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Abstract. In this paper, two double Jordan-type inequalities are introduced based
on the papers [1]-[5]. These inequalities generalize the inequalities obtained in [1]-[5].
As a result, some new upper and lower bounds of the sinc function are obtained. This
extension of Jordan’s inequality is enabled by considering the corresponding inequal-
ities through the concept of stratified families of functions elaborated in [6]. Based
on this approach, some optimal approximations of the sinc function are derived by
determining corresponding minimax approximants, also described in the paper [6].
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1 Introduction

The function:

sincx =


sinx

x
, x ̸= 0

1, x = 0

has numerous applications in mathematics. The basic approximation of the sincx
function is given by the well-known Jordan’s inequality:

Theorem 1 [7] For x∈
(
0,

π

2

]
, it holds:

(1)
2

π
≤ sinx

x
< 1 .

Since then, many authors have worked on extensions and improvements of Jordan’s
inequality [1]-[5],[8]-[23]. In [8], F. Qi, D.-W. Niu and B.-N. Guo did the elaborate re-
search, summarizing previously discovered improvements and applications of Jordan’s
inequality, along with related problems. Motivated by some of the following results,
this paper provides an additional contribution to this topic.

∗correspoding author
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F. Qi and B.-N. Guo, in the paper [1], provided an enhancement of Jordan’s inequality
through the following assertion:

Theorem 2 Let x∈
(
0,

π

2

]
. Then, it holds:

(2)
2

π
+

2

π2
(π − 2x) ≥ sinx

x
≥ 2

π
+

π − 2

π2
(π − 2x) .

F. Qi then, in the paper [2], provided further improvement of Jordan’s inequality
through the following assertion:

Theorem 3 Let x∈
(
0,

π

2

]
. Then, it holds:

(3)
2

π
+

1

π3

(
π2 − 4x2) ≤ sinx

x
≤ 2

π
+

π − 2

π3

(
π2 − 4x2) .

In the paper [3], K. Deng contributed to improvements of Jordan’s inequality by
proving:

Theorem 4 Let x∈
(
0,

π

2

]
. Then, it holds:

(4)
2

π
+

2

3π4

(
π3 − 8x3) ≤ sinx

x
≤ 2

π
+

π − 2

π4

(
π3 − 8x3) .

Based on the inequality (3), W. D. Jiang and H. Yun provided further extension of
Jordan’s inequality in their paper [4] through the following theorem:

Theorem 5 Let x∈
(
0,

π

2

]
. Then, it holds:

(5)
2

π
+

1

2π5

(
π4 − 16x4) ≤ sinx

x
≤ 2

π
+

π − 2

π5

(
π4 − 16x4) .

Shortly afterwards, in the paper [5], J.-L. Li and Y.-L. Li provided a more general
statement that encompasses the previous inequalities, (2), (3), (4) and (5), introducing
an entire family of inequalities. Namely, the theorem holds:

Theorem 6 Let x∈
(
0,

π

2

]
. Then, it holds:

(6)
2

π
+

2

π2
(π − 2x) ≥ sinx

x
≥ 2

π
+

π − 2

π2
(π − 2x)

(7)
2

π
+

2

nπn+1
(πn−(2x)n) ≤ sinx

x
≤ 2

π
+

π−2

πn+1
(πn−(2x)n) (for n∈N,n≥2) .

