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Abstract 23 

The Kuroshio Current flows northward along the east coast of Taiwan toward the Okinawa 24 

Trough and the East China Sea, but its dynamics and trajectory were probably different during 25 

the Last Glacial Maximum (LGM) due to the globally lower sea level that could have caused a 26 

(debated) deflection of the current along the eastern edge of the Ryukyu Arc. 27 

Core MD18-3532 has been recovered in an intra-slope basin of the Ryukyu accretionary 28 

prism, currently disconnected from the Kuroshio Current, but would have been on its 29 

trajectory in case of a NE deflection. Measurements of clay mineral assemblages and illite 30 

crystallinity revealed that Taiwan has been the main sediment source at this site over the last 31 

26 kyr. The significantly higher sedimentation rate from the Last Glacial Maximum to the 32 

Bølling–Allerød compared with the period from the Younger Dryas to the Holocene, coupled 33 

with very low δ15Nsed during LGM and Heinrich Stadial 1, provide evidence for the transport of 34 

sediments and Trichodesmium spp. cyanobacteria by the partially deflected Kuroshio Current 35 

toward the eastern edge of the Ryukyu Arc. Combined with δ13Corg, TOC, TN, and XRF analyses, 36 

an increase in primary productivity has been observed during LGM and Heinrich Stadial 1. This 37 

would have been caused by an enhanced East Asian Winter monsoon winds resulting in the 38 

deepening of the mixed layer that would have led to the upwelling of the Kuroshio Current 39 

nutrient-enriched subsurface waters to the oligotrophic surface waters, and the supply of 40 

dust-borne iron from the Chinese Loess Plateau. 41 

Keywords 42 

Kuroshio Current deflection; NW Philippine Sea; Taiwan paleoceanography; primary 43 

productivity; last deglaciation; Trichodesmium spp. 44 
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1 Introduction 45 

The Kuroshio Current is the western boundary current of the North Pacific Subtropical 46 

Gyre. It flows northward along the eastern coast of East Asia (Fig. 1a), transferring heat, 47 

salinity and moisture from the Indo Pacific Warm Pool to the high latitudes. While its surface 48 

water is oligotrophic, marked by low concentration of chlorophyll-a (Chen et al., 2022) 49 

reflecting reduced phytoplanktonic activity, the Kuroshio Current transports large quantities 50 

of nutrients on the subsurface (300 – 600 m; maximum core of the nutrient flux at 400 – 500 51 

m depth) (Chen et al., 2017; Guo et al., 2012). It is also at the origin of a “water barrier” effect 52 

in the East China Sea preventing the export of sediments from Chinese rivers (e.g. Yangtze 53 

River) to the Okinawa Trough during summer. This “water barrier” effect decreases during the 54 

winter, enhancing the export of sediments to the Okinawa Trough (Zheng et al., 2016). 55 

As a result of this transfer of heat and moisture, the Kuroshio Current has a major impact 56 

on global scale by regulating the thermal balance between low and high latitudes, and on 57 

regional scale by regulating local climate and ocean dynamics (Hu et al., 2015). The gradual 58 

intensification of the Kuroshio Current over the deglaciation under the influence of East Asian 59 

Monsoon changes and the El Niño Southern Oscillation is well established (Li et al., 2020; Lim 60 

et al., 2017; Zheng et al., 2016; Zou et al., 2021). However, over the past two decades, the 61 

Kuroshio Current has been the subject of debate (Li et al., 2020; Lim et al., 2017; Ujiié and 62 

Ujiié, 1999; Vogt-Vincent and Mitarai, 2020; Wang et al., 2015; Zheng et al., 2016) regarding 63 

whether it was still able to flow through the Yonaguni Depression and remain in the Okinawa 64 

Trough, or whether it was deflected eastwards along the eastern edge of the Ryukyu Arc, as a 65 

result of the ∼130 m drop in sea level (Lambeck et al., 2014) during the Last Glacial Maximum 66 

(LGM; 23.0 – 19.0 thousands of years ago; ka afterwards) (Mix et al., 2001). At 67 
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glacial/interglacial and stadial/interstadial scale, the deflection of the Kuroshio Current 68 

pathway out of the Okinawa Trough may affect East Asia and the East China Sea through 69 

changes in East Asian Summer Monsoon (EASM) rainfall patterns (Sasaki et al., 2012), the 70 

range of East Asian Winter Monsoon (EAWM) winds propagation (Pan et al., 2018), the ability 71 

of typhoons to sustain themselves with the heat and moisture of the surface ocean (Fujiwara 72 

et al., 2020; He et al., 2022; Liu and Wei, 2015; Wu et al., 2008), and through primary 73 

productivity changes outside and inside the Okinawa Trough (Chen, 2000).  74 

Previous studies based on planktonic foraminifera (Ujiié and Ujiié, 1999; Ujiié et al., 2003), 75 

clay mineral analysis (Diekmann et al., 2008; Dou et al., 2010) and Sr-Nd isotopes (Dou et al., 76 

2012) suggest a complete deflection of the Kuroshio Current from the Okinawa Trough toward 77 

the eastern edge of the Ryukyu Arc during LGM and its return to the Okinawa Trough since at 78 

least 14 ka. Other studies using geochemical (Lim et al., 2017; Xu et al., 2019), mineralogical 79 

(Li et al., 2019), paleotemperature proxies (Kim et al., 2015; Li et al., 2020) and modeling 80 

results (Vogt-Vincent and Mitarai, 2020; Zheng et al., 2016) suggest that the Kuroshio Current 81 

did not deflected and would have persisted, albeit weakly, in the Okinawa Trough during the 82 

low sea level period, beginning to strengthen since ~14 ka. 83 

These previous studies are mainly based on sediments collected in the Okinawa Trough, 84 

and little attention has so far been paid to the northwestern Philippine Sea, south of the 85 

Ryukyu Arc (Fig. 1a), where deflection, if any, would have occurred. To fill this gap, in this study 86 

we analyze sediment core MD18-3532, located in an intra-slope basin of the Ryukyu 87 

accretionary prism in the northwest Philippine Sea (Fig. 1b). This core is currently 88 

disconnected from the Kuroshio Current, but might have been on its pathway during the low 89 

sea level period if it had deflected eastward. 90 



5 
 

The Kuroshio Current carries sediments delivered to the surface waters by eastern 91 

Taiwanese rivers (Diekmann et al., 2008; Dou et al., 2012; Li et al., 2019; Wang et al., 2015). A 92 

change in the amount and/or source of sediment could therefore be an indicator of the 93 

deflection of the Kuroshio Current or a weakening of its “barrier effect” that prevents the 94 

offshore export of sediments from Taiwan (Fig. 1b). Also, the emergence of the East China Sea 95 

shelf during the glacial low sea level drove the migration of the Yangtze River mouth across 96 

the shelf to the border of the Okinawa Trough, with those sediments being carried directly 97 

into the Okinawa Trough (Dou et al., 2012, 2010; Li et al., 2019) and possibly to the Ryukyu 98 

accretionary wedge area, becoming an additional sediment sources. Finally, enhanced EAWM 99 

during LGM and Heinrich Stadial 1 (HS1; 18.0 – 14.7 ka) (Denton et al., 2010) might have 100 

transported dust from Chinese Loess Plateau to the Philippine Sea as evidenced by previous 101 

studies (Jiang et al., 2016; Wan et al., 2012; Xu et al., 2015). Therefore, in order to constrain 102 

potential changes in sediment supply and sources, we have investigated the provenance of 103 

the sediments by using clay minerals and illite crystallinity as sediment source indicators (Dou 104 

et al., 2010; Li et al., 2012; Nayak et al., 2021) and sedimentation rate variability.  105 

