
HAL Id: hal-04498634
https://hal.science/hal-04498634

Preprint submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Tasks Scheduling with Multiple Priorities on
Heterogeneous Computing Systems

Hayfa Tayeb, Bérenger Bramas, Mathieu Faverge, Abdou Guermouche

To cite this version:
Hayfa Tayeb, Bérenger Bramas, Mathieu Faverge, Abdou Guermouche. Dynamic Tasks Scheduling
with Multiple Priorities on Heterogeneous Computing Systems. 2024. �hal-04498634�

https://hal.science/hal-04498634
https://hal.archives-ouvertes.fr

Dynamic Tasks Scheduling with Multiple Priorities
on Heterogeneous Computing Systems

Hayfa Tayeb
Bordeaux University

Inria, ICube Lab
Bordeaux, France

hayfa.tayeb@inria.fr

Bérenger Bramas
Strasbourg University

Inria, ICube Lab
Strasbourg, France

berenger.bramas@inria.fr

Mathieu Faverge
Bordeaux University

Bordeaux INP, CNRS, Inria
Bordeaux, France

mathieu.faverge@inria.fr

Abdou Guermouche
Bordeaux University

Inria, LaBRI Lab
Bordeaux, France

abdou.guermouche@labri.fr

Abstract—The efficient utilization of heterogeneous computing
systems is crucial for scientists and industrial organizations
to execute computationally intensive applications. Task-based
programming has emerged as an effective approach for harness-
ing the processing power of these systems. However, effective
scheduling of task-based applications is critical for achieving
high performance. Typically, these applications are represented as
directed acyclic graphs (DAGs), which can be optimized through
careful scheduling to minimize execution time and maximize
resource utilization. In this paper, we introduce MultiPrio,
a dynamic task scheduler that aims to minimize the overall
completion time of parallelized task-based applications. The goal
is to find a trade-off between resource affinity, task criticality, and
workload balancing on the resources. To this end, we compute
scores for each task and manage the available tasks in the system
with a data structure based on a set of priority queues. Tasks are
assigned to available resources according to these scores, which
are dynamically computed by heuristics based on task affinity and
criticality. We also consider workload balancing across resources
and data locality awareness. To evaluate the scheduler, we study
the performance of dense and sparse linear algebra task-based
applications and task-based FMM application using the StarPU
runtime system on heterogeneous nodes. Our scheduler shows
interesting results compared to other state-of-the-art schedulers
in StarPU for regular applications, and excels at optimizing
irregular workloads, improving performance by up to 31%.

Index Terms—Priority-based scheduling, Runtime system, het-
erogeneous computing systems

I. INTRODUCTION

High-performance computing relies on heterogeneous com-
puting systems that come with an overall increased parallelism
diversity such as multiprocessors and accelerators, e.g., graph-
ical processing units (GPUs). HPC experts work tediously
to narrow the gap between domain experts’ implementations
and the use of heterogeneous systems. A range of research-
driven projects has established diversified task-based support,
employing various programming and runtime features [1].

The task-based programming model has shown great po-
tential in various applications [2]–[4]. In this model, the
developer defines atomic tasks with the dependencies be-
tween them. A directed acyclic graph (DAG) represents the
application. The runtime, which is an intermediate software
layer supporting this DAG execution, schedules tasks and data
migrations efficiently on all available cores while reducing
the waiting time between tasks. Therefore, the goal of DAG

scheduling is to minimize the global completion time of
the program, i.e. the makespan. Various runtime systems
capable of handling heterogeneous workloads have emerged
(PaRSEC [5], StarPU [6]). These runtime systems serve as an
overlay on which task-based applications are executed. The
StarPU runtime system employs a Sequential Task Flow (STF)
representation of applications, where computations are defined
as tasks, each with input and output data and access modes.
The application developer provides different implementations
for each task to enable their execution on either CPU or GPU.
In the STF model, the runtime system automatically builds
the DAG by relying on data access modes and a sequential
submission order. It infers task dependencies based on their
data requirements and uses this information to schedule tasks
on the appropriate processing unit while organizing data
transfers between memory nodes.

To achieve high performance on heterogeneous systems,
efficient task scheduling is essential. The research commu-
nity has proposed multiple scheduler families, each aimed at
tackling specific scheduling challenges. HeteroPrio [3] is a
scheduler designed for heterogeneous machines in the context
of task-based Fast Multipole Method (FMM) implementation.
It is used by several applications showing significant improve-
ments [7, 8]. HeteroPrio is a semi-automatic scheduler where
users must provide priorities for the different types of tasks
that exist in their applications. A fully automatic version of
this scheduler that computes efficient priorities for HeteroPrio
is proposed in [9]. HeteroPrio and its automatic version are
cheap and effective. However, they show a limitation which
is the priority assignment per type of task. Every application
has a set of task types that will be used in different stages of
the scheduling. Setting a priority per type could hide relevant
information related to a given scheduling context. This also
brings us to the limitation of the data structures that are used
to manage the ready tasks in the scheduler which are tied to
the strategy of priorities per type.

This study aims to address the limitations raised and there-
fore proposes a novel scheduler based on priority per task for
a given processing unit. We define a data structure managing
the ready tasks in the system per priority and per processing
unit type. Our objective is to minimize the global completion
time of task-based applications in heterogeneous environments

thanks to good scheduling decisions. The major contributions
of this paper can be summarized as follow:
• We present a novel automatic dynamic scheduler for

heterogeneous systems that balances between task affinity
and criticality while taking into account data locality and
resource workload.

• We evaluate the performance of our scheduler relative to
existing schedulers in StarPU, in real-life scenarios, and
show that it efficiently schedules irregular applications
without requiring user expertise, while being competitive
with highly tuned schedulers on more regular workloads.

