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Abstract—In the context of an increasing popularity of data-
driven models to represent dynamical systems, many machine
learning-based implementations of the Koopman operator have
recently been proposed. However, the vast majority of those
works are limited to deterministic predictions, while the knowl-
edge of uncertainty is critical in fields like meteorology and
climatology. In this work, we investigate the training of ensembles
of models to produce stochastic outputs. We show through exper-
iments on real remote sensing image time series that ensembles of
independently trained models are highly overconfident and that
using a training criterion that explicitly encourages the members
to produce predictions with high inter-model variances greatly
improves the uncertainty quantification of the ensembles.

Index Terms—Dynamical systems, Koopman operator, Uncer-
tainty quantification, Remote sensing, Sentinel-2

I. INTRODUCTION

With the simultaneously growing availability of observed
geophysical data and advancement in machine learning meth-
ods, recent data-driven models have shown impressive per-
formance in accurately forecasting physical dynamical sys-
tems [1]. Despite their performance, these models are harder
to interpret than traditional methods, which means that it is
more difficult to trust their predictions. One way to partially
circumvent this flaw is to design models that can produce
probability distributions of predictions instead of outputting
a single prediction. Such models are then able to quantify the
uncertainty, as the variance of a model’s prediction can be seen
as a measure of confidence. In this regard, one must be aware
of the different sources of uncertainty that are to be identified.
In the machine learning community, the uncertainty is usually
decomposed into two categories: aleatoric uncertainty is the
uncertainty that comes from the training data, e.g. due to noise
and/or scarce sampling, while epistemic uncertainty denotes
everything that comes from the model, e.g. the incapacity to
fit the training data due to a lack of expressivity. We refer to [2]
for an extensive discussion on the sources of uncertainty.
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Our work is based on the Koopman operator theory [3],
which states that any nonlinear dynamical system can be
described by a linear operator acting on the set of its mea-
surement functions. While the Koopman operator is infinite
dimensional in practice, many methods have been proposed
to find approximate finite-dimensional representations, with
applications to e.g. fluid dynamics and epidemiology [4].

We are most interested here in finite-dimensional represen-
tations based on neural auto-encoders [5]–[7]. These methods
aim to learn a mapping from the input space of a dynamical
system to a finite set of observation functions which are stable
under the action of the Koopman operator, and vice versa.
Using the machine learning vocabulary, the obtained Koopman
invariant subspace is defined by the latent space of a learnt
auto-encoder. Another learnt component (generally a matrix
K) then governs the evolution of the latent state through time.
However, unlike for DMD-based methods, most of the existing
works on Koopman autoencoders consider only deterministic
models, which are unable to provide uncertainty estimates.
Here, we are interested in finding simple ways to adapt these
models to stochastic contexts. While there are many such
ways in deep learning [8]–[10], we focus on deep ensembles,
which are computationally intensive at training and inference
but require no architectural change to a deterministic model
and still outperform bayesian methods in some cases [11]. We
show that in our case the usual way of training the members of
an ensemble independently from each other leads to a highly
overconfident ensemble. In order to alleviate this issue, we
propose to train the members jointly with a loss function that
encourages them to produce more diversified predictions.

The remainder of this paper is organised as follows: in sec-
tion II, we review previous contributions on Koopman autoen-
coder models and on training neural networks for uncertainty
quantification, especially with ensembles of models. We then
introduce new methods for training ensembles of Koopman
autoencoders in section III, and use them for forecasting time
series of multispectral satellite images in section IV.



II. RELATED WORKS

A. Data-driven implementations of the Koopman operator

Although the Koopman operator theory [3] dates back to the
1930s, it has known renewed interest when data-driven models
related to this theory were introduced in the past two decades,
notably dynamic mode decomposition (DMD) [12] and its
extensions, which are reviewed in [4]. We will focus more
specifically on recent methods [5]–[7] which consist in using a
neural autoencoder to learn a finite set of observation functions
on which the general evolution of a dynamical system can be
described linearly. Most of the approaches in this line jointly
learn an encoder ϕ : Rn → Rd, a decoder ψ : Rd → Rn and
a matrix K ∈ Rd×d such that the advancement of an initial
state x0 ∈ Rn by a time τ through the modelled dynamical
system can be (approximately) written as

xτ = ψ(Kτϕ(x0)) (1)

While this equation is often understood as a discrete model,
where τ may only be a positive integer, a continuous formula-
tion has been discussed in [6] and later implemented in [13].