In addition, the Kuroshio Current is well-known to carry abundant Trichodesmium spp. 106 

cyanobacteria (Chen et al., 2008; Shiozaki et al., 2015), characteristic of its oligotrophic surface 107 

waters (Chen et al., 1995; Kodama et al., 2014), that generate significant nitrogen fixation 108 

compared to the rest of the Philippine Sea (Liu et al., 1996; Shiozaki et al., 2015). Therefore, 109 

we have also used sedimentary δ15N (δ15Nsed) to reconstruct changes in nitrogen fixation that 110 

might indicate a deflection of the Kuroshio Current rather than a weakening of its “barrier 111 

effect”.  112 
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Finally, the Kuroshio Current transports nutrients to the subsurface which when brought 113 

to the surface lead to the increase in primary productivity (Chen et al., 2022; Chen, 2000). 114 

During Marine Isotope Stage 2 (MIS 2; 27.8 – 14.7 ka; Sanchez Goñi and Harrison, 2010), the 115 

combination of a deflected Kuroshio Current with enhanced EAWM winds might have increase 116 

the primary productivity by supplying dust-borne iron to the study area and deepening the 117 

mixed layer, causing upwelling of Kuroshio Current nutrient-rich subsurface water. Therefore, 118 

using organic and inorganic geochemical proxies (TOC, TN, δ15Nsed, δ13Corg, Br/Al, Ti/Al and 119 

Fe/Al) combined with previous geochemical proxies, we investigate changes in the 120 

paleoproductivity in the northwestern Philippine Sea that might indicate the partial deflection 121 

of the Kuroshio Current. 122 

2 General setting 123 

Taiwan is located along the Eurasian margin (Fig. 1a), between 21°54’N and 25°18’N, and 124 

is climatically under the influence of the EASM and typhoons (Chen and Chen, 2003; Chen et 125 

al., 2010) that generate in the West Pacific Warm Pool (Gray, 1977). The hydrological regime 126 

is characterised by heavy rainfall comprised between 1500 – 2500 mm yr-1, reaching 5000 mm 127 

yr-1 in the north and north-east of Taiwan (Li et al., 2013; Resentini et al., 2017). The large 128 

surrection rate (5 – 20 mm yr-1; Ching et al., 2011; Hsu et al., 2018) is compensated by an 129 

average erosion rate of 1 to 10 mm yr-1 over the whole island, which can reach 30 to 60 mm 130 

yr-1 locally (Dadson et al., 2003). This erosion causes an important and rapid export of 131 

sediments to the ocean by hypopycnal and hyperpycnal flows (Dadson et al., 2005; Mulder et 132 

al., 2003) that reach 208 to 332 Mt yr-1, including 68.5 (± 35.4) (±2σ; as all the ±SD hereafter) 133 

Mt yr-1 through the north-eastern rivers of Taiwan (Lanyang – Hualian rivers) (Resentini et al., 134 

2017). This results in high sedimentation rates in the coastal regions of Taiwan of few hundred 135 
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cm kyr-1 (see supplementary materials) (Li et al., 2009; Wei et al., 2005; Yu et al., 2017). High 136 

sedimentation rates are also observed in the western mud area of the East China Sea shelf 137 

(100 – 300 cm kyr-1) related to the transport of sediments from the Yangtze River (480 Mt yr-138 

1 ; Xu et al., 2007) and, to a lesser extent, transport of the Taiwanese rivers (Dong et al., 2020). 139 

North East Taiwan, in the region of the Ryukyu accretionary prism, hyperpycnal flows pass 140 

through the Hoping Canyon to the Nanao Basin (Fig. 1b) (3700 m below sea level or b.s.l.). 141 

These flows possibly do not cross the submarine morphological barrier of the Nanao Rise 142 

(3 400 m b.s.l.). The absence of pyrrhotite, a characteristic mineral of the Central Range (Horng 143 

et al., 2012), in the sediments of the East Nanao Basin (Hsiung et al., 2017), supports this 144 

assumption. Moreover, a reduced occurrence of turbidites in the East Nanao Basin (4 600 m 145 

b.s.l.) compared to the Nanao Basin has been observed (Nayak et al., 2021). Generally 146 

speaking, the finest sediment fraction of turbidity flows may remain in suspension and cross 147 

over topographical ridges of hundreds of meters (Kneller and Buckee, 2000). However, the 148 

Yaeyama Ridge (2 800 m b.s.l.), a barrier separating the East Nanao Basin and the MD18-3532 149 

basin, is about 1 800 m high (Fig. S1 in Supplementary Material), too high for allowing the 150 

totality of the turbidity flows to cross the obstacle, that could be partial at the most and 151 

transporting only the finest silts, isolating the intra-slope basins from sedimentary inputs from 152 

Taiwan and the Ryukyu Arc (Fig. 1b) (Hsiung et al., 2017). The sediments constituting the 153 

hypopycnal flows are diverted to the Okinawa Trough by the Kuroshio Current (Fig. 1a). 154 

The Kuroshio Current emerges from the bifurcation of the North Equatorial Current, 155 

between 8 and 17°N (Qiu et al., 2015) and flows northward along Philippines and Taiwan 156 

eastern coasts before entering the Okinawa Trough in the East China Sea through the 157 

Yonaguni Depression (sill depth ±775 m) (Qiu, 2001) and the Kerama Gap (sill depth ±1100 m) 158 
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(Na et al., 2014). It exits the East China Sea through the Tokara Strait (sill depth ±690 m) (Qiu, 159 

2001) and joins the North Pacific (Fig. 1a). Nowadays, east of Taiwan, the Kuroshio Current 160 

transports a volume of 11 – 23 Sv (1 Sv = 106 m3 s-1) for a maximum current velocity between 161 

0.7 and 1.4 m s-1 (Jan et al., 2015). Its boundary can be delimited by the 0.2 m s-1 marine 162 

isotach at 30 m depth based on historical ADCP data set (Jan et al., 2015). Within these limits, 163 

its width is between 85 and 135 km for a thickness of 400 to 600 m, centred at 122°E (Jan et 164 

al., 2015).  165 

Below 600 m, the intermediate waters flow northwards but at a speed of less than 0.2 m 166 

s-1. When they reach the Ilan Ridge, which bridges Taiwan and the Ryukyu Arc and constitutes 167 

the bottom of the Yonaguni Depression, the intermediate waters are deflected eastward, 168 

along the eastern edge of the Ryukyu Island, forming the Ryukyu Current (Wang et al., 2019) 169 

(Fig. 1a). It exhibits a main core with a velocity maximum of 0.2 to 0.1 m s-1 between 600 and 170 

1000 m depth (Wang et al., 2019). East of the Kuroshio Current, the velocity of the Ryukyu 171 

Current is not enough to drag waters above its main core  (Wang et al., 2019). However, the 172 

Ryukyu Current intensifies along the its path, and south of Okinawa, is strong enough to 173 

extend its influence to the surface and drag water with it (Wang et al., 2019). 174 

As a geostrophic current belonging to the North Pacific subtropical gyre, the Kuroshio 175 

Current intensity is associated with the horizontal gradient of wind stress on the ocean surface 176 

(Hu et al., 2015). Thus, easterlies and westerlies apply respectively a negative and positive 177 

wind stress curl over the equatorial Pacific; when negative, it causes an equatorward 178 

migration of the North Equatorial Current compensated by the intensification of the poleward 179 

Kuroshio Current transport to conserve mass balance, and conversely when positive (Hu et al., 180 

2015; Qiu and Lukas, 1996). This wind stress curl is strongly influenced by the East Asian 181 
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Monsoon and the El Niño Southern Oscillation. During EASM and La Niña phase, strengthened 182 

easterlies induce an increase of the negative wind stress curl, leading to a equatorward 183 

migration of the bifurcation and hence an intensification of the Kuroshio Current. Conversely, 184 

during EAWM and El Niño phase, the strengthened westerlies and weakened easterlies 185 

generate a positive wind stress curl, leading the poleward migration of the bifurcation and 186 

hence a weakening of the Kuroshio Current (Hu et al., 2015; Qiu and Lukas, 1996). 187 

3 Materials and methods 188 

The 23 m piston core MD18-3532 (23°28.88’N, 123°5.89’E; water depth: 4325 m) was 189 

recovered during the EAGER Cruise of the R/V Marion-Dufresne II in 2018. It was collected at 190 