The paper is organized as follows: In Section 2 we briefly
analyze some related works. In Section 3 we present an
overview of the model of the proposed scheduler: context
and its building blocks. Afterward, we instantiate the model
in the context of StarPU as a task-based runtime system
and we explain the underlying mechanisms that orchestrate
scheduling. In the following section, we present the heuristics
and their impact. In Section 6 we describe the performance
study with real-life task-based applications and show the
scheduling results on different configurations of heterogeneous
systems using StarPU. Section 7 discusses challenges and
future work, and finally we conclude.

II. RELATED WORK

Runtime systems have a significant role in supporting
program execution in heterogeneous parallel and distributed
computer systems. Our work is focused on runtime systems
managing dynamically the execution of task-based applica-
tions, i.e. the distribution of work is at runtime. Several works
are proposed, we cite StarPU [6], OmpSs [10], XKaapi [11],
PaRSEC [5] and more recently IRIS [12] that improves
portability across a wide range of diverse heterogeneous
architectures with negligible overhead. From a task scheduling
perspective, most of these task-based runtime systems rely
on dynamic strategies for task scheduling. These dynamic
scheduling heuristics can be classified into two families.

Resource-centric schedulers aim to maximize resource
utilization by allocating tasks to processors based on resource
availability and workload. When a resource is getting close to
the idle state, the scheduler selects a task for this resource.
A famous heuristic is work stealing (ws) [13, 14] where the
worker steals a task from the most loaded worker. An improved
version takes into account data locality (lws) such that the
scheduler steals a task from neighbor workers. This scheduling
policy is proposed in StarPU, XKaapi and IRIS.

Task-centric schedulers focus on improving task execution
time and reducing task waiting time. Unlike resource-centric
schedulers, task-centric ones take decisions when a task is
ready to be executed. A common heuristic is Heterogeneous
Earliest-Finish-Time (HEFT) [15]. H. Choi et al. [16] proposed
a dynamic scheduling algorithm that uses a history-based
Estimated-Execution-Time (EET) for each task. The algorithm
aims to schedule each task on its fastest architecture but may
deviate from this rule in cases of work starvation for a worker
type. K. Chronaki et al. [17] proposed a criticality-aware

task scheduler (CATS) that dynamically assigns critical tasks
to fast cores in a heterogeneous multi-core. This scheduling
policy consistently improved performance compared to the
dynamic implementation of HEFT. In StarPU, the dequeue
model (dm) scheduler family [18] (also called heft-tm-pr)
considers task execution performance models to implement a
scheduling strategy similar to HEFT. The scheduler estimates
and selects the best expected completion time of the task
on each processing unit. This evaluation is based on the
measured execution times of previously scheduled tasks. The
Dmda (dequeue model data-aware) scheduler (also called heft-
tmdp-pr) goes a step further by also considering the time
required to transfer data to the processing unit. The Dmdas
(dequeue model data aware sorted) variant sorts the queues
based on the task priority values specified by the application
expert. For the tasks with the highest priorities, it will give
preference to those whose data buffers are already available
on the target device, which makes it more sensitive to the data
locality. Dmdas uses user priorities, while our scheduler relies
exclusively on heuristics, without requiring user knowledge of
the DAG. In the upcoming experimental evaluation, we will
only compare our scheduler to Dmdas, which is representative
of the family of dynamic heft-based schedulers. In each
case, we will specify whether or not the priorities in each
application were set by the user. If it’s not the case, Dmdas
will simply act as if all tasks have equal priorities and will
push the tasks into the queue in the order they become ready.
DARTS [19], a novel dynamic GPU task allocation strategy
based on data selection and a customized eviction policy, was
shown to outperform existing strategies in StarPU. Although,
this scheduler schedules on mono-resource computing system.

Some task-based execution systems may use a combination
of both policies to achieve a balance between resource utiliza-
tion and task execution efficiency. We can find affinity-based
schedulers that assign tasks to resources based on their affinity,
i.e. the task’s preference for a specific resource. One example
is HeteroPrio [3] scheduler that uses different priorities for the
different processing units. It relies on a priority assignment
per type of task according to its performance on a processing
unit (PU). Tasks are dispatched to buckets according to their
priorities. Each task is executed on the most prioritized avail-
able processing unit. An improved version of HeteroPrio is
presented in [20]. It takes into account data locality during task
distribution. The main principle is to use different task lists for
the different memory nodes and to investigate how to evaluate
the locality between the tasks and the different memory nodes
without looking at the task dependencies. HeteroPrio is a semi-
automatic scheduler that asks users to specify priorities for
different types of tasks in their applications. The scheduler is
considered to be cost-effective and efficient in its scheduling.
However, this approach comes with a limitation. The different
types of tasks are involved in various stages of the execution.
Setting a priority per type hides relevant information related to
a given scheduling scenario. Therefore, we propose a priority
per task to address this. This paper presents a novel scheduler
that exploits the strengths of the two scheduler families. Our

proposal is based on a set of priority queues based on a binary
heap data structure. On the one hand, we use heuristics to
assign two scores to each task, first based on task-resource
affinity and second based on criticality, and thereby sort the
tasks using the scores. On the other hand, we introduce an
effective workload distribution across heterogeneous resources
using heuristics and an eviction mechanism.

III. OVERVIEW OF THE SCHEDULER

We begin with a comprehensive overview of our proposed
scheduler, providing insight into the context of the computing
system and the data structures used, without reference to a
specific runtime system. In the following section, we proceed
with the implementation of the outlined model within StarPU,
delving into the specifics of the implementation.

A. Context and notations

A heterogeneous computing system consists of different
types of processing units, such as CPUs and GPUs. We denote
A the set of architecture types, i.e., the types of processing
units, and P the set of processing units of the heterogeneous
computing system. The system includes a set of memory
nodes denoted as M. In our study, we see the main RAM
of a computing node as a single memory node despite the
NUMA effects but otherwise the approach remains valid. m
can be either the main RAM, a GPU-embedded memory or
disk memory. We note Pm ⊂ P the subset of processing units
tied to m ∈M. The notations are shown in table I.

