CALY-
GLO crystal at room temperature. The polarization of the emission spectrum is the same 
as that of the absorption spectrum. From the figure, we can see that the emission cross-
section in the π polarization direction is larger than the emission cross-section in the σ 
polarization direction. The peak emission cross-section for σ polarization at 980 nm is 1.38 
× 10−20 cm2, and the peak emission cross-section for π polarization at 981 nm is 2.28 × 10−20 
cm2. Under σ polarization, the peak emission cross-section of Yb:CALYGLO is slightly 
larger than Yb:CALYO (1.38 × 10−20 cm2) [31], and the emission spectrum of Yb:CALYGLO 
is significantly broadened. In the σ polarization direction, the full width at half maximum 
(FWHM) of the emission spectrum of Yb:CALYGLO is 89.5 nm. The FWHM of the stimu-
lated emission cross-section of Yb:CALYGLO in σ polarization is larger than that of the 
Yb:CaYAlO4 crystal (76 nm for σ polarization [31]), Yb:CaGdAlO4 crystal (80 nm for σ 
polarization [32]), and Yb:SrLaAlO4 (89 nm for σ polarization [33]). The broad and smooth 
emission spectrum of the Yb:CALYGLO crystal is conducive to the realization of mode-
locked ultrashort pulse laser output. 

 
Figure 4. The polarized emission spectra of 5 at.% Yb:CALYGLO at low temperature (a) and room 
temperature (b). 

Figure 5 illustrates the energy level scheme of Yb3+ ions in CALYGLO, highlighting 
the transitions responsible for absorption and emission. The Stark splitting of the ground 
and excited states of Yb3+ ions in CALYGLO crystals is to be determined through polari-
zation absorption and fluorescence spectroscopy under low-temperature conditions. The 
calculated partition functions Z1(2) are indicated by the arrows. The ratio Z1/Z2 is found to 
be 1.16, which closely aligns with the values reported in recent studies on Yb3+-doped 
CaLnAlO4 crystals [34]. Additionally, the ground-state exhibits a total splitting of 624 cm−1, 
making it highly suitable for wavelength tunable laser operation. 

Figure 4. The polarized emission spectra of 5 at.% Yb:CALYGLO at low temperature (a) and room
temperature (b).

Figure 4b shows the stimulated polarization emission cross-sections of the Yb:CALYGLO
crystal at room temperature. The polarization of the emission spectrum is the same as
that of the absorption spectrum. From the figure, we can see that the emission cross-
section in the π polarization direction is larger than the emission cross-section in the σ

polarization direction. The peak emission cross-section for σ polarization at 980 nm is
1.38 × 10−20 cm2, and the peak emission cross-section for π polarization at 981 nm is
2.28 × 10−20 cm2. Under σ polarization, the peak emission cross-section of Yb:CALYGLO
is slightly larger than Yb:CALYO (1.38 × 10−20 cm2) [31], and the emission spectrum of
Yb:CALYGLO is significantly broadened. In the σ polarization direction, the full width at
half maximum (FWHM) of the emission spectrum of Yb:CALYGLO is 89.5 nm. The FWHM
of the stimulated emission cross-section of Yb:CALYGLO in σ polarization is larger than
that of the Yb:CaYAlO4 crystal (76 nm for σ polarization [31]), Yb:CaGdAlO4 crystal (80 nm
for σ polarization [32]), and Yb:SrLaAlO4 (89 nm for σ polarization [33]). The broad and
smooth emission spectrum of the Yb:CALYGLO crystal is conducive to the realization of
mode-locked ultrashort pulse laser output.

Figure 5 illustrates the energy level scheme of Yb3+ ions in CALYGLO, highlighting
the transitions responsible for absorption and emission. The Stark splitting of the ground
and excited states of Yb3+ ions in CALYGLO crystals is to be determined through polar-
ization absorption and fluorescence spectroscopy under low-temperature conditions. The
calculated partition functions Z1(2) are indicated by the arrows. The ratio Z1/Z2 is found
to be 1.16, which closely aligns with the values reported in recent studies on Yb3+-doped
CaLnAlO4 crystals [34]. Additionally, the ground-state exhibits a total splitting of 624 cm−1,
making it highly suitable for wavelength tunable laser operation.
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3.4. Fluorescence Lifetime