150 km off the coast of Taiwan, in an intra-slope basin of the Ryukyu arc accretionary wedge 191 

and out of the present-day mainstream of the Kuroshio Current (Fig. 1a). It is composed of 192 

dark grey clay with no evidence of turbiditic sediment sequences or large mass transported 193 

deposits, neither at the naked eye lithology observation, nor on general geometry on seismic 194 

profiles (N. Babonneau and G. Ratzov, unpublished data). Few millimetre-thick silt/fine sand 195 

layers concentrated in the uppermost 3 m of the core are found, related to the deposition of 196 

the queue of fine-grained turbidites derived from turbidite flows thick enough to surmount 197 

the topographic barrier and reach East Nanao Basin. Volcanic glass has been observed under 198 

binocular microscope in the > 150 µm size fraction at 165.5 cm depth. No tephra layers can be 199 

found at the naked eye inspection. 200 

The age model was built using 13 radiocarbon dates (Table 1) on mixed planktonic 201 

foraminifera measured at Alfred-Wegener Institute (Bremerhaven, Germany), using a 202 

MICADAS-Accelerator Mass Spectrometry (AMS) and at Laboratoire des Sciences du Climat et 203 

de l’Environnement (Saclay, France) using the ECHoMICADAS-AMS facilities. They were 204 
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converted to calendar ages using Oxcal software version 4.4.4 (Ramsey, 2008) and the 205 

Marine20 calibration curve (Heaton et al., 2020). A local correction of the reservoir age of 86 206 

(±40) years was applied (Dezileau et al., 2016). The volcanic glass shards at 165.5 cm 207 

corresponding to the 7 300-year-old Kikai-Akahoya (K-Ah) eruption (Matsu’ura et al., 2021) 208 

confirms the age model (Fig. 2). 209 

The sediment core was scanned at 1 cm resolution using an AVAATECH XRF core scanner 210 

at IFREMER laboratory “Geo-Ocean” (Plouzané, France) to determine the semi-quantitative 211 

elemental composition of the sediment in counts per second (Richter et al., 2006). The 212 

ln(Br/Al) ratio is commonly used to qualitatively reconstruct the relative abundance of marine 213 

organic matter and to differentiate it from terrestrial organic matter, since Br is particularly 214 

abundant in the marine realm due to the synthesis of organic bromine-laden compounds by 215 

bacteria and microalgae (Channell et al., 2019; Harvey, 1980; Hillenbrand et al., 2021; Mayer 216 

et al., 2007; Nieto-Moreno et al., 2011; Ziegler et al., 2008). Ln(Ti/Al) and ln(Fe/Al) can be used 217 

to identify the contribution of secondary terrestrial sources of sediments by highlighting their 218 

difference in composition of terrigenous elements with the main source, such as aeolian dust 219 

supplies in an environment dominated by fluvial inputs (Calvert and Pedersen, 2007; Croudace 220 

and Rothwell, 2015; Govin et al., 2012; Martinez-Ruiz et al., 2015). The XRF ratios were 221 

smoothed by a 30-point moving average using XLSTAT software (Addinsoft, 2016).  222 

One-cm thick samples were retrieved from the core approximately every 10 centimetres 223 

(n = 264), corresponding to an average resolution of 100 years. Three-gr subsamples were 224 

used for geochemical analysis and the rest was sieved at 63 µm to separate the silt-clay from 225 

the sand fraction. Carbon and nitrogen isotopic (δ15Nsed, δ13Corg) analyses, as well as 226 

measurements of total carbon (TC), total nitrogen (TN) and total organic carbon (TOC) were 227 
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carried out on those samples. δ15Nsed, δ13Corg, TC and TN were analysed on freeze-dried, 228 

grounded, and weighed samples at CEFREM laboratory (University of Perpignan, France). 229 

δ15Nsed, δ13Corg subsamples were decarbonated using repeated additions of 2 mol.L-1 of 230 

concentrated hydrochloric acid (HCL) until no effervescence was observed. Isotopic values 231 

were measured with a Eurovector 3000 elemental analyser coupled to a GVI-Isoprime mass 232 

spectrometer (EA-IRMS). Values are expressed in per mil (‰) relative to the Vienna Pee Dee 233 

Belemnite standard (V-PDB) for δ13Corg and AIR for δ15Nsed. All samples were measured at least 234 

in duplicate at CEFREM laboratory (University of Perpignan, France). For each series of 235 

measurements, High Organic (HO) sediment B2151 and Low Organic (LO) sediment B2153 236 

certified standards were analyzed at the beginning and end of the series. Standard values and 237 

errors, as well as the analytical precision and accuracy are reported in Table S1. 238 

TC and TN values were measured on a CHN Elementar at CEFREM laboratory (University 239 

of Perpignan, France) and values are expressed in percentage of dry weight (%). TOC was 240 

calculated by dividing (i) the mass of absolute C by (ii) the total mass of the sample multiplied 241 

by 100. TOC and TN can originate from primary productivity and/or continental input (Hilton 242 

et al., 2010; Kao et al., 2014), and they are often used to reconstruct changes in primary 243 

productivity (Meyers, 1997; Stein, 1991). Here, TOC has been compared to Br/Al to distinguish 244 

marine organic matter from terrestrial input, and a marine vs. continental δ13Corg mixing 245 

model has been performed in order to estimate the terrestrial contribution (Fterr δ13Corg) to the 246 

organic C accumulation and δ13Corg signature. The equation used take the form : Fterr = (X – 247 

XM) / (XT – XM), with X the δ13Corg of the sample, XM the marine δ13Corg end-member and XT the 248 

terrestrial δ13Corg end-member (Kandasamy et al., 2018). For this purpose, the δ13Corg 249 

terrestrial end-member has been estimated at -22.8‰ and the marine end-member at -250 

20.0‰ (Goericke and Fry, 1994; Kao et al., 2003). 251 
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The clay minerals were analysed using the XRD PANalytical X'Pert PRO at the Centre 252 

Européen de Recherches Préhistoriques (Tautavel, France). The analyses were conducted on 253 

the 2 µm fraction of 65 evenly distributed samples after decarbonation and oxygenated water 254 

degradation of organic matter. The identification and semi-quantification of the different clays 255 

was done based on the position and intensity of peaks. Illite and chlorite were analysed based 256 

on their main peaks at 14 and 10 Å respectively. Kaolinite was measured based on the ratio 257 

between the intensity of the shoulder at 3.5 Å and the intensity of the (002) chlorite peak at 258 

5 Å. The percentages of each clay mineral were determined with respect to the abundance of 259 

all detected minerals including clay, quartz, and feldspars peaks at 4.26 and, 3.24-3.18 Å 260 

respectively. Illite crystallinity has been calculated as the full width at half maximum of the 261 

main illite peak. It can be used to determine the degree of chemical (high values) or physical 262 

(low values) alteration of a rock (Li et al., 2012) or as an index of provenance in the case where 263 

the source is partly composed of metamorphic rocks (Jaboyedoff et al., 2001; Verdel et al., 264 

2012). 265 

4 Results 266 

4.1 Age model and sedimentation rate 267 

The age model indicates that the core MD18-3532 covers the last 26 kyr (Fig. 2, Table 1). 268 

Significant variations in sedimentation rate can be observed and coincide with the depths at 269 

which radiocarbon measurements were measured, indicating they are artefacts generated by 270 

the calculation model that has been run using only the dated points (Fig. 2). Two periods can 271 

be nonetheless highlighted: a “high” sedimentation rate period of 177 cm kyr-1 from 13.3 272 

(±0.5) to 24.8 (±0.6) ka, and a “low” sedimentation rate period of 38 cm kyr-1 from 3.5 (±0.3) 273 

to 13.3 (±2.5) ka (Fig. 2 and 3a). Although the exact timing of the transition, 13.3 ±2.5 (0.5) ka 274 
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toward the younger (older) date, has a large error, the transition between these two periods 275 

takes place during BA. 276 

4.2 Illite crystallinity, clay minerals abundance and grain size 277 

The clay minerals are composed of illite, chlorite and kaolinite (Table 2) and variations are 278 

not substantial throughout the core, although higher percentages of illite and chlorite are 279 

observed in the Holocene (11.7 – 0.0 ka) (Walker et al., 2009) compared to MIS 2, due to the 280 

decrease in kaolinite (Fig. 3b). Same as clay minerals, illite crystallinity remain relatively 281 

constant throughout the core (Table 2; Fig. 3c). The weight percentage of the < 63µm fraction 282 

ranges from 81.0 to 99.9 with an average of 99.0 (±4.0) and, despite some fluctuations, 283 

remains stable throughout the core (Fig. 3d). 284 

4.3 X-ray fluorescence (XRF) 285 

Ln(Br/Al) values range from -3.70 to -0.46 with an average of -2.67 (±0.72), Ln(Fe/Al) range 286 

from 2.87 to 4.31 with an average of 3.27 (±0.34) and Ln(Ti/Al) range from 0.61 to 1.48 with 287 

an average of 0.88 (±0.25) (Fig. 3e). These three XRF ratios show a similar trend with a gradual 288 

increase during the pre-LGM and LGM with a maximum reached during the Late Glacial (LG; 289 

19.0 – 18.0 ka) and HS1, before beginning to decrease at the end of HS1, from 16 to 7 ka. After 290 

7 ka, the three ratio start to rise again (Fig. 3e). A similar evolution of the trend can also be 291 

stated by Spearman correlation. Both terrigenous ln(Fe/Al, Ti/Al) ratios show a very strong 292 

correlation with each other (r = 0.91, p-value < 0.001) and a moderate correlation rate with 293 

ln(Br/Al) (r = 0.64 – 0.65, p-value < 0.001) (Table S2). The Spearman correlation coefficient 294 

with ln(Br/Al) increase after smoothing the data using a 30-order moving average (r = 0.74, p-295 

value < 0.001) (Table S3). 296 
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4.4 Isotopic geochemistry 297 

δ15Nsed values range from -1.6 to 7.4‰ with an average of 3.1‰ (±3.2) (Fig. 3f). They show 298 

relatively high values during the pre-LGM before abruptly decreasing at the beginning of LGM. 299 

Then, they observe a sharp decrease to much lower values until the mid-BA, with mean values 300 

from LGM to 13.6 ka. After the mid-BA, the δ15Nsed rises steeply and stabilize on a plateau from 301 

Younger Dryas (12.9 – 11.7 ka) (Clark et al., 2012) until the Holocene (Fig. 3f). 302 

δ13Corg values range from -22.5 to -19.0‰ with an average of -21.3‰ (±1.1) (Fig. 3g). The 303 

record shows high values during the pre-LGM then a decrease during LGM, before starting to 304 

increase again during LG to reach a maximum during mid-HS1, around 17.5 – 16 ka. From 16 305 

ka, δ13Corg values start to decrease progressively to reach a minimum plateau after 8 ka (Fig. 306 

3g). The marine vs. continental δ13Corg mixing model values show that the contribution of 307 

marine organic carbon is highest during HS1 and pre-LGM. They show a more moderate 308 

marine contribution during LGM, LG and BA, and an increase of the terrestrial contribution 309 

since the end of HS1 to a maximum during the Holocene (Fig. 3h). 310 

4.5 Organic geochemistry 311 

TOC values range from 0.33 to 0.79% with an average of 0.57% (± 0.17) (Fig. 3i). They show 312 

an increase from the pre-LGM to HS1, then a decrease from Bølling–Allerød (BA; 14.7 – 12.9) 313 

(Clark et al., 2012) until reaching a minimum during the Holocene (Fig. 3i). TN values range 314 

from 0.05 to 0.14% with an average of 0.09% (±0.03) (Fig. 3j). They show an increase from the 315 

pre-LGM to LG, then a decrease until the mid-BA, before rising slightly during the Holocene 316 

(Fig. 3j). 317 
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5 Discussion 318 

5.1 Origin of sediments in core MD18-3532 319 

Clay minerals relative abundance show that the sediments of core MD18-3532 are 320 

dominated by illite and chlorite with traces of kaolinites (Fig. 4e). In the South and East China 321 

Seas, clay mineral assemblages are commonly used to reconstruct the source of terrigenous 322 

sediments (Diekmann et al., 2008; Dou et al., 2010; Liu et al., 2016, 2010; Steinke et al., 2008; 323 

Wan et al., 2010). Previous studies have evidenced that in the region, three sources are 324 

characterized by dominance of illite and chlorite with rare presence of kaolinite: (i) the Yangtze 325 

River and the East China Sea shelf, (ii) the Taiwan island and (iii) the Chinese Loess Plateau 326 

(Diekmann et al., 2008; M. He et al., 2013; Li et al., 2012; Nayak et al., 2021; Wan et al., 2007; 327 

Zhao et al., 2017). 328 

In Taiwan island, the dominance of illite and chlorite is related to intense physical erosion 329 

and the rapid transfer of eroded sediments to the ocean, which prevents the chemical erosion 330 

necessary for the formation of kaolinite (Chamley, 1989; Li et al., 2012). In addition, the 331 

Central Taiwan Range is composed of polymetamorphic rocks with an abundance of slates and 332 

schists that generate illite and chlorite (Ho, 1986; Li et al., 2012; Nayak et al., 2022). Thus, 333 

kaolinite is only a minor mineral of Taiwan, mainly found in Hengchun Peninsula and Kenting 334 

Plateau, the southern tip of the Taiwan Central Range and its southern submarine plateau, 335 

and Tainan Shelf, on the SW coast, with an average concentration of 10% (Nayak et al., 2021).  336 

The Yangtze River originates in the eastern part of the Tibetan plateau, whose high 337 

elevation (>6000 m) leads to increased erosion and cold climate, resulting in a significant 338 

formation of illite. The bedrock in the upper Yangtze watershed includes intermediate-acid 339 

igneous rocks and basic basalts which favor the formation of illite and chlorite (M. He et al., 340 
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2013). In contrast, indexes of chemical alteration, erosion and crystallinity of illite indicate an 341 

increase of chemical weathering in the middle and downstream sections of the watershed 342 

relative to upstream (M. He et al., 2013). It is marked by an enrichment of kaolinite  due to 343 

the chemical erosion of granites containing potassium feldspars and muscovite which are 344 

sources of kaolinite under chemical weathering conditions (M. He et al., 2013). Thus, Yangtze 345 

transported particulate matter deposits mostly illite and chlorite on the East China Sea shelf, 346 

with kaolinite present up to 10% on average (M. He et al., 2013; Liu et al., 2006). 347 

The Chinese Loess Plateau clay mineral assemblage is dominated by illite and chlorite with 348 

little amount of kaolinite (6 – 10%) (Wan et al., 2007; Zhao et al., 2017). Illite and chlorite 349 

originate from the erosion of very low- to low-grade metamorphic rocks eroded by EAWM 350 

winds from northern region of the Tibetan Plateau (Ji et al., 1999), while the prevailing aridity 351 

and low temperatures in the loess region, particularly during glacial periods, limit the chemical 352 

weathering that would lead to kaolinite formation (Chamley, 1989; Maher, 2016). 353 

Core MD18-3532 clay minerals abundance could therefore potentially be related to (i) 354 

erosion of Taiwan massifs, (ii) sediment transport from the Yangtze River, especially during 355 

low sea level periods, and (iii) airborne transport of loess sediments mainly during glacial 356 

periods. The Yangtze River source (ii) might be particularly important if we consider a 357 

weakening of the Kuroshio Current through the Okinawa Trough, and the potential 358 

establishment of a counter-current in the Okinawa Trough similar to the modern Zhejiang-359 

Fujian Coastal Current. This latter can originated by an enhanced EAWM, transporting 360 

sediments southward. The Yangtze River contribution to the sedimentation of the southern 361 

Okinawa Trough during the deglaciation is supported by the mineralogical composition of 362 

sediment at the ODP 1202B site (Diekmann et al., 2008) (Fig. 1a). The third source would have 363 
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been particularly intense during LGM and HS1 due to intensified EAWM (E. Huang et al., 2011; 364 

Sun et al., 2012; Yang et al., 2020). It was caused by the increase of the zonal land-sea thermal 365 

contrast between Eurasia and North Pacific by the cooling of the North Hemisphere, resulting 366 

in the intensification of the Siberian High over Eurasia (Kutzbach, 1993; Sun et al., 2012) and 367 

Aleutian Low over the western North Pacific (McGee et al., 2018; Yanase and Abe-Ouchi, 368 

2007). During HS1, the Atlantic Meridional Overturning Circulation weakening in the North 369 

Atlantic, combined with the setting of El Niño-like state in the equatorial Pacific (Clement et 370 

al., 1999; Merkel et al., 2010; Timmermann et al., 2007), would have resulted in an even 371 

stronger intensification of EAWM than during LGM as evidenced by the maximum observed 372 

in the Gulang Loess mean grain size (Fig. 4b) (E. Huang et al., 2011; Sun et al., 2012; Yang et 373 

al., 2020).  374 

In order to disentangle the potential sediment sources we compared measured illite 375 

crystallinity values from core MD18-3532 with those measured in previous studies in 376 

sediments from Taiwan rivers, Chinese Loess Plateau, the Yangtze River and the East China 377 

Sea shelf. Illite crystallinity measured present much lower values than those of loess (C. Huang 378 

et al., 2011; Ji et al., 1999), East China Sea shelf and the Yangtze River (M. He et al., 2013) (Fig. 379 

5). These values are characteristic of Fe-Mg rich un-weathered illite and of physically eroded 380 

greenschists typical of the Central Range of Taiwan (Li et al., 2012; Nayak et al., 2021) and the 381 

stability of these values over the past 26 kyr suggest a steady sediment source (Fig. 4f). The 382 

source of the kaolinite is more difficult to ascertain, but given the clearly Taiwanese signal of 383 

illite crystallinity, we suggest that the kaolinite originates from the Hengshun Peninsula, 384 

southern Taiwan, and remobilization of Kenting Plateau sediments by erosion caused by the 385 

Kuroshio Current (Das et al., 2021). 386 
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However, although Taiwan appears to be the main and constant source of sediment, 387 

secondary sources bringing insufficient amounts of sediment to influence the clay assemblage 388 

may exist. Using ln(Fe/Al) and ln(Ti/Al), we observed an increase in these elemental ratios 389 

from LGM to HS1 before starting to decrease during BA that might indicate supply of 390 

terrigenous material from another source than Taiwan (Fig. 4g). As ln(Ti/Al) and ln(Fe/Al) show 391 

a very strong Spearman correlation degree (r = 0.91 ; Table S2), it suggests that ln(Fe/Al) is not 392 

affected by redox mechanisms and that both ratios reflect terrestrial inputs (Croudace and 393 

Rothwell, 2015). Changes in these elemental ratios might be related to grain size sorting due 394 

to the presence of Ti- and Fe-bearing heavy minerals in the coarse fraction (Croudace and 395 

Rothwell, 2015; Zhao et al., 2011), but low abundance and small variation in the sandy fraction 396 

suggest that grain size doesn’t have any effect on these elemental ratios (Fig. 3d). The ln(Ti/Al) 397 

and ln(Fe/Al) trends are more similar to the evolution of the EAWM winds intensity as 398 

registered in the Gulang Loess mean grain size (Sun et al., 2012) and dust mass accumulation 399 

rate in core MD06-3047, collected east off Philippines (Xu et al., 2015) than to sea level 400 

changes (Lambeck et al., 2014) (Fig. 4b). This suggests dust-borne Fe and Ti inputs by enhanced 401 

EAWM rather than related to the emergence of the East China Sea shelf and southeastward 402 

migration of the Yangtze River mouth. 403 

5.2 Changes in the Kuroshio Current pathway  404 

Given that Taiwan has been established as the major and constant source of sediment, we 405 

investigate hypotheses that could explain the high sedimentation rate observed from LGM to 406 

BA (Fig. 4d). From the LGM to HS1, the weakening of the easterly trade winds due to an 407 

enhanced EAWM (Cheng et al., 2016; Steinke et al., 2010; Sun et al., 2012), El Niño-like 408 

conditions (Clement et al., 1999b; Ford et al., 2015; Koutavas et al., 2002; Yamamoto, 2009) 409 

and weakened Walker Circulation (Hollstein et al., 2018; Tian and Jiang, 2020) led to the 410 
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decrease of the positive wind stress curl over the equatorial North Pacific (Hu et al., 2015). 411 

This would have caused the northward migration of the North Equatorial Current bifurcation 412 

resulting in the weakening of the Kuroshio Current (Hu et al., 2015; Qu and Lukas, 2003; Zou 413 

et al., 2021). Therefore, Kuroshio Current’s decline could have caused a reduction of the 414 

“barrier effect”, allowing surface sediment plumes to spread eastwards, toward the study 415 

area. 416 

On the other hand, at least partial deflection of the Kuroshio Current along the eastern 417 

edge of the Ryukyu Arc might also have transported eroded sediments from Taiwan to the 418 

study site. This deflection could have been caused by the ∼130 m drop in sea level during the 419 

LGM (Lambeck et al., 2014) decreasing the water depth in the Yonaguni depression. This 420 

would have caused an increase in the intermediate water volume diverted eastwards, 421 

strengthening the Ryukyu Current and ultimately dragging the surface water to form an 422 

eastern branch of the Kuroshio Current (Fig. 6). 423 

Both hypotheses are consistent with an increase in the sedimentation rate from LGM to 424 

BA (Fig. 4d). Previous publications observed an intensification of the Kuroshio Current in the 425 

Okinawa Trough during BA (Li et al., 2020, 2019; Lim et al., 2017) (Fig. 7d and 7e) that could 426 

have been induce by a renewed efficiency of the “water barrier” effect. On the other hand, 427 

the sea level rise from – 100 to – 60 m during BA (Lambeck et al., 2014) (Fig. 7c) might be at 428 

the origin of a decrease in the Ryukyu Current intensity by reducing the intermediate water 429 

volume diverted eastward and increasing it in the Yonaguni Depression. This would have 430 

resulted in the collapse of the Kuroshio Current eastern branch and intensification of the 431 

Kuroshio Current in the Okinawa Trough as observed in the increase of sea surface 432 

temperatures (Li et al., 2020; Sun et al., 2005) (Fig. 7d), deepening of the thermocline (Li et 433 
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al., 2020) (Fig. 7e) and in the relative contribution of detrital ferrimagnetic minerals to bulk 434 

magnetic properties (Li et al., 2019). 435 

From 22.5 – 13.6 ka, the high sedimentation rate is concomitant with δ15Nsed values 436 

averaging 2.1‰ (±1.3) (Fig. 7g). Those low values might be attributed to three mechanisms: 437 

(i) grain size sorting effect (Robinson et al., 2012; Schubert and Calvert, 2001), (ii) continental 438 

influence due to the main dominance of illite in Taiwanese clay mineral assemblages 439 

(Robinson et al., 2012) or (iii) nitrogen fixation by cyanobacteria (Galbraith et al., 2008; Kim et 440 

al., 2017). The high abundance and the small variation of the < 63 µm fraction (Fig. 3d) suggest 441 

that grain size sorting (i) does not have any effect on δ15Nsed signature. The continental 442 

influence (ii) is potentially possible, as it is linked to the presence of NH4
+ in the interfoliar 443 

space of illite clay. However, δ15Nsed and TN data show a non-significant Spearman correlation 444 

with illite (p > 0.05; Table S4), indicating that illite inputs have no influence on δ15Nsed or TN 445 

values. Furthermore, measurements in rocks from Taiwan show higher δ15N values (>3‰) 446 

(Owen, 2013; Yui et al., 2009) suggesting that terrestrial input from Taiwan do not influence 447 

δ15Nsed.  448 

Thus, we suggest that the δ15Nsed records is mainly controlled by nitrogen fixation. The 449 

Kuroshio Current carries abundant Trichodesmium spp. cyanobacteria that originate in blooms 450 

around the Pacific island along its path (Chen et al., 2008; Shiozaki et al., 2015; Wu et al., 451 

2018). Their abundance decreases with distance from the coast in east Taiwan (Chen et al., 452 

2018) and they generate significant nitrogen fixation in the Kuroshio Current compared to the 453 

rest of the Philippine Sea (Liu et al., 1996; Shiozaki et al., 2015) with a specific δ15N signature 454 

around − 0.9 ±1.0‰ (Eberl and Carpenter, 2007; Liu et al., 1996; Wada and Hattori, 1976). The 455 

observed decrease in δ15Nsed during the period of high sedimentation rate (Fig. 7g) might have 456 
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been caused by the supply of these cyanobacteria over the study area by an eastern branch 457 

of the Kuroshio Current, suggesting rather a partial deflection of the Kuroshio Current than a 458 

decrease of the “water barrier” effect (Fig. 6). During and after BA, the collapse of the Kuroshio 459 

Current eastern branch due to the rise of sea level and the intensification of the Kuroshio 460 

Current in the Okinawa Trough induced by enhanced EASM and transition to a La Niña-like 461 

state led to the decrease in sedimentation rates and an increase in δ15Nsed (Fig. 7a, 7c and7g).  462 

5.3 Kuroshio and East Asian Winter Monsoon controls on primary productivity 463 

Northeast of Taiwan, south of the Okinawa Trough, present-day measurements in surface 464 

sediments under the modern path of the Kuroshio Current observed δ15Nsed values greater 465 

than 3‰ (Kao et al., 2003). This isotopic signature, close to those of the Taiwanese rocks 466 

(Owen, 2013; Yui et al., 2009), indicates that the signal is dominated by terrigenous inputs of 467 

nitrogen rather than by cyanobacterial activity despite the presence of Trichodesmium spp. in 468 

the Kuroshio Current above (Jiang et al., 2019; Liu et al., 1996). Therefore, the mere input of 469 

cyanobacteria might not be enough to explain the decrease of δ15Nsed. During LGM and HS1, 470 

the strengthened EAWM would have caused an increase in dust-borne Fe inputs as evidenced 471 

by ln(Fe/Al) (Fig. 7h), soluble iron concentration and dust mass accumulation rate in core 472 

MD06-3047 (Xu et al., 2015) (Fig. 7b).  In addition a deepening of the mixed layer as observed 473 

in the northern South China Sea (Steinke et al., 2010; Zhang et al., 2016) can result in the 474 

upwelling of subsurface water. It would have caused a transfer of phosphate and nitrate from 475 

the nutrient-rich Kuroshio Current subsurface water (Chen et al., 2017, 2021, 1995) to the 476 

surface of these co-limiting nutrients (Fe, P) with consequent intensification of nitrogen 477 

fixation  by cyanobacterial activity (Held et al., 2020; Lis et al., 2015; Qiu et al., 2022). This 478 

hypothesis is supported by the concomitant enhancement of nitrogen fixation in the Okinawa 479 

Trough as evidenced by the organic nitrogen δ15N (δ15NON) of core MD01-2404 (Zheng et al., 480 
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2015) (Fig. 7g). In the East China Sea, the nitrogen fixation is strongly related to the input of 481 

Trichodesmium spp. by the Kuroshio Current (Jiang et al., 2019; Liu et al., 1996; Zhang et al., 482 

2012). This synchronous evolution (Fig. 7g) suggests that during LGM and HS1, both the 483 

remaining and deflected branches would have transported cyanobacteria northern and 484 

southern of the Okinawa Trough, and their nitrogen fixation would have been increased by an 485 

enhanced EAWM. This observation is consistent with the hypothesis of  total or partial 486 

deflection from LGM to BA (Fig. 6), and highlights the control exerted by the Kuroshio Current 487 

and EAWM on nitrogen fixation in this region. 488 

Enhanced paleoproductivity is also evidenced by the concomitant increase in ln(Br/Al), 489 

δ13Corg and TOC (Fig. 7h – 7j) from LGM to HS1 before decreasing during and after BA. This is 490 

consistent with an enhanced EAWM winds intensity and deflection of the Kuroshio Current 491 

from LGM to BA, then a reduction of EAWM winds intensity and the collapse of the Kuroshio 492 

Current eastern branch caused by the sea level rise during and after BA (Fig. 7b and 7c). This 493 

would have resulted in the weakening of the dust-borne Fe inputs and the shallowing of the 494 

mixed layer, and the cessation of N and P supply by the Kuroshio Current subsurface waters. 495 

The impact of dust-borne Fe inputs and/or monsoonal upwelling of nutrients from the 496 

subsurface on primary productivity during LGM and HS1 is supported by previous studies in 497 

the northern South China Sea (J. He et al., 2013; Zhang et al., 2016; Zhou et al., 2016), in the 498 

Okinawa Trough (Ruan et al., 2017) and southern Philippine Sea (Xu et al., 2020, 2015), and 499 

by a modern study showing that N is the first-order limiting nutrient and P, Fe are second-500 

order co-limiting nutrient in the study area (Browning et al., 2022). Although the impact of 501 

Kuroshio Current and EAWM on paleoproductivity can be observed in the Okinawa Trough by 502 

the biogenic silica concentration (BSi) in core KX12-3 and δ15NON in core MD01-2404 (Fig. 8e 503 

and 8f), in most of these records their impact is only secondary compared with the emergence 504 
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of the continental shelf, remobilization/erosion of its sediments, and the migration of river 505 

mouths due sea level changes (Chen et al., 2023; Lim et al., 2017; Ruan et al., 2017; Xu et al., 506 

2020) (Fig. 8d, 8g – h and 8j – 8k). East of Taiwan, the limited size of the shelf (Fig. 1a) and the 507 

low impact of Taiwanese sediments on primary productivity (Wang et al., 2018) render this 508 

influence negligible, explaining the discrepancies observed between paleoproductivity 509 

records along the Kuroshio Current south – north transect from the east of the Philippine Sea 510 

to the Okinawa Trough (Fig. 8d – 8k).  511 

During HS1, δ15Nsed is marked by a significant (p-value < 0.0001; Mann-Whitney U test 512 

(Mann and Whitney, 1947)) increase from 1.8‰ (±1.7) to 2.5‰ (±1.3) (Fig. 7g) concomitant 513 

with the premature decline of TN (Fig. 7k) relative to other paleoproductivity proxies 514 

(ln(Br/Al), δ13Corg, TOC) (Fig. 7h – 7j). This might have been caused by the intensification of 515 

water wind stress resulted due to enhanced EAWM that could have limited the development 516 

of Trichodesmium spp. and their ability to fix atmospheric N (Breitbarth et al., 2007; Chen et 517 

al., 2008; Wu et al., 2018). Thus, despite an increase in dust-Fe inputs and summer 518 

temperatures above 24°C (Kim et al., 2015) consistent with Trichodesmium spp. ecological 519 

needs (Breitbarth et al., 2007), cyanobacterial productivity declined, and so did biogenic 520 

nitrogen production (7g and 7k). 521 

6 Conclusion 522 

A multi-proxy study of the MD18-3532 core, in the Ryukyu accretionary wedge off East 523 

Taiwan, has investigated the variability of the Kuroshio Current pathway and 524 

paleoproductivity during the last 26 kyr.  525 

High values of sedimentation rate, the distribution of clay minerals, and the low values of 526 

δ15Nsed from 22.5 to 13.6 ka suggest a partial deflection of the Kuroshio Current along the 527 
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eastern edge of the Ryukyu Arc during LGM until BA, and hence a transport of (i) Taiwanese 528 

suspended material and (ii) Trichodesmium spp. cyanobacteria to the coring site. At the same 529 

time, high values of δ13Corg, ln(Br/Al), ln(Ti/Al), ln(Fe/Al), TOC, TN and the low δ15Nsed values 530 

suggest that EAWM and Kuroshio Current are the main control mechanisms on 531 

paleoproductivity in the northwestern Philippine Sea during that time period. Partial 532 

deflection of the Kuroshio Current provides nutrient-enriched subsurface waters that upwell 533 

toward the oligotrophic surface waters by deepening the mixed layer due to intensified EAWM 534 

winds, which also carry dust-borne Fe, thus creating conditions conducive to an increase of 535 

primary productivity. After BA, the collapse of the eastern branch of the Kuroshio Current due 536 

to sea level rise and the weakening of the EAWM leads to a decrease in the supply of sediment, 537 

Trichodesmium spp. and nutrients to the eastern edge of the Ryukyu Arc and a shallowing of 538 

the mixed layer, thus reducing primary productivity and sedimentation rates. 539 
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7 Figures 572 

Table 1: AMS 14C ages and instrumental error, calendar ages and error (±2σ) for sediment core 573 

MD18-3532. Radiocarbon measurements were performed on the following taxa: 574 

Globigerinoides, Neogloboquadrina, Pulleniatina obliquiloculata and Globigerinita glutinata. 575 

Depth (cm) AMS 14C age (y) Error (y) Calibrated Age (ka) Error (±2σ, ka) 

15.5 3814 83 3.5 0.3 

72.5 5284 67 5.4 0.2 

233.5 8640 80 9.0 0.3 

375.5 12066 47 13.3 0.2 

550.5 12484 47 13.8 0.2 

870.5 14442 53 16.6 0.3 

1000.5 15235 127 17.5 0.4 

1279.5 16385 158 18.8 0.4 

1554.5 17815 202 20.5 0.5 

1842.5 19482 239 22.4 0.4 

1961.5 19687 240 22.9 0.5 

2079.5 21241 277 24.3 0.6 

2157.5 21562 286 24.8 0.6 

Table 2: Average, standard deviation (±2σ), maximum and minimum clay mineral abundance 576 

(%) and illite crystallinity values (∆° 2θ) of core MD18-3532. 577 

Clay 

mineral 

Mean 

abundance 

Standard 

Deviation  

Maximum 

abundance 

Minimum 

abundance  
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Illite 43 6 37 51 

Chlorite 28 6 22 36 

Kaolinite 10 6 0 18 

Illite 

crystallinity 
0.12 0.06 0.08 0.18 

 578 
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 579 

Figure 1: Maps showing (a) the modern Kuroshio Current pathway East of Taiwan and the 580 

monsoon pattern in the northwestern Philippine Sea and (b) the bathymetry of the study area 581 

and the different modern sedimentary sources. The yellow circle marks the position of the 582 

core MD18-3532. The black circles indicate the positions of the cores MD06-3052 (1), MD06-583 
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3047 (2), MD10-3291 (3), OR1715-21 (4), MD05-2908 (5), ODP 1202-B (6), core 255 (7), RN93-584 

PC6 (8), MD01-2404 (9), KX12-3 (10), M063-05 (11) and A7 (12). The 130 m isobath is marked 585 

by a thicker black line and shows the emerged area at the last glacial maximum. The white 586 

rectangle shows the position of the more detailed box Fig. 1b. The solid red arrow show the 587 

Kuroshio Current (KC) pathway, the dotted red arrow show the Ryukyu Current pathway, the 588 

blue arrow indicate the East Asian Winter Monsoon (EAWM), the orange arrow indicate the 589 

East Asian Summer Monsoon (EASM). NEC: North Equatorial Current, OT: Okinawa Through.  590 

 591 

Figure 2: Age model and sedimentation rate of core MD18-3532. All dates are given in 592 

calibrated radiocarbon kyr (±2σ). The black curve is the Oxcal age model and the grey area 593 

shows the age model error at 2σ. The dotted lines show the average sedimentation rates from 594 
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3.5 to 13.3 kyr (38 cm kyr-1) and from 13.3 to 24.8 kyr (177 cm kyr-1). The brown curve shows 595 

the evolution of the sedimentation rate in cm.kyr-1. 596 

 597 

Figure 3: Results of sedimentological and geochemical measurements on core MD18-3532: (a) 598 

sedimentation rate (cm kyr-1), (b) clay minerals (%), (c) illite crystallinity values (∆° 2θ), (d) 599 

sediment fraction smaller than 63 µm (%), (e) elemental ratios ln(Br/Al), ln(Ti/Al) and ln(Fe/Al), 600 
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(f) δ15Nsed (‰), (g) δ13Corg (‰), (h) terrigenous contribution of terrestrial organic matter to 601 

δ13Corg (%) estimated from the marine vs. continental δ13Corg mixing model, (i) Total Organic 602 

Carbon (TOC; %), Total Nitrogen (TN; %). The division of the time scale is first done on the scale 603 

of marine isotope stages (MIS),  and then on the scale of late Quaternary millennium-scale 604 

changes with: Pre-Last Glacial Maximum (Pre-LGM), Last Glacial Maximum (LGM), Late Glacial 605 

(LG), Heinrich Stadial 1 (HS1), Bølling-Allerød (BA), Younger Dryas (YD) and Holocene. Dotted 606 

lines show the limits of each millennium-scale changes and grey areas are for warming period.607 

  608 
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 609 

Figure 4: Evolution of terrigenous input and their origin: (a) the δ18O of speleothem from Hulu 610 

and Dongge caves represents the evolution of the East Asian Summer Monsoon (Cheng et al., 611 

2016), (b) Gulang Loess mean gain size (µm) (Sun et al., 2012) shows changes in the intensity 612 

of the East Asian Winter Monsoon (EAWM) and dust mass accumulation rate (MAR) shows 613 

the variability of the amount of dust (g cm-2 kyr-1) brought to the ocean from the Chinese Loess 614 

Plateau by the EAWM winds in core MD06-3047, east of the Philippines  (Xu et al., 2015; Fig. 615 
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1a), (c) 231Pa/230Th shows changes in the intensity of the Atlantic Meridional Overturning 616 

Circulation (McManus et al., 2004); (d) to (g) data are from core MD18-3532: (d) 617 

sedimentation rate (cm kyr-1), (e) percentage of clay minerals (%), (f) illite crystallinity values 618 

(Δ°2θ), (g) elemental ratios ln(Fe/Al) and ln(Ti/Al); (h) relative sea level (Lambeck et al., 2014). 619 

The division of the time scale is first done on the scale of marine isotope stages (MIS),  and 620 

then on the scale of late Quaternary millennium-scale changes with: Pre-Last Glacial 621 

Maximum (Pre-LGM), Last Glacial Maximum (LGM), Late Glacial (LG), Heinrich Stadial 1 (HS1), 622 

Bølling-Allerød (BA), Younger Dryas (YD) and Holocene. Dotted lines show the limits of each 623 

millennium-scale changes and grey areas are for warming period. 624 
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 625 

Figure 5: Illite crystallinity values (Δ°2θ) in sediments from the Chinese Loess Plateau (C. Huang 626 

et al., 2011; Ji et al., 1999), the Yangtze River and East China Sea shelf (Zhao et al., 2018), 627 

Taiwan rivers (Li et al., 2012; Nayak et al., 2021) and MD18-3532 (this study). 628 
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 629 

Figure 6: Proposed partial deflection of the Kuroshio Current pathway in the northwestern 630 

Philippine Sea during the Last Glacial Maximum. The 130 m isobath is marked by a thicker 631 

black line and shows the emerged area. NEC: North Equatrial Current, KC: Kuroshio Current, 632 

EASM: East Asian Summer Monsoon, EAWM: East Asian Winter Monsoon, OT: Okinawa 633 

Through. 634 
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 635 

Figure 7:  Variability of sedimentological and geochemical proxies with the evolution of East 636 

Asian Monsoon, relative sea level and Kuroshio Current: (a) δ18O of speleothems from Hulu 637 

and Dongge caves represents the evolution of the East Asian Summer Monsoon (Cheng et al., 638 
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2016), (b) Gulang Loess mean gain size (µm) shows changes in the intensity of the East Asian 639 

Winter Monsoon (EAWM), dust mass accumulation rate (MAR) and soluble iron concentration 640 

shows respectively the amount of dust (g cm-2 kyr-1) and soluble iron (%) brought to the ocean 641 

from the Chinese Loess Plateau by the EAWM winds in core MD06-3047, east of the 642 

Philippines (Xu et al., 2015; Fig. 1a), (c) relative sea level (m) (Lambeck et al., 2014), (d) sea 643 

surface temperature (SST) in °C respectively based on Mg/Ca and UK’37 measurements in core 644 

A7 (red) (Sun et al., 2005) and M063-05 (orange) (Li et al., 2020) as an indicator of the Kuroshio 645 

Current intensity in the middle of the Okinawa Trough (Fig. 1a), (e) relative annual mean depth 646 

of the thermocline reconstituted using the temperature differences between SST and Sea 647 

Subsurface Temperature (SSbT) in °C respectively based on UK’37 and TEX86
H from core M063-648 

05 (Fig. 1a) as an indicator of the Kuroshio Current intensity in the middle of the Okinawa 649 

Trough (Li et al., 2020). The following data are all from core MD18-3532: (f) sedimentation 650 

rate (cm kyr-1), (g) δ15Nsedimentary (‰) in core MD18-3532 (this study) and δ15NOrgani Nitrogen (‰) 651 

in core MD01-2404 (Zheng et al., 2015; Fig. 1a), (h) elemental ratios with ln(Br/Al) indicating 652 

marine organic matter; ln(Ti/Al) and ln(Fe/Al) showing eolian input of Fe and Ti by dust from 653 

Chinese Plateau loess, (i) δ13Corg (‰), (j) Total Organic Carbon (TOC; %) and (k) Total Nitrogen 654 

(TN; %). The division of the time scale is first done on the scale of marine isotope stages (MIS) 655 

and then on the scale of late Quaternary millennium-scale changes with: Pre-Last Glacial 656 

Maximum (Pre-LGM), Last Glacial Maximum (LGM), Late Glacial (LG), Heinrich Stadial 1 (HS1), 657 

Bølling-Allerød (BA), Younger Dryas (YD) and Holocene. Dotted lines show the limits of each 658 

millennium-scale changes and grey areas are for warming period. Black arrows mark trends in 659 

Gulang Loess mean grain size, dust mass accumulation rate and iron soluble concentration in 660 

core MD06-3047 (b), elemental ratios ln(Br/Al), ln(Fe/Al) and ln(Ti/Al) (h), δ13Corg (i) and TOC 661 

(j) from the Last Glacial Maximum to the Younger Dryas. 662 
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 663 

Figure 8: Spatiotemporal comparison of paleoproductivity signals along a north-south transect 664 

on the path of the Kuroshio Current (Fig. 1a): (a) δ18O of speleothems from Hulu and Dongge 665 

caves represents the evolution of the East Asian Summer Monsoon (Cheng et al., 2016), (b) 666 

Gulang Loess mean gain size (µm) shows changes in the intensity of the East Asian Winter 667 

Monsoon (EAWM), dust mass accumulation rate (MAR) and soluble iron concentration shows 668 
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respectively the amount of dust (g cm-2 kyr-1) and soluble iron (%) brought to the ocean from 669 

the Chinese Loess Plateau by the EAWM winds in core MD06-3047, east of the Philippines (Xu 670 

et al., 2015; Fig. 1a), (c) relative sea level (m) (Lambeck et al., 2014), (d) Total Organic Carbon 671 

(TOC; %) in core KX12-3 (Lim et al., 2017; Fig. 1a), (e) Biogenic Silica (BSi, %) in core KX12-3 672 

(Lim et al., 2017; Fig. 1a), (f) δ15NOrganic Nitrogen (‰) in core MD01-2404 (Zheng et al., 2015; Fig. 673 

1a), (g) δ13Corg (‰) in core MD01-2404 (Zheng et al., 2015; Fig. 1a), (h) TOC (%) and δ13Corg (‰) 674 

in core M063-05 (Chen et al., 2023; Fig. 1a), (i) TOC (%) and δ13Corg (‰) in core MD18-3532 675 

(this study), (j) TOC (%) in core MD06-3052 (Xu et al., 2020; Fig. 1a) and (k) BSi (%) in core 676 

MD06-3052 (Xu et al., 2020; Fig. 1a). Numbers in brackets after the sediment core qualifier 677 

refer to the number used for core location Fig. 1a. The division of the time scale is first done 678 

on the scale of marine isotope stages (MIS) and then on the scale of late Quaternary 679 

millennium-scale changes with: Pre-Last Glacial Maximum (Pre-LGM), Last Glacial Maximum 680 

(LGM), Late Glacial (LG), Heinrich Stadial 1 (HS1), Bølling-Allerød (BA), Younger Dryas (YD) and 681 

Holocene. Dotted lines show the limits of each millennium-scale changes and grey areas are 682 

for warming period.  683 
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Supplementary material 684 

 685 

Figure S1: Bathymetric cross-section of the Ryukyu Arc up to the Ryukyu Trough represented 686 

by the light green line. 687 
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Table S1: Analytical precision and accuracy of High Organic (HO) B2151 and Low Organic (LO) 688 

B2153 standards. The theoretical expected values and errors (±2σ) for δ13C (‰) and δ15N (‰) 689 

of the HO B2151 and LO B2153 standards are shown in the first two rows of the table. The 690 

δ13C (‰) and δ15N (‰) measured values of the standards and their errors are reported on the 691 

last two rows and were obtained by calculating the mean and standard deviation (±2σ) of the 692 

values measured at the beginning and end of the analysis series. 693 

 δ13C (‰) Error (±2σ, ‰) δ15N (‰) Error (±2σ, ‰) 

HO B2151 expected -26.27 0.15 4.42 0.29 

LO B2153 expected -26.66 0.24 7.30 0.10 

HO B2151 measured -26.31 0.21 4.43 0.49 

LO B2153 measured -26.61 0.26 7.13 0.54 

 694 

Table S2: Spearman correlation matrix of ln(Br/Al), ln(Fe/Al) and ln(Ti/Al). Values in bold have 695 

a p-value < 0.05. 696 

Variables Br/Al Fe/Al Ti/Al 

Br/Al 1 0.64 0.65 

Fe/Al 
 

1 0.91 

Ti/Al   1 

Table S3: Spearman correlation matrix of ln(Br/Al), ln(Fe/Al) and ln(Ti/Al) after smoothing by 697 

a 30-order moving average. Values in bold have a p-value < 0.05. 698 
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Variables M30(Br/Al) M30(Fe/Al) M30(Ti/Al) 

M30(Br/Al) 1 0.74 0.74 

M30(Fe/Al) 
 

1 0.97 

M30(Ti/Al)   1 

Table S4: Spearman correlation matrix of illite, δ15Nsed and Total N. Values in bold have a p-699 

value < 0.05. 700 

Variables Illite δ15Nsed TN 

Illite 1 0,1 -0,2 

d15N 
 

1 -0,3 

TN   1 

 701 

General setting – Sedimentation rate in the coastal region of Taiwan 702 

The very large sediment export results in high sedimentation rate in the coastal regions of 703 

Taiwan. Thus, north of Taiwan, in the southern Okinawa Through, the core MD05-2908 (5 in 704 

Fig. 1a) shows a mean sedimentation rate of 500 cm.kyr-1 over the last 7 kyr (Li et al., 2009). 705 

Nearby, the ODP site 1202B (6) shows sedimentation rate of 382 cm.kyr-1 in average during 706 

the Holocene (Wei et al., 2005). South of Taiwan, the core MD10-3291 (3) located on the west 707 

flank of the Gaoping Canyon a shows a mean sedimentation of 122 cm.kyr-1 over the last 12 708 

kyr (Yu et al., 2017). By contrast, during the same period, areas further away from Taiwan 709 

show lower sedimentation rates. For example, cores 255 (7) and RN93-PC6 (8), located further 710 

north in the southern part of the Okinawa Through than the ODP 1202B and MD05-2908 sites, 711 
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have average sedimentation rates of 60 and 47 cm.kyr-1 (Li et al., 2009; Ujiié et al., 2003), 712 

respectively. Eastern of Taiwan, core OR1715-21 (4) located on the northern slope of the 713 

Green Island, disconnected from Taiwanese canyons inputs, shows a sedimentation rate of 714 

25.6 cm.kyr-1 (Lo et al., 2013). 715 
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