Notation Description
A set of architecture types
P set of processing units
M set of memory nodes
Pm subset of processing units tied to m ∈ M
Pa subset of processing units of type a ∈ A
T set of tasks representing the application
t a task from the DAG of the application

λ−(t) set of all direct predecessors of t
λ+(t) set of all direct successors of t
δ(t, a) estimated execution time of t on a ∈ A

TABLE I: List of notations used in the paper.

A task-based application is represented by a DAG denoted
G = (V,E) where the vertices V correspond to the set
of tasks. The edge e ∈ E connecting a pair of vertices
corresponds to the precedence relationship between two tasks.
In any feasible schedule, for each edge (ti, tj) ∈ E, tj cannot
start its execution before the completion of ti. In this case, ti
is considered as a predecessor of tj and λ−(tj) denotes the
set of all direct predecessors of tj . Similarly, tj is a successor
of ti and λ+(ti) denotes the set of all direct successors of ti.

In our context, the runtime system infers the DAG automat-
ically by taking into account the data dependencies between
tasks. The construction of the DAG is at runtime, i.e. the whole
DAG cannot be known in advance. A task t is seen as ready
when all its predecessors λ−(t) have finished executing, i.e.
a ready task is a task for which all dependencies in the DAG
are released. The task can have multiple implementations,
i.e., it can be executed on different A. We consider δ(t, a)

the execution time estimation for t computed by processing
units Pa. This estimation could be provided by a history-
based performance model from the runtime system [21, 22].
The role of the scheduler is to assign ready tasks to the
appropriate processing units. We denote W the set of workers.
A worker is a software component that is responsible for
executing computational tasks on a specific processing unit.
We have at least one worker per memory node and expect
|M| ≤ |P| ≤ |W |. The scheduler intervenes at two key
moments at runtime: (i) when a new task is ready meaning
its dependencies are released and (ii) when a processing unit
is idle and asks for a task for execution. All decisions about
distribution, load balancing, etc. are internal to the scheduler.

B. General idea of the MultiPrio scheduler

Each scheduling policy requires generally a data structure to
store ready tasks from the moment they become ready until a
worker can execute them. We propose a set of priority queues
implemented as binary max-heap data structures denoted H
managed by our scheduler.

Fig. 1: MultiPrio scheduler example with 2 GPUs and 1 CPU.
The tasks in the priority queues are ready for execution and
are sorted according to their scores, which can be different
depending on the type of processing unit. For example, the
ready task H has the highest score on the GPU (and is stored
at the top of the queue) and a lower score on the CPU.

For each m ∈ M, we create a binary heap hm ∈ H, i.e.,
|H| = |M|. The number of memory nodes in a heterogeneous
computing system remains small, which makes the number of
binary heaps reasonable without creating a huge overhead in
our scheduling policy. The scheduler inserts each ready task t
in all respective hm ∈ H such that t can be executed on Pm.
Tasks are then duplicated in the heaps.

We show an example of the scheduler data structures in
Figure 1. The workers W consume tasks from the priority
queues to execute them on the dedicated processing unit. Each
worker w ∈ Wm picks its task from hm ∈ H and executes
them on any processing unit in Pm ⊂ P . In the example, the
first GPU worker that turns idle pulls the task ”H” which is
the most prioritized. This same task has a low probability of
being picked up by a CPU worker, since it is at the bottom of
the corresponding priority queue.

Tasks are sorted in the priority queues by scores. When a
new task t becomes ready, the scheduler calculates scores for
each m ∈ M and a ∈ A using various heuristics. These
heuristics include the acceleration of t on each Pa and a
heuristic indicating if t is critical to release based on the
state of the DAG. We describe the proposed heuristics for
computing task scores in section V. The scheduler then inserts
t into the appropriate priority queues, and its score determines
its priority compared to other tasks. When a worker asks for
a task, the scheduler attempts to minimize data movement
between memory nodes due to its cost. Finally, we propose an
eviction mechanism that ensures that when efficient workers
are available, less efficient workers don’t take their tasks. This
approach helps to balance tasks effectively among available
resources based on their affinities. More details are given in
section V.

IV. SCHEDULER IMPLEMENTATION

A. Scheduling in StarPU

Scheduling in StarPU is an essential part of its task-based
programming model. Tasks can have different implementations
specific to a type of processing, such as CPU or GPU. This
means that the performance of a task can vary significantly
depending on the processing unit it is assigned to. StarPU
has scheduling policies to determine which task to assign
where and when, based on factors like task characteristics and
resource affinities. Custom scheduling policies can be defined
through the following key operations:
• PUSH operation, when a task becomes ready to execute,

i.e. it does not wait for certain data dependencies. Sched-
ulers making decisions at this level are task-centric.

• POP operation, when a worker is idle and asks for a task
to execute. Schedulers making decisions at this level are
resource-centric.

Fig. 2: Dynamic scheduling overview in StarPU.

The scheduling policies require a data structure to store the
tasks between the time they become available and the time

a worker can perform them. Typically, the scheduler engine
contains at least one queue of tasks for this purpose. In
the following, we describe our proposed scheduler, which
intervenes in both PUSH and POP operations, implemented in
the StarPU runtime system.

B. Scheduler mechanisms

To manage the ready tasks between the PUSH and the POP
operations, we use a set of binary max-heaps managed by
the scheduler. For each memory node m ∈ M, we have a
binary max-heap data structure representing a priority queue
such that in each node we have the ready task and its two
scores computed by the heuristics presented later (Subsections
V-A and V-B). Each binary max-heap root is the task with
the highest score. Using this data structure, we can determine
the number of tasks ready at any point during the scheduling
process on each processing unit pm tied to a memory node
m ∈M. If a task can be executed by multiple processing unit
types or the processing unit type is tied to multiple memory
nodes, it may be duplicated across several priority queues.
When a worker picks a task from a given priority queue,
any duplicate tasks in other priority queues will remain there.
Instead, when workers try to select these duplicates, they will
recognize that they have already been processed and remove
them. For the implementation of the binary max-heap, we
define the insert and delete mechanisms. The scheduler acts
on PUSH and POP operations detailed in the following.

Algorithm 1 PUSH operation in the scheduler engine

enabled archs← {0}
for m = 1 to M do
a← get memory node arch type(m)
if can exec(t, a) and get worker count(a) > 0 then
enabled archs[m]← 1
gains[m]← get gain score normalized(t, a)
prios[m]← get prio score normalized(t)
ready tasks count[m]+ = 1
if normalized speedup(t, a) == 1 then
best remaining work[m]+ = δ(t, a)

end if
end if

end for
heaps insert(heaps, t, enabled archs, gains, prios)

The PUSH operation in our scheduler engine is presented
in the algorithm 1. We indicate the binary heaps on which
the task can be executed. For each memory node, if there is
an implementation of the task on the respective processing
unit type Pm of architecture type a, we compute the scores.
We use two scores to sort the inserted tasks in each binary
heap. We first sort the tasks using the gain heuristic detailed
in Subsection V-A. If two tasks have equal scores, we then
sort them using the criticality heuristic (Subsection V-B). We
insert the task into its respective binary heap, or binary heaps
if there are multiple implementations or resources.

Algorithm 2 POP operation in the scheduler engine

w ← worker get id()
w a← get worker arch type(w)
w m← get worker worker node(w)
task found← 0
nb tries← 0
while !task found and nb tries ≤MAX TRIES do
tprio ← get most local prio task(heaps, w m)
if pop condition(tprio, w a) == 1 then
task found← 1
ready tasks count[w m]− = 1
best remain work[m]− = δ(tprio, w a)
heaps pop and update(heaps, tprio, w a)

else
heaps evict task(heaps, tprio, w a)

end if
nb tries+ = 1

end while

The POP operation in our scheduler engine is described in
Algorithm 2. When a worker is idle and requests a task, the
scheduler prioritizes the locally available task with the highest
data priority. It then evaluates whether the worker is a suitable
match based on the pop condition . This heuristic helps the
scheduler decide whether or not it is prudent to pop a task
from a binary heap for a particular processor (see details in
subsection V-D). If the condition is met, the scheduler pops
the task and updates the relevant data. Otherwise, it evicts
the task from the current queue and continues trying to pop
the next prioritized task until it either succeeds or reaches a
maximum number of attempts.

V. PROPOSED HEURISTICS

Our goal is to compute the different score(t, a) for a
newly ready task t, to push t into all binary heaps targeting
processing units Pm of architecture type a that can execute
the task. All values are normalized between 0 and 1.

A. Gain heuristic

To compute score gain(t, a), we take into consideration
the processing units available to perform a task. If there is only
one type of processing unit that can perform the task, the gain
heuristic is set to 1. If the processing unit type is the fastest of
all available processing units, the gain heuristic is calculated
using the execution time on the second fastest processing unit
and the highest gain. Otherwise, the gain heuristic is calculated
using the execution time on the fastest processing unit and
the highest gain. By incorporating this gain heuristic into our
scheduling algorithm, we can improve the overall efficiency of
the system by selecting the best processing type for each task.
The gain heuristic that we propose in our scheduling algorithm
is defined by the following formula:

gain(t, a) =

1 |A| = 1

(δ(t,a2nd)−δ(t,a))+|hd(a)|
2∗|hd(a)| a is the fastest

(δ(t,a1st)−δ(t,a))+|hd(a)|
2∗|hd(a)| else

(1)
where hd(a) is the highest execution time difference recorded
so far on the processing unit type a.

We show an example in Table II with three tasks tA, tB
and tC and two processing unit types a1 and a2. Using the
gain heuristic formula(1), we calculate the heuristic scores for
each task on each architecture type. The calculation of the
gain heuristic gives us the order of priority in each heap. In
the binary heap relative to a1, we find that tA is the most
prioritized then tB then tC with a lower score. However, in
the binary heap relative to a2, C is the most prioritized then
B then A. This example illustrates how the gain heuristic
optimizes task prioritization for efficient resource allocation
in our scheduling algorithm, ultimately taking full advantage
of all available heterogeneous resources to optimize the overall
performance of the application.

tA tB tC
δ(t, a1) 1ms 5ms 20ms
δ(t, a2) 20ms 10ms 10ms
gain(t, a1) 1 0.631 0.236
gain(t, a2) 0 0.368 0.763

TABLE II: Example of the gain heuristic calculation with 3
tasks and 2 architecture types. Here, hd(a1) = hd(a2) = 19.

B. Tasks criticality

Computing task priorities in a DAG is a well-studied but
challenging problem. The complexity arises when using dy-
namic scheduling because we do not have the complete DAG
in advance, making it difficult to anticipate upcoming tasks.
The scheduling decisions must be made on the fly at runtime.
Therefore, we focus on lightweight strategies that work on a
partial view of the DAG. The challenge is to design heuristics
that are both highly effective and operationally efficient,
while avoiding excessive complexity. Therefore, to compute
score criticality(t, a), we use the same metric Normalized
Out-Degree (NOD) as in [23]. We suppose that we can retrieve
the set of tasks that will be released when t is computed,
i.e., its successors, denoted λ+(t). The successors could target
different processing units, therefore, we note λ+(t,Pm) the
subset of tasks that will be released for Pm. The same logic
applies to the predecessors denoted λ−(t,Pm). We consider
the criticality of the task based on the metric NOD(t) and
we calculate the ratio:

NOD(t) =
∑

si∈λ+(t,Pm)

1

|λ−(si,Pm)|
(2)

In Figure 3, we present an illustrative DAG that represents
task dependencies. In particular, this example represents the

situation during dynamic scheduling when tasks are marked as
ready. In the example, tasks 2 and 3 are ready to be executed
and are marked in yellow. To make informed scheduling
decisions, we apply the NOD heuristic to determine which
of these ready tasks should have a higher priority. Using the
formula above, we get NOD(T2)=2.5 and NOD(T3)=1. Task
2 has a higher priority according to this heuristic. In fact, it
has more successors that will be released, which will create
more workload and improve the parallelism.

Fig. 3: Example of a DAG. Two released tasks are marked
as ready to execute (yellow nodes), and the NOD heuristic is
applied to determine the most prioritized task.

C. Data locality
Data locality is an important consideration when scheduling

tasks on heterogeneous computing nodes. To minimize data
transfers between nodes and increase efficiency, our scheduling
algorithm takes data locality into account when selecting tasks
in the POP operation. In fact, the scheduler pops the most local
task among the first n tasks in the heap, where ”local” refers
to tasks that physically have the data they need to process on
the memory node. We only consider tasks with scores close to
the highest priority task, where the score difference is within a
certain threshold (denoted as ε). We use the LS SDH2 [20]
heuristic, which stands for Locality Strategy - Sum of Data
Hosted.

LS SDH2(m, t) =

 ∑
d∈DR

t,m

d.size

+

 ∑
d∈DW

t,m

d.size2

(3)

Here, Dt,m is the set of data used by task t that resides
on memory node m. DR

t,m and DW
t,m are the sets of data

used by t that resides on m and is accessed in read and
write mode, respectively. The LS SDH2 is the score obtained
by summing the amount of data already on a node, with
each data write counted in a quadratic manner. This approach
optimizes task execution on heterogeneous compute nodes by
minimizing data transfer requirements. Selecting tasks based
on their proximity to the required data increases efficiency and
speeds up task processing, reducing the time and bandwidth
required to transfer data between memory nodes.

D. Eviction mechanism
In our proposed scheduler, we incorporate an eviction

mechanism along the pop condition to improve workload

distribution and resource utilization efficiency. In particular,
we identified this challenge when the system is close to a
starvation state, i.e., there are fewer ready tasks available. This
can happen towards the end of an application’s execution, or
when there are unfulfilled dependencies in the DAG that result
in fewer ready tasks. When this phenomenon occurs, there
is a risk that workers with slower implementations will pop
the task, and potentially increase the makespan. To mitigate
this, we have implemented the pop condition algorithm in
our scheduler.

When a worker attempts to pop a task, the scheduler exam-
ines the pop condition . First, if the current worker is consid-
ered the best, i.e., with the fastest estimated execution time, the
task is immediately assigned. Otherwise, the scheduler com-
pares the best remaining work to the task estimated execu-
tion time on the current worker. The best remaining work
is maintained and updated as described in the PUSH and POP
algorithms. If best remaining work is larger, the condition
is favorable and the task is assigned to the current worker. In
fact, in cases where the best worker is sufficiently busy, we
allow the task to go to a slower worker to maintain progress
in the DAG, thereby improving overall performance. If this is
not favorable, our eviction mechanism will remove the task
from the current queue and another worker will attempt to
execute it. To summarize, the pop condition is valid when the
best worker asks for the task or another worker satisfies the
best remaining work condition. This dynamic assignment
strategy optimizes task distribution and resource utilization
throughout the scheduling process.

Fig. 4: Simulated scheduling traces with StarPU over SimGrid
for Cholesky factorization of a 960x20 matrix on 1 GPU and
6 CPUs. MultiPrio scheduler traces with (bottom) and without
eviction mechanism (top). The figure highlights the practical
critical path (the tasks with a red border), the percentage of
idle time per resource (left) and the makespan (right).

We study the impact when using this heuristic. We simulate
the execution on a node with one GPU and 16 CPUs using
StarPU over SimGrid, a versatile simulator of distributed
systems [24, 25]. We show, in Figure 4, using StarVZ [26],
the benefit of using the eviction mechanism in our scheduler
by comparing the execution traces. MultiPrio, with the eviction
mechanism, makes significantly better decisions at the end of

execution, reducing the percentage of GPU idle time from 29%
to 1%.

VI. EXPERIMENTAL EVALUATION

To evaluate the MultiPrio scheduler and compare its poten-
tial with the existing state-of-the-art schedulers in StarPU, we
perform the execution of three types of task-based applica-
tions. First, a regular application, CHAMELEON1 which is a
dense linear algebra library. Second, two irregular applica-
tions, TBFMM2 which is a task-based FMM and QR MUMPS3

which is a sparse direct linear solver. The experiments are
conducted on two platforms, which are presented below.
• Intel-V100: The architecture is composed of 2 Intel Xeon

Gold 6142 of 16 cores each running at 2.6GHz, 384 GB
of memory, and 2 Nvidia V100 (16 GB).

• AMD-A100: The architecture is composed of 2 AMD
Zen3 EPYC 7513 of 32 cores each running at 2.6GHz,
512 GB of memory, and 2 Nvidia A100 (40 GB).

Both platforms have GCC v10.2.0, NVCC v11.4.120 and the
Intel MKL library. We use all available computing resources
of both platforms. We empirically set the hyperparameters of
the data locality heuristic as follows: n = 10 and ε = 0.8.

We evaluate the performance of our scheduler through a
comparative analysis using two different state-of-the-art sched-
ulers: Dmdas and HeteroPrio. The Dmdas scheduler exploits
task priorities provided by user knowledge and relies on a heft-
based heuristic for resource allocation, while the automated
HeteroPrio scheduler uses priorities per task type according
to architecture affinity. The former is a task-centric scheduler,
while the latter is an affinity-based scheduler. Notably, in
the context of StarPU, there is the LWS scheduler, which is
categorized under resource-centric schedulers. However, we
excluded it from our comparison because it is not optimized
to take full advantage of GPU accelerators. It treats CPUs
and GPUs as identical resources, ignoring the heterogeneous
potential of the system.

A. Dense linear algebra

We conduct a performance evaluation of widely used
dense linear algebra kernels: potrf, getrf, and geqrf.
Chameleon is a regular application where each routine will
have the same form of the DAG independent of the data.
Thus, it provides user priorities for these routines, optimized
by experts offline, and uses a fine-tuned task submission
strategy. In this application, task criticality is the primary factor
that affects performance, followed by resource management
(affinity and data locality). In our analysis, we compare the
performance of the schedulers, considering the impact of
different tile sizes on both task granularity and overall system
performance. For the AMD-A100, we set the tile sizes to
960, 1920, and 3840, and for the Intel-V100, we consider
tile sizes of 640, 1280, and 2560. For each combination of

1https://gitlab.inria.fr/solverstack/chameleon
2https://gitlab.inria.fr/bramas/tbfmm
3https://gitlab.com/qr mumps/qr mumps

Fig. 5: Performance of CHAMELEON dense kernels on Intel-
V100 and AMD-A100, both with 2 GPUs, on various matrix
sizes showing MultiPrio gains/losses over Dmdas.

tile size and scheduler, we run experiments over different
matrix sizes and select the best performing configuration
to get a fair view of the performance of the routines. We
conduct a performance evaluation of the widely used Cholesky
factorization (potrf). We perform an identical experiment
with the dense LU decomposition without pivoting (getrf).
It has similarities with the Cholesky decomposition and the
same diamond-shaped DAG structure. However, due to its
non-symmetric nature, LU has a larger workload and induces
more memory transfers. Finally, we evaluate the dense QR
factorization routine (geqrf).

In the Figure 5, our overall performance remains compara-
ble to other schedulers, with variations depending on different
scenarios. While there are cases where we are less efficient,
there are also cases where our scheduler outperforms, achiev-
ing almost a 14% performance gain over Dmdas on the getrf
kernel for matrices larger than 100k on Intel-V100. This gain is
attributed to data transfer issues encountered by Dmdas, likely
related to GPU memory limits or conflicts between prefetching
and memory eviction mechanisms [27]. For the potrf and
getrf kernels, and especially on AMD-A100, we observe a
larger performance gap. In fact, criticality plays a key role
in scheduling such DAGs. Although the NOD heuristic is
dynamic and fully automated, it provides less precise results
than user-predefined priorities, which explains the effective-
ness of Dmdas. In addition, for such intensive workloads, we
suspect that the execution process is particularly affected by

data transfer times, and optimizing these is critical for high-
performance GPUs. Our scheduler mapping decision is made
at the POP operation, as opposed to Dmdas, which makes
the mapping at the PUSH operation and thus can request
data prefetching in advance. For the geqrf kernel, scheduler
performance is generally competitive. MultiPrio shows slightly
improved performance, particularly noticeable on AMD-A100
for matrix sizes between 60k and 90k, achieving a performance
gain of about 4%.

B. Fast Multipole Method
FMM is an important pairwise particle interaction algorithm

widely used in astrophysical simulations, molecular dynamics,
and more. Task-based FMM, combined with dynamic schedul-
ing, allows efficient handling of diverse particle distributions
on multi-core and heterogeneous platforms. In our study, we
compare the performance of the schedulers on Intel-V100 and
AMD-A100 while varying the GPU streams for optimization.
In this application, the priorities of the tasks are not set by
the user. In the Figure 6, MultiPrio stands out for achieving
the shortest makespan. In fact, the DAG of the TBFMM is
very disconnected, so the critical path with infinite resources
is very short. To be efficient, the scheduler should be able to
achieve perfect workload balancing among the heterogeneous
resources and take resource affinities into careful considera-
tion. The results show that this is less favorable for Dmdas
because it is task-centric. HeteroPrio uses priorities per task
type for each processor type. This gives a good distribution.
However, MultiPrio manages to be more efficient thanks to
the gain scores per task, providing more accurate priorities.

Fig. 6: Comparison of execution time of TBFMM on Intel-
V100 and AMD-A100 both with 2 GPUs (106 particles, tree
height 6).

C. Sparse linear algebra
We extend our experimental evaluation to a more irregular

application QR MUMPS. We evaluate QR multi-frontal factor-
ization on sparse matrices, which introduces highly irregular

workloads, including tasks of different granularities and char-
acteristics, while exhibiting variable memory consumption.
Typically, schedulers face greater challenges in optimizing
such scenarios. In Figure 8, we present the results of the sparse
QR factorization using QR MUMPS on the two platforms using
the ordering library METIS [28]. We use four streams on each
GPU. The performance ratio of each scheduler is represented
in comparison to the Dmdas scheduler, which is used as a
reference. Higher ratios indicate better results, i.e. shorter
overall completion times. Our experiment use a set of sparse
matrices, which are detailed in Table 7. In this application, the
fine-grained priorities of the tasks are not set by the user.

Matrix name Rows Cols Nonzeros op.count
(Gflop)

cat ears 4 4 19020 44448 132888 236
flower 7 4 27693 67593 202218 889
e18 24617 38602 156466 1439
flower 8 4 55081 125361 375266 3072
Rucci1 1977885 109900 7791168 5527
TF17 38132 48630 586218 15787
neos2 132568 134128 685087 31018
GL7d24 21074 105054 593892 26825
TF18 95368 123867 1597545 229042
mk13-b5 135135 270270 810810 352413

Fig. 7: Matrices used for QR MUMPS sorted by Gflops count.

(a) Performance on Intel-V100 platform.

(b) Performance on AMD-A100 platform.

Fig. 8: Performance of QR factorization (ordering METIS) on
Intel-V100 and AMD-A100 both with 2 GPUs, relative to the
Dmdas scheduler. Matrices sorted by Gflops count.

MultiPrio outperforms the other schedulers for most ma-

trices on Intel-V100, with an average performance gain of
31% over Dmdas. However, the results on AMD-A100 show
some variation. In fact, it is a more heterogeneous platform
because it has twice as many CPUs as Intel-V100, but each
CPU is 2x slower, and the GPUs are much faster. Therefore,
assigning a large critical task to a CPU instead of a GPU would
result in a longer execution time, ultimately impacting overall
performance. As a result, scheduling irregular workloads is
more difficult on AMD-A100, which explains the variance in
overall scheduler performance. MultiPrio achieves an average
performance gain of about 12% over Dmdas and up to 20%
for the larger matrices that provide a more suitable load for
leveraging the heterogeneous resources of this platform.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss the various challenges faced by
each scheduler, based on our extensive experimental study
involving several different DAGs. It’s crucial to recognize
the strengths of the Dmdas scheduler, which has been highly
tuned for scheduling dense linear algebraic routines for the
last decade, especially with Cholesky factorization. However,
Dmdas has weaknesses in over-prioritizing accelerators over
CPUs, resulting in under-utilization of CPUs in a hetero-
geneous environment. It generally undervalues data locality
because it considers choosing the best worker for a task in
terms of end-of-execution time to be more important than
using the data available on a node, resulting in huge amounts
of data being transferred. Despite Dmdas’s well-established
strengths in dense routines, MultiPrio offers advantages in
scenarios where applications have more irregular tasks. In the
context of sparse factorization, particularly the multi-frontal
QR factorization, our results are far more promising. This is
mainly attributed to the increased parallelism in the DAG. In
fact, Agullo et al. [29] highlight that they propose a front
partitioning strategy that effectively utilize both CPU and GPU
resources. It optimizes parallelism in the DAG while efficiently
utilizing GPUs with appropriately sized tasks. By employing
a different scheduling strategy, our scheduler better distributes
tasks across different resources, leading to improved efficiency
in most cases (demonstrated with the sparse QR and TBFMM
cases). Therefore, the choice between Dmdas and MultiPrio
should be based on the specific characteristics of the workload
of the parallelized application.

Nevertheless, there is still room for improvement. Potential
performance issues in MultiPrio can arise from the task
assignment at the POP, which affects the effectiveness of
the prefetching strategy. This issue is particularly prevalent
on AMD-A100, which is characterized by high-speed GPUs
capable of rapidly executing a large number of tasks. As
a result, ensuring timely data access becomes paramount.
Our proposed strategy emphasizes prioritizing data locality
at the POP, favoring the selection of tasks with the most
readily available data among those with the highest priority.
This methodology aims to reduce the reliance on prefetching
mechanisms and improve the optimization of data transfers.
Further refinement of the data locality strategy could be an

area of improvement to close the gap between our scheduler
and others that have benefited from prefetching strategies on
AMD-A100 alike platforms. Another aspect that can affect
the performance is underestimating the remaining work of the
best worker and instead deciding to let a CPU worker perform
a task, such as a matrix-matrix multiplication that is 20x
slower on CPU, can significantly affect the makespan. A future
improvement could be to refine the estimation of the remaining
work for the best workers at runtime to better enlighten
the scheduler’s decisions. Our scheduler is designed with
the specific goal of optimizing the use of all heterogeneous
resources, as opposed to traditional techniques that primarily
maximize accelerator usage. The novelty of our scheduler
lies in its ability to automatically and efficiently schedule
irregular applications without requiring user expertise, while
being competitive with highly tuned schedulers on a more
regular workload.

As part of our future work, we aim to extend this to
incorporate energy efficiency heuristics to take advantage of
the CPUs and re-balance the workload between them and the
accelerators without compromising overall performance. The
fact that our scheduler has proven its efficiency in scheduling
tasks across heterogeneous resources will help in achieving
this delicate balance. Another interesting research direction is
the scheduling of applications with hierarchical tasks. Indeed,
these tasks submit subgraphs at runtime. They have recently
been included in StarPU [30]. This strategy exposes different
task sizes in the DAG, providing a sufficient amount of large-
granularity tasks to efficiently utilize GPUs, along with fine-
granularity tasks to take advantage of CPUs and thus unlock
more parallelism. Such scenarios are similar to QR MUMPS,
and that’s why we expect better results than Dmdas when
scheduling hierarchical tasks.

VIII. CONCLUSION

In summary, effective utilization of heterogeneous com-
puting systems for resource-intensive applications depends
on efficient scheduling. We present MultiPrio, an automatic
dynamic task scheduler with the specific goal of optimizing
the use of all heterogeneous resources on a compute node,
as opposed to traditional techniques that primarily maximize
accelerator utilization. Our approach uses binary heap data
structures. Each task is assigned a pair of scores, first an
affinity score using the gain heuristic, and then a criticality
score. The scores are used to sort tasks without immediately
deciding which worker is responsible for executing them. This
flexibility allows slower workers to take over tasks when faster
workers are too busy, under certain conditions related to the es-
timated remaining workload. In addition, we incorporate a data
locality heuristic to minimize data transfers between resources,
thereby improving overall performance. MultiPrio has proven
to be efficient for distributing irregular workloads across
heterogeneous resources. For example, on the QR MUMPS
application, we observed performance improvements of up to
40% over the state-of-the-art Dmdas scheduler. Our work has
highlighted the strengths of MultiPrio while identifying areas

for potential improvement. With ongoing research and de-
velopment, the MultiPrio scheduler holds promise for further
advances in task-based programming and dynamic scheduling
in heterogeneous computing systems.

ACKNOWLEDGMENTS

This work is supported by the TEXTAROSSA project G.A.
n.956831, as part of the EuroHPC initiative. Experiments
presented in this paper were carried out using the PlaFRIM
experimental testbed, supported by Inria, CNRS (LABRI and
IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).

REFERENCES

[1] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer,
K. Katrinis, E. Laure, and D. S. Nikolopoulos, “A taxonomy of
task-based parallel programming technologies for high-performance
computing,” J. Supercomput., vol. 74, no. 4, p. 1422–1434, apr 2018.
[Online]. Available: https://doi.org/10.1007/s11227-018-2238-4

[2] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Taka-
hashi, “Task-based fmm for multicore architectures,” SIAM Journal on
Scientific Computing, 2014.

[3] ——, “Task-based fmm for heterogeneous architectures,”
Concurrency and Computation: Practice and Experience,
vol. 28, no. 9, pp. 2608–2629, 2016. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3723

[4] J. M. C. Carpaye, J. Roman, and P. Brenner, “Design and analysis of
a task-based parallelization over a runtime system of an explicit finite-
volume CFD code with adaptive time stepping,” Journal of Computa-
tional Science, 2018.

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and
J. J. Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187–198, 2011. [Online]. Available:
https://hal.inria.fr/inria-00550877

[7] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Task-based mul-
tifrontal qr solver for gpu-accelerated multicore architectures,” in 2015
IEEE 22nd International Conference on High Performance Computing
(HiPC), 2015, pp. 54–63.

[8] F. Lopez and I. Duff, “Task-Based Sparse Direct solver for Symmetric
Indefinite Systems,” 2018, 10th International Workshop on Parallel
Matrix Algorithms and Applications (PMAA), mini-symposium on task-
based programming for scientific computing.

[9] C. Flint, L. Paillat, and B. Bramas, “Automated prioritizing heuristics
for parallel task graph scheduling in heterogeneous computing,” PeerJ
Computer Science, vol. 8, p. e969, 2022.

[10] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
and J. Labarta, “Productive programming of gpu clusters with ompss,”
in 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, 2012, pp. 557–568.

[11] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, 2013, pp. 1299–1308.

[12] J. Kim, S. Lee, B. Johnston, and J. S. Vetter, “Iris: A portable runtime
system exploiting multiple heterogeneous programming systems,” in
2021 IEEE High Performance Extreme Computing Conference (HPEC),
2021, pp. 1–8.

[13] J. V. Lima, T. Gautier, N. Maillard, and V. Danjean, “Exploiting
concurrent gpu operations for efficient work stealing on multi-gpus,”
in 2012 IEEE 24th International Symposium on Computer Architecture
and High Performance Computing, 2012, pp. 75–82.

[14] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
and J. Labarta, “Productive programming of gpu clusters with ompss,”
in 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, 2012, pp. 557–568.

[15] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[16] H. Choi, D. Son, S. Kang, J. Kim, H.-H. Lee, and C.-H. Kim, “An
efficient scheduling scheme using estimated execution time for hetero-
geneous computing systems,” The Journal of Supercomputing, vol. 65,
08 2013.

[17] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta,
and M. Valero, “Criticality-aware dynamic task scheduling for
heterogeneous architectures,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, ser. ICS ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 329–338.
[Online]. Available: https://doi.org/10.1145/2751205.2751235

[18] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware
task scheduling on multi-accelerator based platforms,” in 2010 IEEE
16th International Conference on Parallel and Distributed Systems,
2010, pp. 291–298.

[19] M. Gonthier, L. Marchal, and S. Thibault, “Memory-aware scheduling
of tasks sharing data on multiple gpus with dynamic runtime systems,”
in 2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2022, pp. 694–704.

[20] B. Bramas, “Impact study of data locality on task-based applications
through the Heteroprio scheduler,” PeerJ Computer Science, vol. 5, p.
e190, May 2019. [Online]. Available: https://hal.inria.fr/hal-02120736

[21] C. Augonnet, S. Thibault, and R. Namyst, “Automatic calibration of
performance models on heterogeneous multicore architectures,” in Euro-
Par 2009 – Parallel Processing Workshops, H.-X. Lin, M. Alexander,
M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A. Streit, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 56–65.

[22] E. Agullo, B. Bramas, O. Coulaud, L. Stanisic, and S. Thibault,
“Modeling Irregular Kernels of Task-based codes: Illustration with the
Fast Multipole Method,” INRIA Bordeaux, Research Report RR-9036,
Feb. 2017. [Online]. Available: https://inria.hal.science/hal-01474556

[23] H. Lin, M.-F. Li, C.-F. Jia, J.-N. Liu, and H. An, “Degree-of-node task
scheduling of fine-grained parallel programs on heterogeneous systems,”
Journal of Computer Science and Technology, vol. 34, no. 5, pp.
1096–1108, 2019. [Online]. Available: https://doi.org/10.1007/s11390-
019-1962-4

[24] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[25] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F.
Méhaut, “Faithful performance prediction of a dynamic task-
based runtime system for heterogeneous multi-core architectures,”
Concurrency and Computation: Practice and Experience,
vol. 27, no. 16, pp. 4075–4090, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3555

[26] V. Garcia Pinto, L. Mello Schnorr, L. Stanisic, A. Legrand,
S. Thibault, and V. Danjean, “A visual performance analysis
framework for task-based parallel applications running on hybrid
clusters,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 18, p. e4472, 2018, e4472 cpe.4472. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4472

[27] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut,
“Modeling and simulation of a dynamic task-based runtime system
for heterogeneous multi-core architectures,” in Euro-Par 2014 Parallel
Processing, F. Silva, I. Dutra, and V. Santos Costa, Eds. Cham: Springer
International Publishing, 2014, pp. 50–62.

[28] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 359–392, 1998. [Online]. Available:
https://doi.org/10.1137/S1064827595287997

[29] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Task-based mul-
tifrontal qr solver for gpu-accelerated multicore architectures,” in 2015
IEEE 22nd International Conference on High Performance Computing
(HiPC), 2015, pp. 54–63.

[30] G. Lucas, “On the Use of Hierarchical Task for Heterogeneous
Architectures,” Theses, Université de Bordeaux, Oct. 2023. [Online].
Available: https://theses.hal.science/tel-04316145