Figure 6 shows the fluorescence decay curves of 2F5/2 → 2F7/2 levels in the Yb:CALYGLO
crystal under excitation at 905 nm at low temperature and room temperature. The fitting
equation is as follows:

y = y0 + Ae−x/t (5)

where Y is the fitted equation; x, y, and A are the constants of the fitted equation; and t is the
fluorescence lifetime obtained after fitting. In Figure 6a, the low-temperature fluorescence
lifetime of the Yb:CALYGLO crystal, after single exponential fitting, is measured to be
873 µs. The measured fluorescence lifetime is found to be larger than the radiative lifetime
due to the presence of the radiation trapping effect in Yb3+-doped materials. This effect
occurs because the fluorescence spectrum and absorption spectrum of Yb3+ overlap, leading
to re-absorption of photons emitted from the excited state energy level by the ground state
energy level. This self-absorption effect not only alters the shape of the fluorescence
spectrum but also facilitates energy transfer and migration over long distances, resulting in
fluorescence capture. As a result, the fluorescence lifetime measured at room temperature
is longer than that measured at low temperature and the actual radiative lifetime. This is
consistent with the reported situation of Yb:YAG [35].
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In Figure 6b, the room temperature fluorescence lifetime of the Yb:CALYGLO crystal,
after single exponential fitting, is measured to be 1.10 ms. This value is longer than the
fluorescence lifetime of Yb3+ in the CaYAlO4 crystal [31]. Meanwhile, it is longer than
the fluorescence lifetime of Yb:CaGdAlO4 (420 µs [32]), Yb:SrLaAlO4 (630 µs [33]), and
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Yb:YAG (950 µs [36]). The longer fluorescence lifetime of the Yb:CALYGLO crystal allows
for efficient energy storage and laser output.

3.5. The Gain Cross-Section

The calculated polarization gain cross-sections for two polarizations (σ and π) with
different β values are shown in Figure 7. For the quasi three-level laser systems, the
gain cross-section can be used to predict the potential gain bandwidth for tunable or
mode-locked (ML) operation, which is an important parameter directly related to laser
applications. The relative strength of the gain cross-section can be obtained from Equa-
tion (6) [37]:

σα
g (λ) = βσα

em(λ)− (1 − β)σα
abs(λ) (6)

where β stands for the Yb3+ ions population inversion ratio of the laser upper level, which
is the ratio of the inverted ions to the total Yb3+ ion density. σabs is the measured absorption
cross-section, and σem is the calculated emission cross-section.
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Figure 7. The polarized gain cross-section σg of 5 at.% Yb:CALYGLO.

When the β is 0.25, the gain cross-section is positive in the range of 995–1104 nm
(σ polarization), and the peak gain cross-section at 1033 nm is 0.22 × 10−20 cm2. In the π

polarization, the gain cross-section is positive in the range of 995–1092 nm, and the peak
gain cross-section at 1016 nm is 0.21 × 10−20 cm2. For a population inversion level of 50%,
the gain cross-section in the σ polarization direction becomes positive starting from 980 nm,
and the gain cross-section in the π polarization direction becomes positive starting from
982 nm. The wavelength edge reaches 965 nm when the population inversion ration is 0.75.
The peak gain cross-section for this level is 0.81 × 10−20 cm2 at 1033 nm (σ polarization). The
absorption cross-section spectrum and emission cross-section spectrum correspond to β = 0
and β = 1, respectively. Under different β values, the gain cross-section and bandwidth in
the σ polarization direction are larger than the gain cross-section and bandwidth in the π

polarization direction. For a 5 at.% Yb:CALYGLO crystal, the full width at half maximum
(FWHM) of the gain band is approximately 90.0 nm (β = 0.75) for σ polarization and 80.0 nm
(β = 0.5) for π polarization. Furthermore, the results demonstrate that the Yb:CALYGLO
crystal exhibits broad and remarkably flat gain spectra for both polarizations. As a result,
the Yb:CALYGLO crystal holds significant potential in the generation of tunable lasers and
ultrafast mode-locked pulses.

3.6. Comparison with Other Host Material

Table 2 presents a comparison of several important spectral parameters between the
Yb:CALYGLO crystal and other Yb3+-doped laser crystals. Notably, the Yb:CALYGLO
crystal exhibits a larger absorption cross-section, making it highly suitable for LD pumping.
Furthermore, this crystal demonstrates a significant advantage over other matrix materials
in terms of possessing a large emission cross-section and broad fluorescence spectra. As a
result, the Yb:CALYGLO crystal offers a substantial and wide gain cross-section, thereby
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facilitating laser operation. These findings strongly suggest that the Yb:CALYGLO crystal
fiber holds great potential as a laser gain medium operating at around 1 µm.

Table 2. Comparison of spectral parameters with other Yb3+ ion laser crystals.

Crystals Yb:CALYGLO Yb:CaYAlO4 Yb:CaGdAlO4 Yb:SrLaAlO4 Yb:YAG Yb:KY(WO4)2

Absorption peak
wavelength (nm) 977 979 979 980 968 981

Absorption cross-section
(10−20 cm2)

1.83 (σ)
5.32 (π)

1.71 (σ)
5.07 (π)

1.03 (σ)
2.65 (π)

0.72 (σ)
1.37 (π) 0.94

1.67 (X)
0.78 (Y)
0.32 (Z)

Absorption cross-section
bandwidth (FWHM) (nm)

9.59 (σ)
10.08 (π)

15 (σ)
11 (π)

29 (σ)
17 (π)

13 (σ)
24 (π) 3

8 (X)
6 (Y)
7 (Z)