B. Uncertainty quantification for neural networks

Uncertainty quantification for neural networks is a field that
has recently gained a lot of interest. We refer the interested
reader to [14] for an in-depth survey of uncertainty quantifi-
cation for neural networks, and to [2] for a very recent review
that focuses on environmental-science applications. One of the
most popular approaches to evaluate the quality of uncertainty
estimates is the continuous ranked probability score (CRPS).
First introduced in [15], the CRPS is defined as

CRPS(F, ytrue) =
∫ ∞

−∞
[F (y)− 1y≥ytrue

]2dy, (2)

where F is the cumulated distribution function of the output
distribution, ytrue is the groundtruth and 1y≥ytrue

is the
Heaviside function, taking value 1 for y ≥ ytrue and 0
otherwise. When the output distribution is a set of M ensemble
members (yj)

M
j=1, the CRPS can be reframed [16] as

CRPS =
1

M

M∑
j=1

|ytrue − yi| −
1

2

1

M2

M∑
j=1

M∑
k=1

|yj − yk|. (3)

The first term is the mean absolute error (MAE) of the
prediction and the second term is the halved mean absolute
pairwise difference between ensemble members. Thus, the
CRPS of a determinstic prediction is simply its MAE. The
CRPS is being increasingly used as a loss function, e.g. in [17]
with a parametric model for which the output is the mean and
variance of a gaussian distribution. When the groundtruth is
multivariate, the above expressions can simply be summed
over all variables (hence ignoring correlations).

Let us now discuss more specifically the works on ensem-
bles of neural networks. These ensembles generally consist
in several instances of a same model, which can differ by
various factors such as their initial parameterization or the set
of data that they have been trained on. While the motivation

of training ensembles of models in machine learning was at
first to boost the performance by averaging the predictions of
the ensemble members [18], it has been later noticed [11] that
the variance of the predictions of an ensemble’s members can
also be used as a natural estimation of the uncertainty of the
ensemble. However, in contrast to the methods that we propose
in section III, [11] identified the independence of the trained
members of the ensemble as a key element in training a deep
ensemble, and the vast majority of subsequent works followed
this principle, with the notable exception of [19].

III. PROPOSED METHODS

A. Introduction of a variance-promoting loss term

We train several instances of the model from [13], which
is a classical Koopman autoencoder with 3 components, ϕ, ψ
and K as described in subsection II-A.

In the single-instance version of this model, we denote by
θ the set of all trainable parameters (including the coefficients
of K and the trainable parameters of (ϕ, ψ)). Suppose that
we are working with a n-dimensional dynamical system and
that our training dataset (xi,t)1≤i≤N,0≤t≤T is composed of
N time series of length T + 1 resulting from the dynamical
system of interest. Note that xi,t is a n-dimensional vector.
In what follows, we may drop the index i to designate any of
these time series. The loss function is composed of the terms:

Lpred(θ) =
∑

1≤i≤N

∑
1≤τ≤T

||xi,τ − ψ(Kτϕ(xi,0))||2 (4)

Lae(θ) =
∑

1≤i≤N

∑
0≤t≤T

||xi,t − ψ(ϕ(xi,t))||2 (5)

Llin(θ) =
∑

1≤i≤N

∑
1≤τ≤T

||ϕ(xi,τ )−Kτϕ(xi,0)||2 (6)

Lorth(θ) = Lorth(K) = ||KKT − I||2F (7)

where ||.||F denotes the Frobenius norm. The terms Lpred,
Lae, Llin and Lorth are respectively the prediction loss, auto-
encoding loss, linearity loss and orthogonality loss. We refer
to [13] for further interpretation. They can all be weighted
equally except for the orthogonality loss for which a suitable
weight α has to be found, resulting in the global loss function