Inspired by Theorems 2, 3, 4, 5 and 6, in this paper, based on the concept of strati-
fication of corresponding families of functions from the paper [6], we introduce a new
extension of Jordan’s inequality. Namely, by applying stratification, it is possible to
extend the inequality (7) so that the parameter n can be a positive real number. The
extension of inequalities for real parameters has recently been the subject of various
studies [24]-[27], see also [28]-[31]. Additionally, we provide the best constants for
this type of Jordan’s inequality, as well as an analysis of upper and lower bounds and
minimax approximations of the sincx function based on the inequalities (2), (3), (4),
(5), as well as on the newly obtained inequalities.
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2 Preliminaries

Recently, in the paper [6], the authors considered families of functions φp(x), where
x∈ (a, b)⊆R+ and p∈R+, which are monotonic with respect to the parameter p. In
that paper, such families of functions are referred to as stratified families of functions
with respect to the parameter p. If, for each x∈(a, b) it holds:(

∀p1, p2∈R+) p1 < p2 ⇐⇒ φp1 (x) < φp2 (x) ,

then the family of functions φp(x) is increasingly stratified with respect to the param-
eter p. If, for each x∈(a, b) it holds:(

∀p1, p2∈R+) p1 < p2 ⇐⇒ φp1 (x) > φp2 (x) ,

then the family of functions φp(x) is decreasingly stratified with respect to the param-
eter p.

If it is possible to determine a value of the parameter p = p0 ∈ R+ for which the
infimum of the error is attained:

d0 = d(p0) = sup
x∈(a,b)

|φp0(x)| ,

then the function φp0(x) is the minimax approximant of the family of functions φp(x)
on the interval (a, b). Based on the stratifiedness, the parameter value p = p0 is unique.

In this paper, we consider the inequalities (2), (3), (4), (5), (6) and (7) by introducing
the corresponding stratified families of functions. When proving inequalities, we will
utilize L’Hôpital’s rule for monotonicity, as well as the method for proving MTP (Mixed
Trigonometric Polynomial) inequalities described in the paper [32].

L’Hôpital’s rule for monotonicity was described by the author I. Pinelis in the paper
[33]. In this paper, we use the following formulation:

Lemma 1 [34] (Monotone form of L’Hôpital’s rule). Let f and g be continuous
functions defined on [a, b] and differentiable on (a, b). Suppose f(a) = g(a) = 0 or
f(b) = g(b) = 0, and assume that g′(x) ̸=0 for all x∈ (a, b). If f ′/g′ is an increasing
function on (a, b), then so is f/g.

The method to prove inequalities of the form f(x) > 0 on the interval (a, b)⊆R, where
f(x) is an MTP function, as outlined in [32], is based on determining a downward
polynomial approximation P (x) with respect to the observed function f(x). In [32],
the determination of a polynomial P (x) as a polynomial with rational coefficients is
considered. If there exists a polynomial P (x) such that f(x) > P (x) and P (x) > 0
on the interval (a, b), then f(x) > 0 holds on the interval (a, b). The polynomial
P (x) > 0 is determined as a polynomial with rational coefficients and is examined on
the interval (a, b) with rational endpoints. Then, the proof of the inequality P (x) > 0
is an algorithmically decidable problem based on Sturm’s theorem, see Theorem 4.2
in [35]. In this paper, the application of Sturm’s theorem will not be necessary for
proving polynomial inequalities.
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3 Main results

In this section, several statements are presented and proven, with a special empha-
sis on the connection between Jordan’s inequality and stratification. Particularly, for
each family of functions induced by the aforementioned inequality (7), the best ap-
proximations derived from the minimax approximants are identified in Statements 1
and 2.

Lemma 2 The two-parameter family of functions:

φp,q(x) =
sinx

x
− 2

π
− p (πq − (2x)q)

is individually decreasingly stratified both with respect to the parameter p ∈ R+ and
with respect to the parameter q∈R+ on the interval (0, π/2).

Proof. For the first derivative of φp,q(x) with respect to p, it holds:

∂φp,q(x)

∂p
= (2x)q − πq < 0

for x ∈ (0, π/2) and q ∈ R+. For the first derivative of φp,q(x) with respect to q, it
holds:

∂φp,q(x)

∂q
= p ((2x)q ln(2x)− πq ln(π)) < 0

for x∈(0, π/2) and p, q∈R+. □

Based on the inequality (7), we introduce the following stratified families of functions
in the auxiliary statement:

Lemma 3 Let:

A(q) =
π − 2

πq+1
and B(q) =

2

qπq+1
.