Emission peak wavelength
(nm) 980 980 980 980.2 (σ) 1030 1025

Emission cross-section
(10−20 cm2)

1.38 (σ)
2.28 (π)

1.07 (σ)
3.12 (π)

1.43 (σ)
2.23 (π) 0.8 (σ) 2.2 1.82 (X)

Emission cross-section
bandwidth (FWHM) (nm)

89.50 (σ)
50.26 (π) 76 (σ) 76 (σ)

23 (π) 89 (σ) 10 15 (X)

Fluorescence lifetime (µs) 1105 426 420 630 950 600
References This work [29,31] [32,38] [33] [36] [39,40]

3.7. Continuous-Wave Laser

The Yb:CALYGLO crystal used in this study had a Yb3+ doping concentration of
4.34 × 1020 cm2, which corresponds to 3.4 at.%. The crystal was cut along the crystallo-
graphic a-axis into cubic samples with dimensions of 3 mm in length and width and 5 mm
in thickness. The a-cut crystal we use corresponds to the σ polarization. In order to remove
the heat generated during laser operation, the crystal was wrapped in indium foil and
installed in a copper block heat sink, maintained at a temperature of about 20.0 ◦C through
circulating water. The laser performance of Yb:CALYGLO was investigated using a LD-
pumped continuous-wave laser in a plano-plano resonator configuration. The collimator f1
is about 50 mm, and the focusing mirror f2 is about 100 mm. The experimental set-up is
illustrated in Figure 8. The pump source employed was a fiber-coupled 976 nm InGaAs
diode laser with a core diameter of approximately 105 µm and a numerical aperture of 0.22.
To vary the output power, we used four different output couplers (OCs) with transmissions
of 5%, 10%, 15%, and 20% at 1055 nm.
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Figure 8. Experimental set up of the CW Yb:CALYGLO laser.

The relationship between the output power of a 5 at.% Yb:CALYGLO crystal and the
pump power is shown in Figure 9a. When the transmittance of the output coupling mirror
is 5%, the output power begins at 0.2 W when the pump power reaches 5.2 W. The output
power reaches its maximum at a pump power of 23.2 W, reaching 6.6 W. The output power
starts at 0.2 W when the pump power is 8.0W. At a pump power of 31.9 W, the maximum
output power is achieved at 10.8W with a slope efficiency of 46%. When the transmittance
of the output coupling mirror is 20%, the output power begins at 0.1 W when the pump
power is 8.8 W. At a pump power of 32.8 W, the maximum output power is achieved,
reaching 9.8 W.
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The output laser spectrum is illustrated in Figure 9b. For transmissivity values of 5%,
10%, 15%, and 20% for the output coupling mirror, the central wavelengths are 1062.2 nm,
1057.6 nm, 1056.4 nm, and 1055.0 nm, respectively. This blue-shift of the laser wavelength
as the output coupling increases is a characteristic behavior observed in quasi-three-level
Yb3+ lasers due to inherent reabsorption at the laser wavelength.

4. Conclusions

Using the Czochralski method, Yb:CaY0.85Lu0.05Gd0.05AlO4 crystals were successfully
grown. In the host lattice of CaY0.85Lu0.05Gd0.05AlO4, the segregation coefficient of Yb3+ is
0.65, and the actual doping concentration of Yb3+ ions is only 3.4 at.%. The polarized ab-
sorption spectra, fluorescence spectra, and fluorescence lifetimes were tested and analyzed
at both low and room temperatures. At room temperature, the highest absorption peak
occurred at 977 nm, with absorption cross-sections of 1.83 × 10−20 cm2 for σ polarization
and 5.32 × 10−20 cm2 for π polarization, respectively. The stimulated emission cross-section
for the peak at 980 nm, corresponding to the transition 2F5/2 → 2F7/2, was calculated to be
1.38 × 10−20 cm2 for σ polarization and 2.28 × 10−20 cm2 for π polarization, with FWHM
values of 50.26 nm and 89.50 nm, respectively. The Stark splitting of the ground and
excited states of Yb3+ ions in CALYGLO crystals through polarized absorption and fluo-
rescence spectra measurements were determined under low-temperature conditions, and
the partition function of the crystal was calculated. The fluorescence lifetimes of a 5 at.%
Yb:CALYGLO crystal was tested and calculated at low and room temperatures, resulting
in 873 µs and 1.10 ms, respectively. The polarization gain cross-sections were calculated
for different β values. The main spectroscopic parameters of Yb:CaY0.85Gd0.05Lu0.05AlO4
are comparable to those of Yb:CaYAlO4, but the spectrum has been broadened. In the
continuous laser experiment, the crystal achieved a laser output of 10.8 W with an oblique
efficiency of 43.8%. These experimental results indicate that Lu3+ and Gd3+ can be used to
replace part of the Y3+ lattice, broadening the crystal’s spectrum and making it a potential
ultrashort pulse laser crystal gain medium.
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