L(θ) = Lpred(θ) + Lae(θ) + Llin(θ) + αLorth(θ). (8)

Let us now suppose that we are training an ensemble of M
instances of this model. We then denote the parameters of these
instances as Θ = (θ1, ..., θM ). The instances can be trained in
parallel by defining a global loss function which is simply the
sum of the loss functions for each of the M instances:

Lindependent(Θ) =
1

M

∑
j

L(θj). (9)

In this equation and in the following ones, all sums are defined
on index j from 1 to M . Using this loss function is equivalent
to training the M members of the ensemble sequentially and
independently. As we will show experimentally, this may lead
to a low diversity of the members, since the instances tend to
all capture similar features in the data, which is undesirable in



ensemble learning. Given an input state x0 ∈ Rn, the outputs
of the members, obtained by equation (1), are denoted as x̂t,j

with 0 ≤ t ≤ T denoting time and 1 ≤ j ≤ M denoting the
member. The mean prediction of the members is defined as

x̂t =
1

M

∑
j

x̂t,j . (10)

For the uncertainty quantification to be accurate, we would
like the empirical variance of these predictions to be close
to the squared error between the mean prediction and the
groundtruth xt: see [2] for reference. Thus, we seek

1

M − 1

∑
j

||x̂t,j − x̂t||2 ≈ ||x̂t − xt||2. (11)

In practice, since the empirical variance is too low when train-
ing an ensemble with equation (9), we introduce a variance-
promoting loss term, which takes into account all members:

Lvar(Θ) = − 1

M

∑
j

||x̂t,j − x̂t||2. (12)

We write this term with simplified notations, yet the full loss
term includes sums over i and t like in equations (4) to (6).
Using the new loss term from equation (12), one can now
introduce a new loss function for training ensembles:

Lvar,λ(Θ) = Lindependent(Θ) + λLvar(Θ), (13)

where the case λ = 0 corresponds to equation (9). This loss
promotes the sum of variances over each of the N variables of
the state individually, i.e. the total variance of the predictions.

B. Analysis of the choice of λ

It is a standard and easy to prove result in statistics that

1

M

∑
j

||x̂t,j−xt||2 =
1

M

∑
j

||x̂t,j−x̂t||2+||x̂t−xt||2 (14)

for any value xt and predictions x̂t,j . From this, we obtain

1

M

∑
j

||x̂t,j − xt||2 −
λ

M

∑
j

||x̂t,j − x̂t||2 =

1− λ

M

∑
j

||x̂t,j − x̂t||2 + ||x̂t − xt||2 (15)

for a given λ. If λ ≤ 1, then this expression is trivially
positive. However, if λ > 1, then it is not negatively bounded.
Indeed, since xt is a constant vector, one can simply choose
arbitrarily large member predictions x̂t,j satisfying x̂t = 0
through equation (10) (e.g. the members can be arranged in
opposite pairs) in order for the expression (15) to become
arbitrarily low. As this analysis remains true for any x0 and
t, the prediction loss term (4) can counterbalance the variance
loss term (12) as long as 0 ≤ λ ≤ 1 in equation (13). If λ > 1
then the training procedure will diverge with an inter-model
variance growing to infinity. Therefore, the hyperparameter λ
for training the ensemble should be chosen between 0 and 1,
and the variance of the predictions grows with the value of λ,

as we will show in our experiments. This simple interpretation
of λ motivates the use of a biased estimator of the variance
in equation (12): with an unbiased estimator, the acceptable
range for λ would depend on the number M of members.

To the best of our knowledge, the introduction of this loss
term for training an ensemble of neural networks is a novelty.
The closest contribution that we identified was in [19], which
introduced loss terms similar to (12) with a notable difference
being that the authors work with models that have bounded
outputs, so that the parameter λ can be set arbitrarily without
fear of obtaining variances that diverge to infinity. The choice
of unbounded models trades more flexibility in the individual
members with the constraints on λ that we described above.

C. Using a loss term inspired by the CRPS

An alternative to the loss function (13) is to use the CRPS
for training. While easy to compute for small ensembles,
the formulation of equation (3) gets very costly to compute
as the number M of members gets higher because of the
pairwise differences in the second term. Therefore, we propose
to replace this term by the mean absolute error between the
individual predictions and the mean prediction. Using the same
notations as in equation (12), we introduce

Labs(Θ) = −1

2

1

M

∑
j

|x̂t,j − x̂t|. (16)

One can easily prove that

1

M

∑
j

|x̂t,j − x̂t| ≤
1

M2

M∑
j=1

M∑
k=1

|x̂t,j − x̂t,k|

≤ 2

M

∑
j

|x̂t,j − x̂t|,
(17)

so that (16) can be seen as a proxy to the second term
of the CRPS formulation in (3), while the first term is
analogous to the sum of the prediction losses (4) using the L1

distance instead of the squared L2 distance. This motivates the
introduction of a new diversity-promoting loss function:

LCRPS(Θ) =
∑
j

L1(θj) + λLabs(Θ), (18)

where λ is usually set to 1 and L1(θ) is a variant of
equation (8) where all squared L2 distances are replaced by L1

distances for the purpose of consistency/homogeneity between
all loss terms. Note that this loss is not the true CRPS but an
approximation of it, with auxiliary terms.

IV. EXPERIMENTS

In this section, we present our experiments on datasets
originally introduced in [20], and consisting of time series of
Sentinel-2 multispectral satellite images over two spatial areas:
the forest of Fontainebleau and the forest of Orléans in France.
The datasets and codes are available at https://github.com/
anthony-frion/Sentinel2TS. The time series for the two areas
are available in two versions. The original versions contain raw
images with no pre-processing other than the classical (level-
2A) atmospheric correction, yet the time series are incomplete

https://github.com/anthony-frion/Sentinel2TS
https://github.com/anthony-frion/Sentinel2TS
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Fig. 1. Forecasting from time 0 by two ensembles for the reflectance of the
B7 band (in near infrared) for a Fontainebleau pixel. Here, both ensembles are
biased, but the ensemble trained with a variance-promoting loss term (λ =
0.5) yields a higher inter-member variance, and hence a better uncertainty
estimate, than the ensemble of independently trained models (λ = 0).

as only the images that are not corrupted by the presence of
clouds are retained. Since training from irregularly-sampled
time series is very challenging, the second versions interpolate
these available images in time through Cressman interpola-
tion, resulting in partly synthetic but regularly-sampled time
series. Although Koopman autoencoders are able to handle
irregularly-sampled time series [13], we choose to train on
the regular version of the Fontainebleau data in order to keep
the training procedure simple. We test the trained ensembles
on two tasks: 1) extrapolating on the training Fontainebleau
area to times unseen during training 2) predicting from an
initial time on the test Orléans area. Thus, task 1) is used to
test temporal extrapolation while task 2) tests the ability to
transfer the knowledge to a new area with a distribution shift.

We first motivated the introduction of our customized en-
semble training loss (13) by making the simple observation
that independently trained members from an ensemble of
Koopman autoencoders tend to learn very similar dynamics.
We show on figure 1 a typical example for an ensemble trained
with loss (9) (i.e. λ = 0 in loss (13)), where all 8 instances
make similar predictions from an initial observation belonging
to the training area. Here, the member predictions are all much
closer to each other than any of them is to the groundtruth.
Although this is an illustrative example with a relatively high
forecasting error, it is symptomatic of a very overconfident
ensemble. We also show the predictions of an ensemble trained
in the same conditions but with λ = 0.5 in loss (13): although
this ensemble is biased too, its higher variance makes it less
overconfident, and thus better in this case.

