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Abstract. The contribution of forests to carbon storage and biodiversity conservation highlights the need for ac-
curate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private own-
ers and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further,
35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very
extensively. In this work, we used a deep-learning model based on multi-stream remote-sensing measurements
(NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission and ESA’s Copernicus Sentinel-1 and
Sentinel-2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second
step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m
resolution above-ground biomass density (AGBD) map (Mg ha−1) of France (FORMS-B). Extensive validation
was conducted. First, independent datasets from airborne laser scanning (ALS) and NFI data from thousands of
plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height
models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor
permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 and 19.6 Mg ha−1,
respectively, providing greater performance than other AGBD products sampled over France. Finally, we com-
pared FORMS-V (for volume) with wood volume estimations at the ecological region scale and obtained an R2

of 0.63 with an MAE of 30 m3 ha−1. These results highlight the importance of coupling remote-sensing technolo-
gies with recent advances in computer science to bring material insights to climate-efficient forest management
policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and
temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from
https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023).
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1 Introduction

Forests play a key role in the environment and human
well-being, providing ecosystem services such as carbon se-
questration, biodiversity conservation, and climate regula-
tion (IPCC, 2019). Human activities such as deforestation,
degradation, fragmentation, and non-sustainable forest man-
agement threaten these ecosystems. To preserve these impor-
tant resources, accurate and up-to-date information on forest
structure, such as height, volume, and biomass, is essential
for effective forest management policies. Destructive sam-
pling has long been the only method to actually measure the
biomass of a tree, which involves felling trees and weigh-
ing the biomass components (Fayolle et al., 2013; Gibbs et
al., 2007; Goodman et al., 2014). More recently, terrestrial
laser scanning (TLS) has emerged as a promising alterna-
tive for an accurate estimation of tree volume without de-
struction (Calders et al., 2022; Demol et al., 2022; Disney et
al., 2019; Liang et al., 2016), but it remains limited to very
few ecological research sites. Destructive samplings and TLS
measurements are used to derive species-specific allometric
equations applied to diameter and height measured routinely
in the field across multiple National Forest Inventory (NFI)
plots (Chave et al., 2005; Nogueira et al., 2008) to obtain
stand-level biomass estimations. Although tree height and
basal area are correlated with the wood volume used to es-
timate biomass, uncertainties in tree-level allometry propa-
gate into errors when estimating the biomass of a stand con-
taining multiple trees (Chave et al., 2014). Forest inventories
play a critical role in accurately estimating forest biomass at
regional and national scales (Fang et al., 1998; Shvidenko
and Nilsson, 2002) and are often used as calibration data
for models used in remote-sensing-based biomass estima-
tion (Morin et al., 2019; Næsset et al., 2020). For instance,
Saatchi et al. (2011) developed a global biomass map at 1 km
resolution based on the Geoscience Laser Altimeter Sys-
tem (GLAS) on the Ice, Cloud, and Land Elevation Satellite
(ICESat) and trained with field measurements and airborne
lidar. Since 2019, the Global Ecosystem Dynamics Investi-
gation (GEDI) mission (Dubayah et al., 2020) has been col-
lecting high-resolution measurements of vertical forest struc-
tures through lidar data. Although the sampling is too sparse
to derive continuous maps, this new dataset brings a tremen-
dous amount of information on global forest structures. For
instance, the GEDI Level 4 biomass (L4B) product provides
1 km aggregated estimations of above-ground biomass den-
sity (AGBD) that come from allometric equations based on
waveform metrics calibrated on the biomass measured across
forest plots (Dubayah et al., 2022; Duncanson et al., 2022).
However, to properly monitor forests at a local scale, espe-
cially in Europe, where forests are divided into small stands
of a few hectares, a typical 10 to 50 m spatial resolution is
needed. In recent years, studies have started to address this

issue by spatially extrapolating GEDI height measurements
with ancillary continuous satellite data such as Sentinel-1
(S1), Sentinel-2 (S2), or Landsat data, thus creating 10 to
30 m resolution height maps (Lang et al., 2023; Morin et al.,
2022; Potapov et al., 2021; Schwartz et al., 2022). Addition-
ally, the use of deep learning, and particularly convolutional
neural networks (CNNs), has brought new tools to process
remote-sensing data with improved accuracy and the ability
to automatically learn complex multi-scale features like tex-
ture from large training datasets (Ball et al., 2017; Lang et
al., 2019; LeCun et al., 2015; Liu et al., 2023; Zhu et al.,
2017). Applied to GEDI data, these models have proven in-
creased performance compared to standard machine learning
approaches (Lang et al., 2023; Schwartz et al., 2022; Fayad
et al., 2023).

Here we use GEDI forest vertical structure measurements
in France (more than 90 million points) with deep learn-
ing techniques to derive 10 m resolution canopy height, 30 m
resolution AGBD, and wood volume density (WVD) maps
of France. These products will be referred to as FORMS-H,
FORMS-B, and FORMS-V (Forest Multiple Source height,
biomass, and volume) in the following. FORMS-H is com-
puted from a U-Net deep learning model trained with
Sentinel-1 (S1), Sentinel-2 (S2), and GEDI data, following
the methods described in Schwartz et al. (2022). Then, we
developed allometric equations based on NFI data to pro-
duce FORMS-B and FORMS-V. Comprehensive validation
of FORMS-H is carried out with thousands of plots from
the French National Forest Inventory (NFI) data and air-
borne laser scanning (ALS). As we used NFI for calibration,
we further validated FORMS-B estimates using two inde-
pendent sets of non-NFI forest plot data. Finally, we con-
ducted a comparative analysis with other height and AGBD
maps available over France to highlight the increased perfor-
mances of our products. These results contribute to a better
understanding of France’s forest structure and carbon stocks
at an unprecedented spatial resolution, with potential appli-
cations in forest management, climate change adaptation,
and mitigation efforts.

2 Data

This study relies on 15 datasets to generate and evaluate
the high-resolution tree height, AGBD, and WVD maps
of France. Three spaceborne datasets from GEDI, S1, and
S2 were employed to train the deep learning model and
generate the 10 m resolution FORMS-H product. To derive
30 m resolution FORMS-B and FORMS-V (hereafter re-
ferred to together as FORMS-B/V) products, we applied al-
lometric equations based on in situ measurements from the
French NFI data, along with a broadleaf–coniferous mask
obtained from the Copernicus Dominant Leaf Type (DLT)
map. FORMS-H was validated against several datasets, in-

Earth Syst. Sci. Data, 15, 4927–4945, 2023 https://doi.org/10.5194/essd-15-4927-2023



M. Schwartz et al.: Forest Multiple Source height, wood volume, and biomass maps 4929

Figure 1. U-Net training process. (1) Random draw of a training tile. (2) Random draw of a 2560× 2560 m subset. (3) Input of the corre-
sponding S1 and S2 layers to the model. (4) Rasterization of the corresponding GEDI data on a 10 m grid. (5) Calculation of the MAE loss.
(6) Loss backpropagation: model weights are modified according to the value of the loss gradient with respect to them.

cluding the French NFI height data and ALS data from the
French lidar High Definition (HD) campaign. Furthermore,
FORMS-B/V were evaluated against two forest inventory
datasets (GLORIE and Renecofor) and aggregated data at the
French ecoregion scale (“sylvoécorégion”, SER, IGN, 2010).
Finally, we compared FORMS-H and FORMS-B with exist-
ing height (Liu et al., 2023; Potapov et al., 2021; Lang et
al., 2023) and AGBD (Santoro and Cartus, 2023; Liu et al.,
2023) products available for France. Table 1 provides com-
prehensive details about the datasets used in this study and
how they were used to train and assess the accuracy of our
FORMS products.

3 Methods

3.1 Mapping canopy height at high resolution (10 m)

To map canopy height in France at 10 m resolution, we
adapted the methods developed and presented in Schwartz et
al. (2022). The processing is based on a deep learning U-Net
model (Ronneberger et al., 2015) adapted from Milesi (2022)
that learns multi-scale features in S1 and S2 images to predict
canopy height. This model is trained on a pixel-wise regres-
sion process with GEDI RH95 height data. The RH95 height
means that 95 % of the energy returned to the sensor comes
from photon reflections below this height. It is a widely used
proxy for canopy height as it is less sensitive than RH100
to atmospheric disturbances (Fayad et al., 2021; Potapov et
al., 2021). Prior to the model training, France was divided
into 10 000 km2 areas, which we will refer to as “tiles” in the

following, that we randomly split into 4408 (75 %) training,
887 (15 %) validation, and 589 (10 %) test tiles. The detailed
training processes are described in Fig. 1: (1) random selec-
tion of a training tile; (2) random selection of a 2560×2560 m
subset of this tile to reduce overfitting; (3) input of the cor-
responding 256× 256-pixel image with 14 layers from S1
and S2 (See Table 1) to the U-Net model; (4) creation of
a target height image from the GEDI RH95 height; (5) cal-
culation of the mean absolute error (MAE) loss between the
model outputs and the GEDI height values; and (6) loss back-
propagation (model weights are modified according to the
value of the loss gradient with respect to them). With regard
to (4), we used the 10 by 10 m pixel corresponding to the
center of the GEDI footprint as a target. We also tried differ-
ent approaches, such as using 20×20 m pixels to be closer to
GEDI’s footprint dimensions, but they resulted in a decline in
model performance. Additionally, we tried filtering GEDI by
landscape type, keeping only forest footprints, but this also
resulted in worse validation metrics. The process described
in (6) is a key element in the training of neural networks.
We performed it here with the Adam optimizer and a learn-
ing rate of 0.01 that we decreased manually by a factor of 10
when the validation loss function stopped decreasing (after
∼ 20 h of training). The complete training process took ap-
proximately 24 h and was done with the Amazon AWS cloud
platform on a GPU NVIDIA Tesla T4 (16 GB).
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3.2 From height to wood volume and biomass

To produce an AGBD map at 30 m resolution (in Mg ha−1),
we derived power-law allometric equations from the French
NFI plot data (See Table 1). We chose a 30 m resolution
to correspond to the size of the NFI plots and to obtain a
sufficient number of trees within 1 pixel so that AGBD has
real significance. Every year, the French Geographical Insti-
tute (IGN) measures ∼ 6000 new plots for the French NFI
(IGN, 2018). For each 30 m circular NFI plot, dendromet-
ric measurements are made in concentric plots of 6, 9, and
15 m radius according to the diameter at breast height (DBH)
and for trees having a minimum of 7.5 cm DBH. DBH and
species are collected for all the trees, and height is measured
for one tree per species and DBH class. The tree volumes
are computed using allometric models involving DBH and
height, and a WVD estimation (in m3 ha−1), which corre-
sponds to the main stem’s volume of up to 7 cm diameter, is
then derived for each NFI plot. In this study, we used ratios
estimated from the CARBOFOR project (Loustau, 2010), a
previous work specific to French forests, to convert the NFI
wood volume to oven-dry AGBD: 0.59 Mg m−3 for conifer-
ous and 0.89 Mg m−3 for broadleaved forests. These ratios
combine an expansion factor that accounts for the volume of
the whole tree, including branches (1.34 for coniferous and
1.61 for broadleaf) and a tree density factor (0.44 Mg m−3

for coniferous and 0.55 Mg m−3 for broadleaf) to obtain the
oven-dry AGBD. After applying these ratios to the NFI plot
WVD estimations, we compared them to the mean of the
FORMS-H height in each NFI plot’s 30 m circular area.
Based on the dominant tree species given in the NFI data,
we divided coniferous and broadleaved plots and fitted two
power-law allometric equations (Fig. 2a, b) with a Huber re-
gressor method that has the advantage of being less sensitive
to outliers. Even though height and biomass are two differ-
ent physical quantities, height–biomass power-law allomet-
ric equations have been widely used and showed satisfying
results when no other variables were available to carry out
biomass predictions (Enquist, 2002; Chave et al., 2005). The
estimation of AGBD obtained using these power-law rela-
tionships (Fig. 2c) shows an MAE of 61.7 Mg ha−1 and an R2

of 0.4 when compared to the NFI AGBD. We observe a satu-
ration for higher AGBD values > 400 Mg ha−1, explained by
the broad range of AGBD values observed for a given height
in Fig. 2a and b, especially for higher heights.

To obtain the AGBD map of France, we first resampled
our FORMS-H height map at 30 m resolution by taking the
mean height within each 30 m pixel. Then we used the Coper-
nicus DLT map (Table 1) to estimate the dominant leaf type
within each 30 m pixel and applied these power-laws al-
lometries (Fig. 2a, b) accordingly to obtain an AGBD map
(Mg ha−1) of France for 2020 at 30 m resolution (FORMS-
B). We also produced a WVD map (FORMS-V) at 30 m res-
olution (m3 ha−1) by converting FORMS-B with the volume-
to-biomass ratios detailed above.

3.3 Product validation

To evaluate the accuracy of our 10 m resolution FORMS-H
product, we compared it to four independent datasets: the
2 479 668 GEDI test footprints, the 5475 French NFI plots
measured in 2020, and two ALS datasets (one large area of
2500 km2 and one set of 20 smaller areas of 1 km2 each)
from an ongoing French lidar HD campaign that aims to
cover the entire national territory within the next years (Ta-
ble 1). GEDI test footprints were taken from the 589 test
tiles (Fig. 1) and filtered with the Copernicus DLT map (Ta-
ble 1) to remove non-forest data. We compared here the max-
imum FORMS-H value within the 30 m circular plot area to
the dominant height variable provided in the NFI data. This
height is computed from ∼ 7 representative trees and stands
for the mean height of the 100 highest trees within a sur-
face area of 1 ha. The ALS point-cloud data come from the
French lidar HD measurement campaign (Table 1). The first
ALS site is a large 2500 km2 area in the north of Paris with
flat terrain (Fig. 3). The other 20 sites cover smaller areas
(1 km2 each) and are distributed in different sites with more
complex topography. We used ALS data point-cloud classi-
fication (See Table 1) to create a 50 cm resolution canopy
height model that we resampled at 10 m by taking the 95th
percentile of height and compared it to FORMS-H. Addition-
ally, we conducted a comparative analysis with three height
maps available globally or in Europe to assess the novelty of
FORMS-H (Lang et al., 2023; Liu et al., 2023; Potapov et al.,
2021). These maps will be referred to as “Lang”, “Liu”, and
“Potapov”, respectively, in the following.

We evaluated FORMS-B by comparison to two indepen-
dent forest inventory datasets and to aggregated NFI statis-
tics at a larger scale. The NFI does not provide official plot-
level biomass estimates but rather only volume and height,
and our method for establishing the height–AGBD relation-
ships shown in Fig. 2 would lead to large errors and a de-
gree of circularity if AGBD inferred for individual plots was
used for validation. Further, it would not be an independent
validation since the NFI AGBD data are used to define the
relationship for transforming height maps to AGBD maps.
For these reasons, we used two smaller inventories for val-
idation (Renecofor, GLORIE, described hereafter) that are
independent of the NFI. The Renecofor permanent plot net-
work (Ulrich, 1995) gathers 102 forest plots distributed over
France (Fig. 3) that grow under different climatic and soil
conditions. Measurements of numerous parameters, includ-
ing DBH, are performed yearly by the French National For-
est Office (ONF) to monitor and understand changes in forest
ecosystems. These monitoring plots were installed in pub-
lic forests, and their stands are managed by local foresters
with the same thinning intensity as the surrounding stands.
To derive a biomass estimation that we could use as reference
data to evaluate our FORMS-B product, we used species-
dependent DBH-based allometric equations and wood den-
sities described in Forrester et al. (2017). We applied generic
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Figure 2. (a, b) Comparison of the AGBD from NFI plot data to FORMS-H for broadleaved and coniferous forests. The red line corresponds
to the power-law allometric equation that we fitted to the data and used to transform our tree height map into an AGBD map. (c) Comparison
of the AGBD estimated from the allometric equations and the actual AGBD of the NFI plots. The red dashed line corresponds to the 1 : 1
line.

equations based on the tree leaf type (coniferous/broadleaf)
for the tree species not covered by this study. Thus, by divid-
ing by the plot surface (0.5 ha), we obtained an AGBD esti-
mation for each forest plot of the Renecofor network. These
values were compared here to the mean FORMS-B values
within a 100 m diameter circle around the location of the plot.
The GLORIE forest inventory (Motte et al., 2016; Zribi et
al., 2019) includes measurements of tree heights, DBH, and
tree density in 104 forest stands of maritime pine located in
the Landes forest (Fig. 3). This area represents mainly pri-
vate and intensively managed forests, representative of the
Les Landes area. In the GLORIE dataset, AGBD estimations
were derived from allometric equations applied to plot mea-
surements of DBH (Shaiek et al., 2011, for DBH ≥ 10 cm
and Baldini et al., 1989, otherwise). These values were com-
pared to the mean FORMS-B values within a 50 m diame-
ter circle around the location of the plot, which corresponds
to the average plot dimensions. At a regional scale, we also
evaluated our FORMS-B/V products over forest ecoregions
(SER; see Sect. 2). France is categorized into 91 SER based
on forest types and management practices. Every year, ag-
gregated WVD (See Table 1) estimations are provided at the
SER scale by the French forest inventory service (IGN) from
the NFI plot data. To evaluate the capability of our model
to carry out consistent estimation at this scale, we compared
for each SER the average FORMS-V WVD estimations on
forest pixels, determined with the Copernicus DLT map (Ta-
ble 1), to these official data. Besides, in a report evaluating

the French carbon footprint by ADEME and IGN in 2019,
France’s above- and below-ground carbon densities were as-
sessed for groups of these SERs in 2014. These estimations,
given in above- and below-ground carbon per hectare, were
converted to AGBD with ratios described in Loustau (2010):
the values were divided by 0.475 MgC Mg−1 to estimate the
oven-dry biomass and by a 1.3 root expansion factor to ac-
count for AGBD only. As for FORMS-V, we further com-
pared these estimates to FORMS-B to assess its performance
at a regional scale. Additionally, we compared FORMS-B
to two other biomass products available globally or for Eu-
rope (Liu et al., 2023; Santoro and Cartus, 2023), which were
converted when necessary to WVD maps with the factors de-
tailed in Sect. 3.2. These maps will be referred to as “Liu”
and “ESACCI”, respectively, in the following.

In this study, we used several error metrics, including the
mean absolute error (MAE), the mean error (ME), the mean
absolute percentage error (MAPE), and the coefficient of
determination (R2). The MAE gives information about the
overall error, the ME highlights the model’s bias, and the
MAPE computes the relative error percentage to compare
the model’s performances on different validation datasets.
We applied MAPE only to heights > 5 m and to AGBD
> 10 Mg ha−1 to avoid infinite values and to evaluate our
model’s performances solely on forests. The R2 score indi-
cates the performance of a regression task. A score of 1 indi-
cates that the predicted values perfectly fit the reference data.
A score below 0 indicates that the model performs worse than
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Figure 3. Presentation of the study site with the French NFI plots
(green), the Renecofor forest plots (blue), the GLORIE forest plots
(orange), and ALS 1 and ALS 2 data (red) used for validation.

a model predicting the average value. The detailed formula of
these metrics can be found in Appendix A.

4 Results

4.1 FORMS-H: France canopy height map at 10 m
resolution (2020)

Our 2020 FORMS-H product for France at 10 m resolution is
presented in Fig. 4a. The overall picture highlights the frag-
mentation and the variety of forest types in France with for-
est heights mainly ranging from 0 to 30 m. The details of
height prediction presented in Fig. 4b show the ability of
our map to retrieve precisely forest landscape units visible
on Google Maps on a broad range of heights. Forest parcels
are distinctly visible with precise borders.

We evaluated FORMS-H using four different datasets, in-
cluding the GEDI test RH95 (Fig. 5.1) height data, French
NFI dominant height data collected in 2020 (Fig. 5.2),
and two ALS datasets from the French lidar HD campaign
(Fig. 5.3, 5.4). The comparison with the test GEDI foot-
prints (See Sect. 3.1) yields an MAE of 4.48 m and R2 of
0.33 (Fig. 5.1a). This initial validation step demonstrates the
ability of our model to correctly map the GEDI RH95 vari-
able for a broad range of heights. Figure 5.1b boxplots high-
light the high precision of our model with a low bias, es-
pecially in the 5–30 m height range (ME = 4.8 m (5–10 m);
ME=−0.2 m (15–20 m); ME=−3.8 m (25–30 m)). Higher

heights are more challenging to predict, and the model tends
to underestimate them (ME =−6.7 m for the 30–35 height
range). Conversely, FORMS-H indicates higher heights than
the labeled GEDI footprints for many areas categorized as
low heights (Fig. 5.1a). This discrepancy can likely be ex-
plained by the quality of GEDI data, where the labels could
be wrong due to atmospheric conditions or geolocation er-
rors. These geolocation errors should normally have a sym-
metric pattern, with as many points overestimated for lower
heights as points underestimated for higher heights. How-
ever, as detailed in the figure caption, we plotted only the
footprints geolocated in forest pixels of the Copernicus DLT
map. Therefore the geolocation errors related to GEDI foot-
prints located outside forests were excluded from this graph.
Our comparison with the completely independent French
NFI data (Fig. 5.2) does not reveal the same outlier pattern
because these forest inventory measurements are more re-
liable and accurately geolocated. It yields a smaller MAE
of 2.94 m and a higher R2 of 0.69 (Fig. 5.2a) with a dis-
tribution of predicted data very close to the NFI distribu-
tion of heights (Fig. 5.2b). Similarly to the comparison vs.
the GEDI test dataset, the boxplots show that higher heights
above 25 m tend to be underestimated with a ME of −2.8 m
for the 25–30 m range and of −4.5 m for the 30–35 m range
of heights. The performances of the model are slightly bet-
ter in coniferous forests (MAE = 2.93 m; R2

= 0.74) com-
pared to broadleaved forests (MAE = 2.94 m; R2

= 0.65;
see Appendix B). The validation with ALS 1 (Fig. 5.3) and
ALS 2 (Fig. 5.4) data from the French lidar HD campaign
(Table 1) confirms the conclusions obtained from the pre-
vious datasets. ALS 1 comparison (Fig. 5.3a) yields a re-
sult similar to the French NFI with an MAE of 3.54 m, R2

of 0.61, and a comparable underestimation of higher heights
(ME =−3.36 m for the 25–30 height range). Lower heights
tend to be overestimated (ME = 6.47 m for the 0–5 m height
range) with some low-height pixels that our model predicted
much higher. This discrepancy can be attributed to forest bor-
ders, where FORMS-H has smooth height transitions while
the ALS data capture sharp edges more effectively. The ALS
2 data come from a more diverse range of terrains and loca-
tions but still yield a good correlation with an MAE of 4.51 m
and R2 of 0.53. However, we observe an increased ten-
dency to underestimate high height values (ME =−6.13 m
for the 25–30 height range) and overestimate low values (ME
= 4.82 m for the 0–5 m height range). Notably, the peak of
height distribution at ∼ 17 m in the histogram of Fig. 5.4b
is 1.8 times higher than in the ALS 2 distribution, indicating
that the model tends to predict the mean value rather than
spanning the whole distribution of heights.

We conducted a comparative analysis between FORMS-H
and three other existing tree height maps sampled over the
entire metropolitan French territory (See Sect. 3.3). A visual
comparison of the three maps (Fig. 6a, b, c, d) highlights the
improved ability of FORMS-H to reproduce spatial patterns
visible on Google Maps and ALS data compared to the Lang
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Figure 4. (a) FORMS-H: tree height map of France at 10 m resolution for the year 2020. (b) Examples at three different locations of height
prediction (left) with the corresponding © Google map images from 2020, 2018, and 2019 (right). Brighter colors indicate higher heights.

and Potapov maps. FORMS-H performed well in flat terrain
(Fig. 6a, b) as well as in areas with higher slopes (Fig. 6c,
d, slope ∼ 30◦). Lang’s map, released at a spatial resolution
of 10 m, appears to be coarser than FORMS-H, although it
still captures some height patterns observed in ALS data. In
contrast, the Potapov map failed to capture most of these
patterns. Liu’s map, based on PlanetScope data (3 m reso-
lution) for predicting heights after training with ALS data
in selected European areas (all outside France), captures the
spatial heterogeneity well and follows the pattern observed in
ALS data. Furthermore, individual tree crowns and very fine-
scale landscape units are visible in this very high-resolution
height dataset. To verify our visual comparison, we further
quantitatively compared FORMS-H to ALS data resampled
at 10 m resolution (Fig. 6e, f) and found that it outperformed
the other models significantly for Lang and Potapov, with an
MAE of 3.54 m (ALS 1) and 4.5 m (AL2) compared to an
MAE of 4.97 m (ALS 1) and 5.57 m (ALS 2) for Lang, and
5.72 m (ALS 1) and 6.8 m (ALS 2) for Potapov. R2 coeffi-
cients confirm the superiority of FORMS-H (ALS 1: 0.61;
ALS 2: 0.53) compared to Lang (ALS 1: 0.27; ALS 2: 0.24)
and Potapov (ALS 1: 0.07; ALS 2: −0.12). Interestingly,
FORMS-H also performs better than the Liu map resampled
at 10 m resolution for ALS 1 (MAE = 4.76 m; R2

= 0.41)
and similarly for ALS 2 (MAE = 4.53 m; R2

= 0.50), even
though this model was trained on higher-resolution images,
with ALS as reference data, which is more precise but with

an uneven spatial distribution and no data in France com-
pared to our GEDI reference data. All maps tend to underes-
timate the higher heights measured by ALS.

4.2 FORMS-B/V: France AGBD and WVD maps at 30 m
resolution (2020)

Based on the power-law allometric equations fitted between
NFI AGBD and our height estimates for each NFI plot, as de-
scribed in Sect. 3.2, we derived FORMS-B (Fig. 7a), a 30 m
resolution AGBD map of France in Mg ha−1, and FORMS-V,
a 30 m resolution WVD map of France in m3 ha−1. The dif-
ferent colors on the map represent varying levels of AGBD,
with brighter colors indicating higher values.

To assess the performance of the 30 m resolution FORMS-
B product, we compared it to two existing wall-to-wall
biomass maps from global and European studies, sampled
over France (See Sect. 3.3). Even though the three maps
were obtained with different data sources and methods, they
all mostly agree on biomass order of magnitudes and high-
biomass locations (Fig. 8a, b, c, d). Moreover, FORMS-B,
along with the Liu map, has a higher resolution, enabling
more precise biomass estimations at the forest parcel level,
whereas the global product ESACCI has a coarser resolu-
tion (100 m) that precludes detailed analyses. To gauge the
accuracy of each map, we further quantitatively compared
them to the two forest Renecofor and GLORIE inventory

Earth Syst. Sci. Data, 15, 4927–4945, 2023 https://doi.org/10.5194/essd-15-4927-2023



M. Schwartz et al.: Forest Multiple Source height, wood volume, and biomass maps 4937

Figure 5. Comparison of FORMS-H with four reference datasets. The figure displays scatterplots (a) and histograms with boxplots (b) for
each of the four datasets: (1) GEDI test RH95 height data, (2) French NFI height from 2020 measurements, and (3–4) two ALS RH95 heights
from French lidar HD measurements. Only forest pixels from the DLT map (See Table 1) are shown. In each comparison, the scatterplot
(a) shows a density plot of the predicted height plotted against the reference height, with brighter colors indicating a higher density of points.
The dashed line represents the 1 : 1 line. The histograms with boxplots (b) display the differences between the predicted and reference height
for each height range of 5 m. The median value is represented by a red line, while the lower and upper quartiles are represented by the left
and right edges, respectively. The whiskers symbolize the 5th and 95th percentiles.

datasets (Fig. 8e, f, Sect. 3.3). The Renecofor forest plots
mainly consist of mature forests, considered more challeng-
ing for biomass estimations, due to the presence of under-
story trees not evidently sampled from satellites. FORMS-B
performs better on this “challenging test” dataset than the
two other biomass maps, with an MAE of 59.7 Mg ha−1

(vs. 63.7 Mg ha−1 for Liu and 90.7 Mg ha−1 for ESACCI)
for biomass values reaching up to 430 Mg ha−1. Similarly to
the situation for FORMS-H, the FORMS-B product (R2

=

0.18) has a close performance to the Liu map (R2
= 0.17).

FORMS-B is based on two height–biomass allometric equa-
tions for coniferous and broadleaved trees and cannot cap-