Then, it holds:

(i) The family of functions:

(8) φA(q),q(x) =
sinx

x
− 2

π
−A(q) (πq − (2x)q)

is decreasingly stratified with respect to the parameter q∈R+ on the interval (0, π/2).

(ii) The family of functions:

(9) φB(q),q(x) =
sinx

x
− 2

π
−B(q) (πq − (2x)q)

is increasingly stratified with respect to the parameter q∈R+ on the interval (0, π/2).

Proof. (i) Since A(q) =
π − 2

πq+1
, we obtain the one-parameter family of functions:

(10) φA(q),q(x) =
sinx

x
− 1 +

(
2x

π

)q (
1− 2

π

)
.
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The first derivative of φA(q),q(x) with respect to q is:

∂φA(q),q(x)

∂q
=

(
1− 2

π

)(
2x

π

)q

ln
2x

π
.

It is evident that:
∂φA(q),q(x)

∂q
< 0

on the interval (0, π/2) for q∈R+, which concludes the proof.

(ii) Since B(q) =
2

qπq+1
, we obtain the one-parameter family of functions:

(11) φB(q),q(x) =
sinx

x
− 2

π
− 2

qπ
+

2q+1xq

qπq+1
.

The first derivative of φB(q),q(x) with respect to parameter q is:

∂φB(q),q(x)

∂q
=

2

q2π
+

2q+1xq (q ln 2 + q ln x− q ln π − 1)

q2πq+1

=
2

q2π

(
2x

π

)q (
ln

(
2x

π

)q

+
( π

2x

)q

− 1

)
.

Let t =

(
2x

π

)q

. We now form the function:

g(t) = ln (t) +
1

t
− 1 : (0, 1) → R .

Since
d g(t)

d t
=

1

t
− 1

t2
< 0 for t∈(0, 1), the function g(t) is decreasing on the interval

(0, 1). Considering that g(t) is a decreasing function and that g(1) = 0, we conclude
that:

g(t) > 0

for t∈(0, 1). Thus, it follows:
∂φB(q),q(x)

∂q
> 0

on the interval (0, π/2) because g(t) > 0 on (0, 1). This finishes the proof. □

Statement 1 Let:

q1 =
2

π − 2
= 1.75193 . . . and q2 = 2 .

Then, it holds:

(i) If q∈(0, q1], then the lower bounds of the function
sinx

x
are given by:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+A(q1) (π

q1 − (2x)q1) ≥ 2

π
+A(q) (πq − (2x)q)

and the constant q1 is the best possible.
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(ii) If q∈(q1, q2), then the equality:

φA(q),q(x) =
sinx

x
− 2

π
−A(q) (πq − (2x)q) = 0

has a unique solution x
(q)
0 and it holds:

x∈
(
0, x

(q)
0

)
=⇒ sinx

x
>

2

π
+A(q) (πq − (2x)q)

and

x∈
(
x
(q)
0 ,

π

2

)
=⇒ sinx

x
<

2

π
+A(q) (πq − (2x)q) .

(iii) If q∈ [q2,+∞), then the upper bounds of the function
sinx

x
are given by:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+A(q2) (π

q2 − (2x)q2) ≤ 2

π
+A(q) (πq − (2x)q)

and the constant q2 is the best possible.

(iv) Each function from the family φA(q),q(x), for q∈ (q1, q2), has exactly one maxi-

mum and exactly one minimum at certain points m
(q)
1 ,m

(q)
2 ∈ (0, π/2) respectively on

the interval (0, π/2). Additionally, it holds m
(q)
1 < m

(q)
2 . The function φA(q),q(x), for

q = q1, has exactly one maximum on (0, π/2), and for q = q2 has exactly one minimum
on (0, π/2).

(v) The equality: ