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Abstract  23 

Circularity in agri-food systems (AFS) has gained popularity as a concept promoted to decrease 24 

negative environmental impacts of agriculture and value chains, from the perspective of either 25 

nutrient cycling or a circular economy. However, at the global scale, evidence of increased 26 

circularity in AFS remains scarce. Research has been critical of the concept of a circular 27 

economy, especially socio-metabolic research. Yet, the latter provides a comprehensive 28 

framework for analyzing AFS in relation to planetary boundaries through the quantification of 29 

material and energy flows. The present review aimed to understand how socio-metabolic 30 

research addresses circularity in AFS, renders circularity operational and supports the transition 31 

towards strong sustainability. A total of 78 case studies were selected and characterized in terms 32 

of their (i) key methodological features, especially whether they addressed circularity as a 33 

context, purpose or means, and (ii) their pathways to action through the place of stakeholders 34 

and the key drivers of changes related to livestock production. We discuss knowledge gaps for 35 

acting on AFS and identify three priorities for transformative socio-metabolic research of AFS: 36 

(i) reveal hidden flows, identify system and compartment diversity (ii) assess trade-offs of 37 

transitioning to a circular system, including external impacts beyond the territorial scale (iii) 38 

strengthen methods for engaging local stakeholders in the design and implementation of the 39 

transition. 40 

Keywords: circularity, social metabolism, material flow analysis, stakeholders, livestock 41 

Acronyms 42 

AFS Agri-food systems 43 

CE Circular economy 44 

MFA Material flow analysis 45 
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NUE Nutrient use efficiency 46 

SMR Socio-metabolic research 47 

SFA Substance flow analysis 48 

 49 

Introduction 50 

Agri-food systems (AFS) are defined as the chain of activities from agricultural production to 51 

consumption, including fertilization, processing, distribution and waste management. They play 52 

a critical role in food production and security but face multiple environmental challenges in the 53 

preservation of soil, air and water resources (Foley, 2005; Rockström et al., 2009; Tilman et al., 54 

2011; Steffen et al., 2015). Within AFS, livestock systems are under particular scrutiny since 55 

they are associated with high greenhouse gas emissions (Herrero et al., 2013; Xu et al., 2021), 56 

nitrogen (N) losses (Uwizeye et al., 2020), land footprints for feed (Mottet et al., 2017) and 57 

dependence on international trade (e.g., soybeans imported to Europe and China from South 58 

America) (Barbieri et al., 2021). The spatial disconnection of crop and livestock production, 59 

led by agricultural specialization (Lassaletta et al., 2014) that depends on the use of industrial 60 

fertilizers, has also resulted in increased nutrient losses. These environmental pressures are 61 

associated in part with the linear design of most AFS, which is depleting natural resources (e.g. 62 

energy, water, soil), generating emissions, disrupting climate and biogeochemical cycles as well 63 

as generating food waste (Billen et al., 2021; Chrysafi et al., 2022). Circularity in AFS is 64 

promoted by institutions throughout the world, in the same way that they have promoted a 65 

circular economy (CE) as a pillar of industrial and environmental policies (Kirchherr et al., 66 

2017; Harris et al., 2021). Two aspects of circularity in AFS can be distinguished – CE and 67 

nutrient cycling – although the literature rarely does so clearly (Jurgilevich et al., 2016) (Box 68 

1). The concept of CE is subject to major criticisms: (i) the physical impossibility of 100% 69 
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circularity and the incompatibility of circularity with continued growth of material consumption 70 

(Grosse, 2010; Giampietro, 2019), (ii) the need to examine and quantify the trade-offs 71 

associated with making the economy more circular (Giampietro, 2019) and (iii) social-political 72 

implications due to potential conflicts among stakeholders (Bahers et al., 2017; Corvellec et al., 73 

2022). For the authors of these criticisms, CE should be a means to the end of strong 74 

sustainability that limits AFS to planetary boundaries, rather than an end in itself (Haas et al., 75 

2020; van Loon et al., 2023). Many of these criticisms come from socio-metabolic research 76 

(SMR) (Box 2). For example, Haas et al. (2020) developed four priorities to align CE with those 77 

of planetary boundaries: decrease flows (both resource inputs and emission outputs) before 78 

increasing circularity rates, decarbonize energy, stabilize material stocks and consider the (un-79 

) sustainability of current biomass extraction.  80 

Although circularity is a growing focus of agricultural and food policy-makers, current SMR 81 

studies of AFS use different methods to qualify and address it. However, there is a lack of 82 

homogenization of the drivers of circularity examined in these studies, which are applied in 83 

different regions of the world and at different spatial and temporal scales. To address this gap, 84 

we performed a systematic review to analyze how SMR examines circularity in AFS and how 85 

to render it operational.  86 

 87 

Box 1. Definition of circularity for agri-food systems 88 

There is no commonly accepted definition of circularity, which is considered in two fields of 89 

study: 90 

(i) circular economy (CE), which has many definitions (Kirchherr et al., 2017). CE includes 91 

mainly the adoption of business models, as well as the development of technologies and systems 92 
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across supply chains, to increase resource-use efficiency and promote reuse and recycling of 93 

materials. Circularity is central to industrial ecology studies (Erkman, 1997) to contrast circular 94 

models to current large-scale linear-production models, including agricultural production. 95 

Jurgilevich et al. (2016) highlight that implementing CE in agri-food systems (AFS) i) uses 96 

practices and technologies that minimize inputs of finite resources, ii) encourages use of 97 

renewable resources, iii) decreases loss of natural resources from systems and iv) encourages 98 

reusing and recycling unavoidable resource losses in a way that adds the greatest possible value 99 

to the AFS. Recently, Muscat et al. (2021) defined five core principles for circular AFS: 100 

safeguarding, avoiding, recycling, prioritizing and entropy. 101 

(ii) nutrient cycling. According to Boh and Clark (2020), “the central idea is ‘to close the loop’: 102 

to reduce consumption, limit waste losses, and increase nutrient recycling at the farm, regional, 103 

and national scales”. Circularity approaches go beyond increasing efficiency in nutrient 104 

conversion along AFS. Velasco-Muñoz et al. (2021) promote multiscale reuse and recycling of 105 

agricultural waste and increasing nutrient flows between animal and crop production. They 106 

provide systemic guidelines that combine CE and nutrient cycling to shift agriculture within 107 

safe planetary boundaries. 108 

 109 

Box 2. Socio-metabolic research and agri-food systems  110 

Socio-metabolic research (SMR) focuses on interactions between biophysical and 111 

socioeconomic process. It examines the biophysical basis of societies, particularly flows (of 112 

materials, substances or energy) within socioeconomic systems and between them and their 113 

environment (Haberl et al., 2019). SMR has been applied to agriculture and agri-food systems 114 
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(AFS), which lie at the core of societies (LaRota-Aguilera et al., 2022) at multiple temporal and 115 

spatial scales (Gabriel et al., 2020). 116 

SMR quantitatively analyzes resource use (Fischer-Kowalski and Hüttler, 1998) and 117 

environmental footprints (González de Molina et al., 2020) of a system. Unlike traditional 118 

economic models or analyses that ignore biophysical constraints of AFS, some authors 119 