In order to promote the diversity of the members, we now
train ensembles with the loss function (13) with different
values of λ, remembering that λ = 0 corresponds to training
the models independently from one another, as classically done
in the literature. As expected, the variance of the predictions
increases with λ. We also train an ensemble with the loss
function (18). We evaluate the quality of the uncertainty
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Fig. 2. Spread-skill plots for two different datasets. Top: spread-skill plot of
extrapolation on the training Fontainebleau area. Bottom: spread-skill plot of
predictions from time 0 on the test Orléans area.

estimates with 2 methods: the CRPS and the spread-skill plot.
We show in figure 2 the spread-skill plots for the two

identified tasks. The idea of these plots is to represent the
skill as a function of the spread. The skill is defined as the
root mean squared error between the average prediction of the
ensemble (obtained by equation (10)) and the groundtruth. The
spread is defined as the standard deviation of the predictions
of the members. The spread and skill are the square roots of
the left and right members of equation (11): one would like
them to be approximately equal. In practice, we consider a set
of ensemble predictions and groundtruth, where all spectral
bands and prediction time spans are separated, resulting in
univariate values. We compute a 20-bin histogram of this set
according to the spread. Then, for each bin, we compute the
mean skill of the predictions and the number of points inside
the bin. On the main plot, each point corresponds to one of the
bins, and we would like the points to stay close to the 1:1 line,
which corresponds to equation (11). If the plot is above the
1:1 line, it means that the ensemble tends to underestimate its
errors, hence it is overconfident. On the contrary, a plot below
the 1:1 line means that the ensemble is underconfident. The
inner plots show the frequencies associated to each bin.

A spread-skill plot can be summarized by two metrics: the
SSREL is the sum of the absolute distances to the 1:1 line over
the bins, weighted by the bin frequencies. It is positive and its
ideal value is zero. The SSRAT measures the spread-skill ratio
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Fig. 3. CRPS of ensembles of Koopman autoencoders according to the weight
λ of their variance-promoting loss term during training. Top: extrapolation
on training Fontainebleau area. Bottom: transfer to test Orléans area. The
represented values of λ are 0, 0.1, 0.5, 0.9, 0.99, 1.

globally, and is unaffected by the binning process. It is positive
and unitless, and a value smaller or greater than 1 respectively
characterize an overconfident or an underconfident model. We
refer to [2] for more extensive discussions on these notions.

Several conclusions can be drawn from figure 2. First, the
ensemble with independently trained models (corresponding to
λ = 0) is highly overconfident, which quantitatively confirms
the intuition gained from figure 1. Then, one can clearly
see that the ensembles get less confident as the value of λ
increases. The case of λ = 1 is a limit case, and results in the
only model that is severely underconfident on both training
and test areas. The value λ = 0.99 yields the best spread-skill
ratios, and the model trained with a proxy to the CRPS lies
in between λ = 0.5 and λ = 0.9.

Finally, we show in figure 3 the CRPS of the ensembles as a
function of the value of λ used in their training function (13).
Note that lower values are better for the CRPS metric. Again,
one can see that a well-chosen value of λ can significantly
improve the performance compared to an ensemble of inde-
pendently trained members (λ = 0). The values λ = 0.5 and
λ = 0.9 seem to be good compromises between the CRPS on
the two tasks, while the model trained with a loss function
similar to the CRPS also performs well on both.

V. CONCLUSION

In this work, after noticing that ensembles of Koopman au-
toencoders tend to be very overconfident when their members
are trained independently, we introduced a variance-promoting
loss term which encourages the members of an ensemble to
produce more diverse forecasts. We studied, both analytically
and empirically, the influence of this term on the trained

ensembles according to its weight relatively to the other loss
terms. We found that, according to several metrics, the quality
of the uncertainties produced by the ensembles improves as
the weight of the variance-promoting loss term gets closer to
its theoretical limit of 1. In future works, we will try using this
loss term in conjunction with other uncertainty quantification
methods, e.g. Monte Carlo dropout and ensemble predictions
with a single model. We also intend to further study the speci-
ficities of uncertainty quantification for long-term forecasting
tasks, and for Koopman autoencoders in particular.
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