ture specificity due to different tree species, which partly
explains the under- or overestimations of biomass for indi-
vidual forest plots. The comparison analysis with Renecofor
plots for the two other biomass maps leads to the same con-
clusion but with a higher MAE. The GLORIE forest plots
are all located in the Landes forest, an intensive maritime
pine plantation in the southwest of France. On this dataset,
with AGBD ranging from 0 to 160 Mg ha−1, FORMS-B has
an MAE of 19.7 Mg ha−1, better than the two other prod-
ucts with an MAE of 26.5 and 28.3 Mg ha−1 for Liu and
ESACCI, respectively. We observe a tendency to overesti-
mate lower AGBD values, which can be explained here by
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Figure 6. Visual (a, b, c, d) and quantitative (e, f) comparison of ALS RH95 height data resampled at 10 m resolution to FORMS-H (10 m
resolution) and to three other products at 3 m (Liu et al., 2023), 10 m (Lang et al., 2023), and 30 m resolution (Potapov et al., 2021). Panels
(a) comes from ALS 1 data, while (b, c, d) are from ALS 2 data. Panels (a, b) are located on flat terrains. Panels (c, d) are located on steep
terrain with 20 to 40◦ slopes. Panels (e, f) show the comparison with the whole ALS 1 and ALS 2 datasets, in forest pixels filtered with
the DLT map (Table 1). The black dashed line is the 1 : 1 line. We applied a uniform noise value in the [−0.5, 0.5] range to the three other
height products to allow a better scatterplot density visualization due to the data type provided as integers without changing the performance
metrics.

the time difference between the date of inventory and the
date of the maps presented here, given the high growth rates
of young maritime pines in the study area (Lemoine, 1991).
Overall, Fig. 8 highlights the capability of FORMS-B to es-
timate biomass density, compared to other existing biomass
maps, across various types of forests in France. Still, errors

are larger (MAPE = 24.1% for Renecofor and 39.9 % for
GLORIE) than the ones obtained for the height map valida-
tion (MAPE= 18.4% for the NFI plots and 16.9 % for ALS 1
and 22.5 % for ALS 2), which showcases the difficulty of de-
riving an AGBD map only from a height-based product. Our
height–biomass allometric equations for both coniferous and
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Figure 7. (a) FORMS-B: AGBD map of France at 30 m resolution for 2020. (b) Examples at three different locations of biomass prediction
(left) with the corresponding © Google map images from 2020, 2018, and 2019 (right). Brighter colors indicate higher AGBD.

broadleaved forests could be refined with other parameters
such as forest cover and detailed for specific species, which
requires a high-resolution dominant species map to increase
FORMS-B accuracy.

The agency responsible for the French NFI, IGN, pro-
duces yearly statistics of wood volume and sometimes
biomass at different scales from the statistical aggregation
of French NFI plots. Here we compared the 2020 WVD
statistics and the 2014 AGBD statistics (most recent avail-
able AGBD statistics) to our FORMS products and to the
Liu and ESACCI maps at the sylvoécorégion (SER) level
(See Sect. 3.3). The AGBD maps were converted to WVD
with the ratios defined in Sect. 3.3. Figure 9 shows these
comparisons for WVD (a) and AGBD (b), where each point
represents a SER or a SER group. Both for WVD and
AGBD, our FORMS products are closer to the NFI aggre-
gated values. For wood volume, FORMS-V has an MAE
of 30.0 m3 ha−1 and R2 of 0.63, which is significantly bet-
ter than other maps (Liu: MAE = 40.0 m3 ha−1 and R2

=

0.41; ESACCI: MAE = 55.8 m3 ha−1 and R2
=−0.18). For

AGBD, FORMS-B (MAE = 19.3 Mg ha−1; R2
= 0.35) and

Liu’s map (MAE = 22.4 Mg ha−1; R2
= 0.17) have similar

performances that outperform the global ESACCI (MAE =
38.7 Mg ha−1; R2

=−1.27) map. All the products underes-
timate the average WVD (ME for FORMS-V: −27 m3 ha−1;
Liu: −25 m3 ha−1; ESACCI: −48 m3 ha−1) and AGBD (ME
for FORMS-B: −15 Mg ha−1; Liu: −12 Mg ha−1; ESACCI:

−35 Mg ha−1) of forests at the SER scale. Figure 8e showed
that all the products underestimated large AGBD values in
Renecofor, which could explain this underestimation at an
aggregated regional scale. Additionally, we computed the
WVD and AGBD averages on all the forest pixels from the
DLT Copernicus map, which includes areas not regarded as
forests by IGN and that could have lower AGBD and WVD
values.

5 Limitations and further improvements

In this section, we address the identified limitations of our
study and suggest improvements for further research:

– Performance in mountainous regions. FORMS-H has a
lower accuracy on steep slopes, as demonstrated in the
comparison with ALS 2 data. Indeed, slope affects the
GEDI signal as well as S1 and S2 images. As a sig-
nificant part of forests in France is located in moun-
tainous areas, where agriculture is more difficult, future
studies should concentrate specifically on refining the
methodology for such challenging terrains and provide
improved estimations.

– Year-specific model. Our deep learning model was ex-
clusively trained on composite S1 and S2 images for
the year 2020. Deploying the same model on data from
other years may introduce significant errors due to vari-
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Figure 8. Visual (a, b, c, d) and quantitative (e, f) comparison of FORMS-B to two other products (Liu et al., 2023; Santoro and Cartus,
2023). Panels (a, b) are located on flat terrains. Panels (c, d) are located on steep terrain with slopes from 20 to 40◦. Panel (e) shows the
comparison with the biomass from the whole dataset of Renecofor forest plots (2019), including mainly old-growth mature forests uniformly
distributed over France. Panel (f) shows the comparison with the whole dataset of maritime pine forest plots (2016) from the GLORIE project
in an intensively managed forest (Les Landes, southwest of France). Points circled in red represent outliers related to clear-cuts between the
date of the inventory and 2020 and were removed from the calculation of error metrics. The red dashed line represents the 1 : 1 line.
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Figure 9. (a) Comparison of FORMS-V, Liu, and ESACCI average WVD with the WVD disclosed in 2020 NFI statistics for the 91 French
SER. The AGBD products were converted into wood volume with ratios described in Sect. 3.3. The average WVDs were estimated for forest
pixels only according to the Copernicus DLT map (Table 1). (b) Comparison of FORMS-B, Liu, and ESACCI average AGBD with 2014
AGBD estimations (ADEME and IGN, 2019) for 40 groups of SER. The reference SER data were converted from above- and below-ground
carbon to oven-dry AGB as described in Sect. 3.3. The average AGBDs were estimated for forest pixels only according to the Copernicus
DLT map (Table 1). The black dotted lines represent the 1 : 1 line.

ations in composite images. Investigating the develop-
ment of a year-agnostic model capable of generating
canopy height maps from S1 and S2 images from any
year could be highly interesting in order to have yearly
updated maps.

– Improved biomass estimation. The creation of FORMS-
B relies on two height–biomass power-law allomet-
ric equations for broadleaved and coniferous forests.
While this simple approach yields reasonably accurate
biomass estimates, discrepancies still exist when com-
pared to validation data. In future research, it could be
interesting to include tree species or ecoregions to en-
hance these allometric equations. Additionally, adding
more predictors than height to infer biomass seems to
be promising. Dominant tree height alone does not per-
fectly correlate with biomass due to factors such as tree
cover, density, height saturation at high biomass lev-
els, and the presence of understory trees. For instance,
integrating tree cover data obtained from sources like
GEDI could significantly enhance forest biomass esti-
mation, particularly in regions where tree cover is less
than 100%.

6 Data availability

FORMS products presented in this paper can be
visualized online at https://martinschwartz0.users.

earthengine.app/view/forms-height-biomass-volume-viewer
(last access: 25 October 2023). They can be di-
rectly used as Earth Engine images datasets named
“projects/ee-martinschwartz0/assets/FORMS-H”,
“projects/ee-martinschwartz0/assets/FORMS-B”, and
“projects/ee-martinschwartz0/assets/FORMS-V” or
downloaded from the Zenodo online platform under
https://doi.org/10.5281/zenodo.7840108 (Schwartz et al.,
2023).

The availability of all the datasets used in this study is pre-
sented in Table 1. GEDI, S1, S2, HD lidar, Copernicus DLT
map, SER statistics, Potapov, Lang, and ESACCI maps are
open access and freely available by following the links men-
tioned in Table 1. Other datasets were either protected by
privacy rules or made available upon request to their own-
ers. These dataset providers were added as co-authors of this
paper as their work largely contributed to the creation and
validation of our products.

7 Conclusions

In this study, we produced three maps that bring material
information on French forests for 2020. First, we created a
canopy height map of France at 10 m resolution (FORMS-
H) based on a novel deep learning approach that combines
GEDI, S1, and S2 data and extends the previous work by
Schwartz et al. (2022) on the forest of Les Landes. This map
outperforms existing canopy height estimations over France
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compared to reference ALS data. Then, we produced a WVD
(FORMS-V) and an AGBD (FORMS-B) map at 30 m resolu-
tion, resulting from applying power-law allometric equations
to FORMS-H. Similarly, these maps show a better agree-
ment with field data compared to other available products.
FORMS maps have already been used to assess the impact of
the 2022 fire season in France (Vallet et al., 2023) and pave
the way towards a fine-scale monitoring of forest biomass.
Our methods could be applied yearly and integrated into the
NFI data, thus following the guidance of the Global Forest
Observation Initiative (GFOI) to integrate earth observation
data into national forest monitoring systems. Furthermore,
our approach could be used to derive annual maps to mon-
itor changes in forest height and biomass, similarly to Tu-
rubanova et al. (2023), and serve as a reliable baseline for
forest monitoring.

Appendix A: Error metrics

MAPE= 100 ·
1
n

n∑
i=1

∣∣∣∣ei − ti

ti

∣∣∣∣ ,
MAE=

1
n

n∑
i=1

|ei − ti | ,

ME=
1
n

n∑
i=1

ei − ti,

R2
= 1−

∑n
i=1(ti − ei)2∑n
i=1(ti − t)2 ,

where ei is the ith estimated value, ti the ith true value, t the
mean of ti values, and n the sample size.

Appendix B: NFI broadleaved and coniferous forests
height validation

Figure B1. Comparison of FORMS-H to French NFI heights for broadleaved (a) and coniferous (b) forest plots measured in 2020. Brighter
colors indicate a higher density of points. The dashed line represents the x = y axis.
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