(Fischer-Kowalski and Haberl, 2007; Erb, 2012) argue that SMR can provide more complete 120 

understanding of complex relations within AFS and their relations to their environment.  121 

 122 

Materials and methods 123 

The literature review followed a two-stage workflow approach inspired by the PRISMA 124 

protocol (Moher et al., 2009) (Fig. 1).  First, we selected articles using a search query and 125 

classified each as a case study, review or conceptual article. Based on the review, as well as 126 

conceptual articles that we identified and additional articles that we considered relevant, we 127 

then formulated detailed research questions and developed an analysis grid for the selected case 128 

studies. 129 
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 130 

Fig 1. Review process used to formulate detailed research questions and identify 78 case 131 

studies on how socio-metabolic research examines circularity in agri-food systems 132 

 133 

 134 

Articles selection and classification 135 

The process used to select articles that address circularity and SMR applied to AFS, followed 136 

the following steps (Fig. 1): 137 

 The literature review was based on the Scopus® citation database  138 

 We constructed the query by combining with the Boolean operator “AND” four search 139 

strings in four themes:  140 

o Circularity: (circular* OR loop OR cycling) 141 
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o Socioeconomic metabolism: ("agricultural metabolism" OR "agrarian 142 

metabolism" OR "Agrarian Social Metabolism" OR "socioeconomic 143 

metabolism" OR "socio-economic metabolism" OR "social-metabolism" OR 144 

"MFA" OR "material flow analysis" OR "substance flow 145 

analysis" OR "nutrient flow analysis" OR "energy flow analysis" OR "SFA") 146 

o Fluxes: (nutrient OR nitrogen OR phosphorus OR potassium OR 147 

material OR energy OR substance) 148 

o AFS: (agro* OR agri* OR food OR livestock) 149 

 We iterated the query several times and excluded keywords not relevant to the context 150 

(see the Supplementary Information Section 1 for the complete search strings and 151 

selection process) 152 

 The search, performed on 15 March 2023 for all articles published before 2023, 153 

identified 1064 articles 154 

 We then selected peer-reviewed and English-language articles based on their title, 155 

abstract and keywords . Articles that did not consider AFS, or that focused only on the 156 

farm scale, specific types of crops or livestock, urban or food waste, or woodland and 157 

forest biomass were excluded (see Table S1 for the full list and exclusion criteria).  158 

 The articles were classified into three categories: case study, review or conceptual 159 

article. After a thorough reading of all articles, 10 additional case studies were omitted 160 

using the same exclusion criteria (Fig. 1, Table S1). 161 

 These steps yielded 78 case studies, 4 reviews and 5 conceptual articles. The reviews 162 

and conceptual articles, along with 7 other articles that we selected separately (Table 163 

S2), helped us design our two detailed research questions and analysis grid. The present 164 

review thus focused on the 78 relevant case studies (Tables S3-S4). 165 

 166 
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Formulation of detailed research questions and development of the analysis grid 167 

Detailed research questions based on previous literature reviews 168 

Previous reviews helped us formulate research questions about the relationships between SMR 169 

and circularity. A detailed literature analysis is provided in the Supplementary Information 170 

Section 2. Several reviews emphasized practical difficulties in implementing circularity 171 

principles, such as socio-technical lock-ins, conflicts over reorganizing material flows (because 172 

it creates winners and losers) and concerns about the scale of implementation (Bahers et al., 173 

2017; Corvellec et al., 2022; Marty et al., 2022). We thus focused on relations among SMR, 174 

AFS, circularity and action, and more specifically on two components for action: (i) 175 

stakeholders (including socioeconomic and political dimensions) and (ii) drivers of changes 176 

(i.e. where does one have leverage on the system?). According to Binder (2007), decision-177 

making is driven by personal preferences, social norms and cultural backgrounds, which are 178 

difficult to capture in quantitative economic models. In any case, one should question the ability 179 

of stakeholders to influence material and nutrient flows (Gabriel et al., 2020).  Regarding 180 

drivers and mechanisms for changing AFS metabolism and circularity, van der Wiel et al. 181 

(2020) reviewed the potential to restore nutrient circularity at the local scale and identified two 182 

hotspots: (i) recoupling of crop and livestock production and (ii) recycling of post-consumption 183 

food waste. Research on the critical role of livestock in nutrient cycling (de Boer and van 184 

Ittersum, 2018; Van Zanten et al., 2019) and in CE (Madelrieux et al., 2023) has also increased 185 

greatly in recent years. These studies show the unique ability of livestock production to restore 186 

nutrient circularity, from the use of animal feed, and manure to human consumption of animal 187 

products.    188 

Based on the literature analysis, this review examines how SMR addresses circularity in AFS 189 

and pathways to action according to two main research questions: 190 
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(i) What place do socioeconomic or political dimensions, and stakeholders have in 191 

studies that address the circularity of AFS metabolism?  192 

(ii) What main drivers related to livestock production have been identified to change 193 

AFS metabolism and circularity? 194 

 195 

Analysis grid 196 

To address these research questions, we built a data-extraction grid that analyzed six features 197 

of the 78 case studies: circularity viewpoint, methods, spatial and temporal scales, types of 198 

flows, system boundaries and compartments (Table 1). Inspired by the previous work of 199 

Scandurra et al. (2023), we defined the circularity viewpoint of the case studies in our review 200 

as either a context, a purpose or a means to achieve strong sustainability. Two focuses related 201 

to our research questions were also examined: (i) the relation to socioeconomic or political 202 

dimensions, and stakeholders (Table 2) and (ii) the main drivers related to livestock production.  203 

To identify the latter drivers, we examined the methods of each case study in detail and selected 204 

key descriptive variables or input parameters of the livestock supply chain described in the AFS 205 

models.  206 

 207 

Table 1 Key features selected for the review of case studies 208 

Feature Criterion Definition 

Circularity 

viewpoint 

 

 

Context 

only 

Case studies that mentioned circularity as a context in the 

introduction, as an indicator in the method (e.g. recycling 

indicators but no analysis of recycling and a focus of the 

results on environmental impacts rather than on circularity 

itself) or as a perspective (e.g. MFA considering recycling 

issues) 

Purpose 

Case studies that identified circularity as an objective of 

the analysis (i.e. that focused on mechanisms of efficiency 

and circularity, which are often associated) 
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Means 

Case studies that examined circularity as a means to 

decrease environmental impacts (i.e. that consider action 

mechanisms, including but not limited to circularity and 

efficiency) 

Spatial scale 
global, European Union, national, county, city (including metropolitan 

area) 

Temporal scale 
1 year, an average year, decades, centuries, scenario (1 year, but in the 

future) 

System 

boundaries and 

compartments 

included 

production, processing, household consumption, waste management, 

water management 

Type of flows 

Materials biomass 

Substances carbon, nitrogen, phosphorus, potassium, magnesium 

Energy 

Water 

Method 

Substance flow analysis (SFA), including spatially explicit SFA 

Material flow analysis (MFA) 

Life cycle assessment (LCA), including social LCA 

Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism 

(MuSIASEM) 

Participatory approach 

Energy modeling 

 209 

Table 2 The roles of stakeholders in the case studies: relation to the socioeconomic or 210 

political dimension or stakeholders 211 

Criterion Definition 

Purpose 
The results are discussed, and the idea that they could be used to better 

guide policy and flow management is stated 

Method 

Investigation: stakeholders are a source of data and are surveyed 

(investigation with stakeholders), or political and legislative documents 

are analyzed (investigation in a political-legislative framework)  

Participatory approach: stakeholders are involved in co-constructing 

indicators or discussing scenarios 

Analysis 

The analysis includes relations to socioeconomic variables (e.g. social life 

cycle assessment) 

Included in modeling: stakeholders are included in agent-based modeling 

Governance of flows: the territorial organization of stakeholders, 

institutional regulations or place of public action and policies are analyzed 

Assessing stakeholders potential for transformative thinking 

 212 
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Results 213 

Overview of journals 214 

The 78 case studies (see Table S4 for the meta-data used) were published in 30 journals (Fig. 215 

S1), of which 7 journals represented 61.5% of the total: Resources, Conservation and Recycling 216 

(13 case studies), Science of the Total Environment (10), Journal of Cleaner Production (8), 217 

Nutrient Cycling in Agroecosystems (5), Agricultural Systems (4), Journal of Environmental 218 

Management (4) and Sustainability (4). Since publication of the first case study in 2008, we 219 

observed a threefold increase in the number of studies published per year on circularity in SMR 220 

(Fig. 2). The countries studied most were China and European countries (Fig. S2), which can 221 

be explained by political incentives in both regions to promote circular AFS and CE strategies 222 

(Bleischwitz et al. (2022) for China; Mhatre et al. (2021) for the European Union). 223 

 224 

Fig 2 Number of case studies reviewed (n=78) published per year 225 
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Features of the case studies 226 

Circularity viewpoint 227 

As a context or part of an assessment: these context-oriented studies assessed the functioning 228 

of the flows and compartments of AFS to increase understanding of AFS and compare them 229 

temporally and spatially. Circularity was perceived using indicators of recycling (e.g. waste or 230 

manure used) but was not the main focus, remaining simply a part of the assessment of AFS 231 

metabolism (e.g. Fan et al., 2009). After the assessment, circularity appeared as one of several 232 

ways to improve AFS metabolism, which focuses on nutrient sources and sinks to quantify: (i) 233 

dependence on imports, (ii) stocks and long-term accumulation of nutrients in AFS 234 

compartments, (iii) losses throughout the entire AFS and (iv) nutrient-use efficiencies (NUE). 235 

These studies sought to increase understanding of the intensity and dynamics of flows.  236 

For studies related to CE, the challenge was to make the invisible visible, as illustrated by the 237 

hidden flows and waste of livestock byproducts (e.g. in a beef supply chain (Amicarelli et al., 238 

2021b) or a poultry sector at the national scale (Bux and Amicarelli, 2022)). 239 

The studies highlighted several mechanisms for improving AFS metabolism: decreasing 240 

absolute flows, in particular to decrease use of non-renewable resources (Gameiro et al., 2019); 241 

decreasing production and consumption of products with low conversion efficiency (Adetona 242 

and Layzell, 2019); using coproducts (Amicarelli et al., 2021); optimizing land use and using 243 

renewable energy (but not necessarily from biomass) (Liu et al., 2017). One study identified a 244 

direct stakeholder mechanism: educating consumers about AFS resilience and sustainability 245 

(Amicarelli et al., 2021). 246 

As a purpose: the purpose-oriented studies analyzed circularities in AFS metabolism more 247 

deeply and sought to improve the functioning of AFS by improving circularity. They focused 248 

on mechanisms of circularity (e.g. decreasing chemical inputs), efficiency (e.g. improving 249 
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conversion ratios and performances) and waste and loss reduction, which are often associated 250 

in definitions of circularities, such as that of van der Wiel et al. (2020). For these authors, 251 

nutrient circularity corresponds to recycling of nutrients in “waste products” combined with 252 

increased NUE.  253 

The studies of nutrient cycling followed a gradient of approaches and objectives that ranged 254 

from: (i) in-depth discussion and quantification on improved nutrient recovery (e.g. Kamal et 255 

al., 2019) or waste recoverability (e.g. Verger et al., 2018) or alternative phosphorus (P) 256 

resources by seizing CE opportunities (e.g. Álvarez et al., 2018) and possibly identifying their 257 

main advantages and disadvantages (Keil et al., 2018) to (ii) frameworks for quantifying the 258 

circularity of nutrient flows, assessing consequences of system openness for managing nutrients 259 

flows, and rendering these frameworks operational in case studies (e.g. Harder et al., 2021) or 260 

to (iii)  improvement scenarios (e.g. Hanserud et al., 2016; Sinha et al., 2022) or optimization 261 

models to identify options for closing the nutrient cycles (e.g. Klinglmair et al., 2017). 262 

As a means: In the means-oriented studies, circularity or increasing efficiency was only one of 263 

the means used to consider pathways towards strong sustainability of AFS and to transform the 264 

AFS itself. They corresponded to the foundations of SMR, which aims to limit AFS to planetary 265 

boundaries and in which CE is only one of the means to achieve this end. The feasibility of 266 

changes and scenarios was usually assessed using qualitative (authors' assessment) or 267 

theoretical approaches. For example, Liu et al., (2016) described the feasibility of policy levers 268 

for closing P cycles (e.g. P recovery, P legacy, life-cycle P management, changes in human 269 

diets, changes in feed formulation) and their corresponding temporal horizons.  270 

In terms of scenarios, these studies considered more radical transformations of the AFS, such 271 

as changing human diets by decreasing consumption of animal products (e.g. Papangelou et al., 272 

2021) or making organic farming practices with long and diversified crop rotations more 273 

widespread (Billen et al., 2021). They also discussed the extent to which stakeholders were able 274 
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to adopt a transformational stance to achieve more sustainable P use (Martin-Ortega et al., 275 

2022), or the socio-technical organization and political dynamics of the scenarios (Jedelhauser 276 

et al., 2018). Analysis of flow governance (e.g. Bahers and Giacchè (2019) for waste 277 

management) and political-legislative interventions over time (e.g. Mehr et al., (2018) for the 278 

Swiss P system since the 1980s) was also discussed in relation to circularity. Several case 279 

studies highlighted the mismatch between the nutrient management practices used in AFS and 280 

current and potential policies (Harseim et al., 2021; Kovanda, 2022).   281 
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 282 

Fig 3 Overview of the 78 case studies a. methods used, b. spatial scales, c. temporal scales, d. 283 

elements and e. compartments included. *“Other” in a. includes ascendency analysis, allocation 284 

factors, socioecological integrated analysis and optimization methods. SFA: substance flow 285 

analysis, MFA: material flow analysis, LCA: life cycle assessment, MuSIASEM: Multi-Scale 286 

Integrated Analysis of Societal and Ecosystem Metabolism. In d. and e., the colors identify the 287 

type of flows studied: substance (N, C, P, K, Mg) in light green, materials (and biomass) in 288 

green, energy in light blue: energy and water in dark blue.  289 
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 290 

Methods 291 

 Most case studies applied substance flow analysis (SFA) (49), followed by MFA (18) (Fig. 292 

3a). The main difference between MFA and SFA is the latter’s higher degree of detail and 293 

complexity. SFA tends to focus on the exact pathway of a specific nutrient or pollutant in 294 

compartments of the AFS. As illustrated in the MFA applied at national scales by Tanzer and 295 

Rechberger (2020) or van Dijk et al. (2016), N flows to the environment are estimated as a 296 

single aggregated flow, while the SFA of Zhang et al. (2022), for example, distinguished N 297 

flows to the atmosphere, surface water and groundwater. Some conceptual models have been 298 

developed, such as NUFER (nutrient flows in food chains, environment and resources use, for 299 

MFA) (Hou et al., 2015; Zheng et al., 2021) and GRAFS (generalized representation of agro-300 

food systems, for SFA) (Le Noë et al., 2017; Papangelou and Mathijs, 2021). 301 

Only 10% of the studies examined spatially explicit nutrient flows and soil balances. 302 

Nonetheless, spatial approaches must be developed to address circularity due to the local 303 

environmental impacts of nutrient losses. These approaches also provide additional 304 

perspectives on the logistical and energy costs of transporting material such as manure, as 305 

highlighted for P in the “corn belt” of the USA (Metson et al., 2016). 306 

 307 

Spatial scale 308 

Overall, 59% of the case studies reviewed focused on macro scales (i.e. global, European 309 

Union, national), while 41% considered intermediate territorial scales (i.e. county or city) (Fig. 310 

3b). Overall, 88% of the studies focused on only one scale, while the most common paring of 311 

scales was national and county levels (Klinglmair et al., 2017; Nesme et al., 2015; Papangelou 312 

and Mathijs, 2021; Wang et al., 2022). For example, Domingues et al. (2019) found that intra-313 

scale analysis could help distinguish counties with nutrient surpluses from those with nutrient 314 
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deficits. Thus, policy-makers can decide which counties have higher priority for actions to 315 

transition AFS. Similarly, the city scale helps understand relations between urban and rural 316 

areas (e.g. Papangelou et al., 2020), including the specialization of territories that produce, 317 

others that consume and others that are sinks for waste, and the loss of circularity between urban 318 

and peri-urban areas. Studies of islands (Firmansyah et al., 2017) provided good examples of 319 

the linearity of flows, such as the proportion of feed imported for livestock farming, which was 320 

large and obvious. The choice of scale influences the level of organization at which circularity 321 

needs to be considered (Koppelmäki et al., 2021). 322 

 323 

Temporal scale 324 

Overall, 65% of the studies focused on only 1 year or an average year (mean: 4.2 consecutive 325 

years) (Fig. 3c). Studies that focused on 1 (average) year described a situation at a given 326 

moment, as an initial step to improve it. The 14 studies with decade-long analyses sought to 327 

identify major and recent transformations in systems to identify the main drivers involved, for 328 

example in response to political and economic changes (e.g. Hou et al., 2015 from 1961–2010 329 

in Hungary). The three studies with analyses that spanned centuries (Fan et al., 2009 and Liu et 330 

al., 2016 for China or Le Noë et al., 2019 for France) provided key insights into changes in 331 

socio-metabolic regimes in response to transformation of societies in their sources and uses of 332 

biomass (for food and other uses) and energy (solar vs. fossil), and in the circularity in these 333 

regimes. Preindustrial agriculture provides a comparative case (e.g. Fan et al., 2009; Tello et 334 

al., 2016), since it was designed as closed-loop systems based mainly on biomass as a source 335 

of material and energy, with strong integration of crop and livestock systems. However, only 336 

three of these 14 case studies with scenarios modeled scenarios over a long time horizon and 337 

assessed AFS metabolism flows by considering regulatory constraints and economic incentives 338 

(Tasmeea et al., 2021; Zheng et al., 2021) or future technologies (e.g. Hanserud et al., 2016). 339 
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 340 

Types of flows 341 

P was by far the material flow analyzed most frequently (45% of studies), followed by N (19%), 342 

biomass (12%), energy (10%) and other substances (14%) (Fig. 3d). The geopolitical and 343 

disruption risks of the P supply could explain this greater focus on P. Indeed, unlike industrial 344 

N fertilizers, which are produced through the Haber-Bosch process using fossil fuels (Smil, 345 

2001), industrial P fertilizers are derived from phosphate rock, which is a non-renewable and 346 

highly vulnerable resource (Cordell and Neset, 2014). Notably, 55% of the studies considered 347 

only 1 (36%) or 2 nutrients (19%, usually N and P, as illustrated by Firmansyah et al. 2017). 348 

Only one of the studies, of the district of Cleves, Germany (Van der Wiel et al. 2021), assessed 349 

four substances (N, P, K, C) simultaneously to specify the dynamics of each in the AFS, as an 350 

initial step in assessing trade-offs in the management of these substances. The relations between 351 

types of flows (e.g. between N and P or nutrients and carbon) were also rarely mentioned. Only 352 

a few case studies considered the energy use or flows needed to recycle and transfer nutrients 353 

among compartments (Tello et al., 2016; Adetona and Layzell, 2019). 354 

 355 

System boundaries and compartments 356 

The systems examined in the studies varied from agriculture as one sector of the economy 357 

among others (e.g. Chen and Graedel, 2016 or Adetona and Layzell, 2019) to AFS as a set of 358 

processes or compartments. Nearly 25% of the studies included the five compartments of AFS 359 

(Fig. 3e). The two compartments included the least were processing and water management. 360 

After production, the other two compartments - human consumption and waste management - 361 

were equally important in most studies since they influence the potential to recycle flows in the 362 

agri-food-waste-water system, as highlighted by van der Wiel et al. (2021). For agricultural 363 

production, the most common approach was to separate crop and livestock production. 364 
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However, few studies distinguished cropland from grassland, or different types of livestock 365 

systems. When it was done, they identified livestock compartments by the category of animal 366 

(e.g. Hou et al., 2015; Gameiro et al., 2019), the type of production system (e.g. Fan et al. (2009) 367 

or both (e.g. Liu et al. (2017), who distinguished grazing ruminants, non-grazing ruminants and 368 

non-ruminants). This approach improves assessment of the drivers related to production of each 369 

livestock category and their interactions with specific types of biomass and land use in a region. 370 

Pathways to action  371 

Socioeconomic or political dimensions and stakeholders 372 

Although all studies stated that their results could be used to better guide policy and flow 373 

management, only 25 of the 78 case studies (32%) (Table S4) considered socioeconomic or 374 

political dimensions or stakeholders in the method or analysis (Table 3). Our review found that 375 

7 studies established relations between flows, biophysical indicators and socioeconomic 376 

variables (e.g. correlations, explanatory factors, impacts (e.g. social life cycle assessment) or 377 

constraints (e.g. labor), but the analyses were based on databases, and stakeholders were not 378 

considered in the methods (Bai et al., 2016; Tello et al., 2016; Cattaneo et al., 2018; Padró et 379 

al., 2020; El Wali et al., 2021; Tasmeea et al., 2021). One study (Ma et al., 2012) related P-flow 380 

dynamics to socioeconomic variables, going beyond databases to investigate political-381 

legislative interventions and correlations between the change in P flows and socioeconomic 382 

factors. 383 

Stakeholders were involved in the methods of only 16 studies. In 10 of them, stakeholders 384 

helped to validate data to supplement SFA/MFA (nine studies) or to build scenarios based on 385 

their beliefs and assessment of trends (Sinha et al., 2022), however, they were subsequently  not 386 

considered in the analysis. In four studies, investigation with stakeholders was combined with 387 

analysis by including stakeholders in agent-based modeling (Fernandez-Mena et al., 2020) or 388 
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modeling of governance (Bahers and Giacchè, 2019; Harseim et al., 2021; Marty et al., 2022). 389 

These more detailed studies of the governance of flows began to assess stakeholders’ ability to 390 

influence flows. In the other two studies, stakeholders were included in participatory 391 

approaches to co-construct a P-vulnerability index (Nanda et al., 2020) or discuss scenarios of 392 

change and how they can be achieved (Martin-Ortega et al., 2022), which is the most advanced 393 

form of connection to action. The governance of flows was also analyzed by investigating only 394 

political-legislative interventions (Mehr et al., 2018), by emphasizing institutional regulations 395 

and the influence of public policies. Overall, stakeholders were engaged in both the methods 396 

and analysis of only 5 of the 78 studies (Table 3), most of which were at the city or county 397 

scale. 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 
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Table 3 Consideration of socio-economic or political dimensions and stakeholders in the 414 

method or analysis of the case studies reviewed, which applied to only 25 of the 78 case 415 

studies reviewed. The other 52 case studies are represented by the hatched cell. The three gray 416 

cells indicate case studies whose stakeholders were engaged in both methods and analysis. 417 

 

 

 

Method 

Analysis 

Relations to 

socioeconomic 

variables 

Included 

in agent-

based 

modeling 

Governance 

of flows 

Assessing 

stakeholders’ 

potential for 

transformative 

thinking 

Absent 

from 

the 

analysis Total 

Investigation 

in a political-

legislative 

framework 

1 0 1 0 0 2 

Investigation 

with 

stakeholders 

0 1 3 0 10 14 

Participatory 

approach 
0 0 0 1 1 2 

No connection 

to stakeholders 

in the methods  

7 0 0 0  7 

Total 8 1 4 1 11 25 

 418 

Drivers related to livestock production to change AFS metabolism and circularity  419 

Overall, 76% of the studies (Table S3-S4) considered livestock as a central component of 420 

material flows in AFS, while the remaining 24% considered aquaculture, food-side flows or 421 

waste treatment and processing as central. We identified 11 key drivers (noted Di) related to 422 

livestock (in five compartments, from feed production to human consumption) that influence 423 

the social metabolism and circularity of AFS (Fig. 4). Notably, 90% of the studies reviewed 424 

considered at least one of these drivers. The number of these studies that examined each 425 
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livestock driver varied (Figure 5). On average, each study examined 4.7 drivers (range: 1 to  9). 426 

The three divers examined most were the amount (or proportion) of manure recycled to 427 

cropland, followed by total feed and the amount (or proportion) of crops used for feed. The 428 

three drivers examined least were, in decreasing order, livestock density, the amount (or 429 

proportion) of byproducts used for feed and the amount (or proportion) of slaughter byproducts. 430 

 431 

Fig 4 The 11 drivers (Di, in bold) related to the livestock sector, examined in the case 432 

studies reviewed, that influence agri-food system metabolism and circularity. LSU: 433 

livestock units.  434 
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 435 

Fig 5 Number of case studies that mentioned each livestock driver identified. The review 436 

included 78 case studies, of which 70 mentioned at least one livestock driver (Di) and 8 437 

mentioned none (not shown).  438 

Animal feed: in the case studies, animal feed was identified as a driver of AFS metabolism in 439 

both absolute amounts (D1) (kt·yr-1, usually of N or P) and compositions (proportions). Refining 440 

circularity required detailing feed composition as proportions of imported feed (D2), grass and 441 

fodder (D3), crop byproducts (D4) and crops (D5) (Fig. 4). Assessments of using crop 442 

byproducts for feed (Fig. 5) often lacked detail (Álvarez et al., 2018; Scherhaufer et al., 2020; 443 

Martin-Ortega et al., 2022) even though they represent a way to reduce feed/food competition 444 
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and improve the circularity of AFS (Van Zanten et al., 2019; Muscat et al., 2021). The review 445 

highlighted that feed composition (D2 to D5) was usually described coarsely due to a lack of 446 

statistical data. For example, Zoboli et al. (2016) divided total feed into only marketable feed 447 

provided by trade and industry (including imported feed) and non-marketable feed. For Europe, 448 

Withers et al. (2015) indicated that dietary P intake could be decreased up to 30% without 449 

decreasing livestock production, thus decreasing P in manure and P losses. For N metabolism, 450 

the proportion of legumes in grass and fodder strongly influences the circularity of nutrient 451 

flows (Billen et al., 2021; Marty et al., 2022) but it was rarely explored due to a lack of data on 452 

permanent and temporary grassland. In contrast, studies usually quantified imported feed well, 453 

and considered mainly soybeans (Withers et al., 2015). Importing feed connects local AFS to 454 

abroad and usually results in opening the loops of nutrient flows (Firmansyah et al., 2017; 455 

Papangelou and Mathijs, 2021; van der Wiel et al., 2021). In sum, feed is key component of 456 

circularity in AFS: the larger the feed flow, the more resources are needed to increase its 457 

circularity along the supply chain to decrease its environmental impacts. However, knowledge 458 

of exactly how byproducts are used remains weak, which makes it more difficult to enhance 459 

the role of livestock as a recycler. 460 

 461 

Livestock density, composition of herds and livestock conversion efficiency: livestock density 462 

(livestock units (LSU)·ha-1) is another key driver (D6) that influences nutrient balances of AFS 463 

and the spatial variability of nutrient losses. Several studies have shown that livestock density 464 

is positively correlated to industrial fertilizer use (Withers et al., 2020), the proportion of 465 

imported ingredients in feed (Hou et al., 2018) and nutrient losses per hectares of agricultural 466 

land (Nesme et al., 2015). Nonetheless, the studies did not always model livestock density 467 

explicitly (Fig. 4). However, livestock density remains an essential mechanism in circular AFS 468 

since it must be adjusted locally to the potential feed biomass available and cropland available 469 
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for fertilization (Hou et al., 2018; Gameiro et al., 2019; van der Wiel et al., 2021; Z. Zhang et 470 

al., 2022) to minimize losses. 471 

The herd composition of ruminants and non-ruminants (D7) was detailed only in a few studies 472 

(Hou et al., 2015; Liu et al., 2017; Billen et al., 2021; Cheng et al., 2022) despite the influence 473 

of both types of animals on the circularity and environmental impacts of AFS (Van Zanten et 474 

al., 2023). Ruminants have the ability to convert feed such as grass, which humans cannot 475 

consume, into high-quality human-edible protein. But they have lower feed-conversion 476 

efficiency than monogastric animals (Billen et al., 2021) and produce much more enteric 477 

methane to do so. In contrast, monogastric animals require a larger proportion of grain and other 478 

concentrated feedstuff that could be used as human food. Thus, compared to ruminants, they 479 

have a lower carbon footprint. 480 

Livestock conversion efficiency (D8) is a driver that connects feed, manure and livestock 481 

production (Bai et al., 2016; Yuan et al., 2019). Producing livestock with low conversion 482 

efficiency requires focusing more on using their manure (Gameiro et al., 2019). Some studies 483 

estimated livestock conversion efficiency from nutrient excretion rates, which are usually not 484 

measured but based on national statistics and vary among animal categories (Papangelou and 485 

Mathijs, 2021). At the national scale, weighted average livestock conversion efficiency was 486 

usually set at 10-30% when expressed in P (Cooper and Carliell-Marquet, 2013; Álvarez et al., 487 

2018) or N (Z. Zhang et al., 2022), which meant that 70-90% of feed was excreted as manure, 488 

which is the critical flow to recycle in AFS to minimize losses.  489 

 490 

Manure management: manure-management systems, which drive nutrient recycling, consist 491 

of multiple factors that the studies did not always describe explicitly. The proportion of manure 492 

nutrients recycled or the amount applied to cropland (D9) depends on the time that animals 493 

spend in buildings and manure-management techniques (Hutchings et al., 2020). The time that 494 
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animals spend in buildings determines the proportion of manure theoretically recoverable. Case 495 

studies usually indicated an absolute amount of manure rather than a proportion recycled on 496 

cropland. The main recycling opportunities for manure addressed in the studies were N and P 497 

recovery and energy generation (Keil et al., 2018). In Europe, livestock manure is the largest 498 

source of recyclable P (Withers et al., 2015). The proportion of livestock manure recycled 499 

influences the amount of industrial fertilizers applied on cropland and grassland (Hou et al., 500 

2018; Billen et al., 2021).Value can also be derived from manure through anaerobic digestion, 501 

which produces biogas and digestate (Wu et al., 2012). In the case of some provinces of India, 502 

manure is also burned as an energy source (Keil et al., 2018; Nanda et al., 2020).  503 

 504 

Slaughter and processing: all nutrients in feed that do not end up in manure and urine become, 505 

after slaughter and processing, animal products, byproducts (e.g. blood, bone, skin, head, feet) 506 

or waste (Mehr et al., 2018). The proportion of byproducts recycled (D10) is another driver of 507 

nutrient metabolism. Dressing percentages of livestock distinguish flows of animal products 508 

from those of byproducts, which have the potential to be recycled or rendered (Ferronato et al., 509 

2021), but the lack of data from slaughterhouses hinders precise quantification of the flows 510 

(Amicarelli et al., 2021a, 2021b; Harder et al., 2021). Some studies examined recovery from 511 

animal byproducts to produce energy, fertilizer, animal feed or pet food (Zoboli et al., 2016; 512 

Prathumchai et al., 2018), depending on national safety regulations.  513 

 514 

Human consumption: the proportion of animal products in the human diet (D11) (along with 515 

the human population in the region studied (X. Zhang et al., 2022)) influences feed resources 516 

(Hou et al., 2015; Withers et al., 2015; Bai et al., 2016; Keil et al., 2018; Tasmeea et al., 2021; 517 

Billen et al., 2021). Reducing the amount of animal proteins in human diets usually has the 518 

most influence on the metabolism of AFS: it decreases absolute flows in the livestock supply 519 
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chain (and associated nutrient losses) with a “multiplier effect” (which is the inverse of the 520 

livestock conversion efficiency) (Papangelou and Mathijs, 2021).  521 

 522 

Discussion 523 

Limits of the review 524 

The review has three limits. First, systematic reviews depend on the database searched and how 525 

often it is updated. For example, the study of Kleinpeter et al. (2023), which assessed the roles 526 

of crops and livestock in nutrient circularity in the AFS of a tropical island, and whose subject 527 

lies at the heart of our review, did not appear in our search of Scopus in March 2023, even 528 

though it had appeared online in September 2022 and been published in January 2023. 529 

Moreover, reviewing topics that have many definitions in the literature, such as circularity, 530 

required making choices when creating search strings and selecting articles.  531 

Second, the review focused on how to render circularity in AFS operational by analyzing the 532 

roles of stakeholders in the studies and the drivers related to livestock production. Thus, it did 533 

not focus on other key drivers, such as waste management. Nonetheless, decreasing AFS 534 

metabolism and limiting AFS to planetary boundaries require systemic approaches that also 535 

address recycling of biowaste and human waste. Some studies developed specific insights into 536 

and knowledge of circular design for waste management, especially of food waste (Manfredi et 537 

al., 2015; Donner et al., 2020). 538 

Third, although analyzing trade-offs is crucial for AFS sustainability, we were unable to review 539 

how SMR considers trade-offs since relatively few of the studies did so. Trade-offs between 540 

nutrient flows were addressed only in the review of van der Wiel et al. (2021) and well-541 

illustrated for P and N for Austria by Tanzer et al. (2018). We argue that impacts of structural 542 



29 

 

changes in AFS metabolism should always be discussed in terms of multicriteria environmental, 543 

economic and social dimensions.  544 

 545 

AFS reintegrated into territories and limited to planetary boundaries: the gaps for action 546 

Except for one case study that mentioned a potential decrease in N metabolism (Hou et al., 547 

2015) the studies that analyzed past trends mentioned an increase in AFS metabolism and loss 548 

of circularity. This review highlights that all of the studies provided recommendations for 549 

decreasing AFS metabolism, closing nutrient cycles and moving towards more circular 550 

economies in the face of the environmental challenges. 551 

Although the studies highlighted many drivers, we detailed those related to livestock 552 

production, which is considered to have the highest environmental impacts in AFS. Since 553 

livestock have a lower conversion efficiency than crops do (Godinot et al., 2015), changes in 554 

livestock production strongly influence feed flows in AFS and management of nutrient losses 555 

in manure. We also mentioned some mechanisms related either directly to the intensity and 556 

circulation of flows (e.g. practices to decrease losses, improvements in technologies for 557 

recovering nutrients in waste) or, less often, related to the organization of stakeholders of AFS, 558 

as well as their roles and power (Withers et al., 2020). 559 

However, little research has examined how to render these mechanisms and potentials 560 

operational. While the SMR’s potential for action is recognized (Binder, 2007), it remained 561 

mainly an intention in the studies reviewed. Only one study identified socio-technical and 562 

cognitive barriers to implementing change scenarios or management options: Martin-Ortega et 563 

al. (2022) attempted to assess stakeholders’ potential for transformative thinking. This confirms 564 

that while SMR considers action important, it rarely addresses how action relates to choices of 565 
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socio-metabolic approaches and the use of representations in participatory approaches with 566 

stakeholders (Gabriel et al., 2020). 567 

Stakeholders who could influence the metabolism of AFS were rarely involved in the studies, 568 

particularly economic and political stakeholders. In addition, the mechanisms mentioned act at 569 

multiple organizational, political and commercial scales that go far beyond the researchers and 570 

stakeholders of a territory, even though the territory is considered a relevant scale for action 571 

(Papangelou and Mathijs, 2021). For example, decreasing livestock production; distributing it 572 

in space as a function of the resources available to feed animals and the crops available to 573 

receive manure; decreasing feed, fuel and fertilizer imports and modifying human diets involves 574 

a variety of stakeholders and decision scales, which need to be coordinated.  575 

 576 

Three priorities for transformative socio-metabolic research 577 

Continue to make the invisible visible 578 

The case studies highlighted changes in the transformation and looping flows of AFS in two 579 

ways: opening black boxes or monitoring historical pathways. This review shows that progress 580 

still needs to be made in opening the black boxes of AFS metabolism (Tello et al., 2016) from 581 

a modeling perspective. For livestock in particular, few of the studies reviewed analyzed how 582 

the metabolism and material flows of ruminants and non-ruminants differs.  Yet these flows 583 

need to be distinguished since they contribute differently to the circularity and environmental 584 

impacts of AFS (Cheng et al., 2022; Harchaoui et al., 2023). More generally, SMR needs to 585 

represent the diversity of production systems better; to date, they have been quantified in a 586 

relatively homogeneous manner. One solution is to further combine SMR with bottom-up 587 

research approaches to learn more about performances of the technologies used in farming 588 

practices in order to improve material flow management. Concepts such as “manureshed” 589 
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(Flynn et al., 2023) have research potential by placing more focus on logistics and spatially 590 

explicit analysis to rebuild nutrient circularity between regions that have too much manure and 591 

others that have too little.  592 

Historical pathways increase understanding of the magnitude of changes in nutrient balances of 593 

AFS and only partially in drivers. Future research could concentrate on a more systematic and 594 

detailed analysis of all 11 livestock drivers identified in this review and their effects on AFS 595 

metabolism.  596 

Opening these black boxes also means further examining the governance of flows. SMR needs 597 

to develop methods to characterize the roles of multiple stakeholders in the governance and 598 

management of material flows in AFS (Verger et al., 2018). SMR needs to go beyond revealing 599 

hidden flows, by highlighting their cultural, social, political and technical embeddedness, to 600 

better understand the socio-technical bottlenecks and power relations encountered when trying 601 

to change AFS (Aubron et al., 2021; Madelrieux and Redlingshöfer, 2023). How have policies 602 

and regulations changed AFS metabolism? What are the real effects of policy and public action 603 

on decreasing the metabolism and increasing the circularity of AFS? Some policies have helped 604 

decrease and make AFS metabolism more circular, such as the use of organic fertilizer 605 

promoted by abandoning the large subsidies offered for purchasing industrial fertilizers (Bai et 606 

al., 2016).  607 

 608 

Engage socio-metabolic responsibility 609 

As mentioned, few case studies explicitly addressed trade-offs. Those that did addressed mainly 610 

nutrient trade-offs. We argue that energy trade-offs must also be addressed. Haas et al. (2020) 611 

also recommended assessing how material and energy systems interact, as well as using a 612 

systemic energy perspective to avoid counterproductive effects of CE strategies. An increase in 613 

circularity must not increase fossil energy use. No case studies except Papangelou et al. (2020) 614 
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studied energy costs associated with increasing recycling or reusing materials. Methods that 615 

combine nutrient and energy analysis (Harchaoui and Chatzimpiros, 2018) must be developed 616 

to consider the influence of a circular AFS on its energy use (e.g. increased nutrient cycling 617 

saves the energy used to produce industrial fertilizers, but transporting nutrients from nutrient-618 

surplus regions to those in deficit needs costs energy).  619 

The studies also rarely considered trade-offs between stakeholders, due to the lack of 620 

considering the social dimension. Who are the winners and losers of CE strategies (Corvellec 621 

et al., 2022)? In theory, crop-livestock recoupling should decrease industrial fertilizer use on 622 

crop farms and excess nutrients on livestock farms. However, Regan et al (2017) found that this 623 

is not always true, due to the rebound effect (i.e. Jevons paradox), which they highlighted in 624 

cases of recoupling of crop and dairy production through farm cooperation.  Another socio-625 

metabolic responsibility concerns the transfer of footprints (i.e. environmental damages and 626 

increasing social inequalities) between territories which broadens the number of stakeholders 627 

impacted. Papangelou et al. (2021) estimated an increased land footprint of European AFS due 628 

to imports of food, feed, fuel and fertilizers. Future SMR should better consider externalization 629 

and displacement of these footprints. 630 

 631 

Engage action 632 

First, SMR should rigorously clarify concepts by positioning itself in a strong sustainability 633 

perspective in which circularity is a means to remain within planetary boundaries. For example, 634 

some studies reviewed considered that using byproducts contributed to CE, but doing so may 635 

only represent a cascading use of resources in a linear bioeconomy (Madelrieux et al., 2023). 636 

This approach should help avoid “circular washing”, especially when working with policy-637 

makers and economic stakeholders (Marrucci et al., 2022), and to use umbrella concepts to keep 638 
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these stakeholders from losing the focus on strong sustainability (Corvellec et al., 2022). 639 

Increases in circularity should always be associated with decreases in absolute flows in AFS. 640 

To effectively implement circularity in AFS and engage stakeholders in the process, both 641 

technical and socioeconomic aspects of managing flows must be considered. Technical 642 

solutions (e.g. integrating crop and livestock production, using manure as fertilizer, developing 643 

new feed ingredients) to close nutrient cycles and decrease waste must be sustained by an 644 

increase in added value for economic stakeholders (e.g. farmers, processors, consumers), 645 

without overloading their work capacity. In addition,  supportive policies and incentives should 646 

also integrate the social, economic and cultural drivers of resource use and waste. 647 

We also argue that SMR needs to develop frameworks for implementing desired scenarios and 648 

transition mechanisms. They could be based, for example, on the recommendation of Liu et al. 649 

(2016) to determine the feasibility and time scale of results, and that of Withers et al. (2020) on 650 

collective action across the entire AFS, based on the transformational potential of all 651 

stakeholders, since the burden of responsibility often lay on farmers. For Withers et al. (2020), 652 

it requires examining stakeholder motives, values, “knowledge systems”, power and influence, 653 

and their potential to move away from the current economic model. This goal can be achieved 654 

by increasing understanding of the roles of stakeholders in AFS metabolism, as mentioned, and 655 

using participatory approaches that include stakeholders as potential agents of change. 656 

However, it raises questions about which research approach(es) to use and how to represent 657 

AFS metabolism to engage change with stakeholders. It also raises questions about which 658 

stakeholders to target and at which scales of organization to discuss and implement the 659 

mechanisms of change, and how to implement cross-sectoral and multiscale discussions. 660 

Should they be chosen based on their power, legitimacy or interest (Mitchell et al., 1997), their 661 

transformational capacity or their potential ability to take responsibility in collective 662 

governance of AFS (Withers et al., 2020)? How can SMR and representations of AFS 663 
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metabolism help frame and support their real transformative potentials? The field of research 664 

is vast. 665 

Conclusion 666 

We reviewed 78 studies on circularity and socio-metabolic research in agri-food studies. The 667 

relation between socio-metabolic research and circularity is bidirectional. Circularity can 668 

provide a framework for understanding and optimizing flows in agri-food systems, and thus 669 

help understand metabolic patterns of agri-food systems. In reverse, socio-metabolic research 670 

can provide important insights into the intensity and technical, socioeconomic and political 671 

drivers of flows in agri-food systems, and thus help identify opportunities for promoting 672 

circularity as one way to reintegrate agri-food systems into territories and planetary boundaries. 673 

Socio-metabolic research helps increase awareness of the metabolism of agri-food systems, 674 

identify its hotspots and provide potential improvements and mechanisms of action to decrease 675 

the metabolism and render it more circular in order to decrease its environmental impacts. 676 

Future research should better consider stakeholders, their roles in agri-food systems 677 

metabolism, potential trade-offs, the diversity of production and consumption practices, and the 678 

livestock categories produced. Even with these improvements, many important steps will 679 

remain to make socio-metabolic research a transformative science that truly leads to sustainable 680 

agri-food systems metabolism. 681 
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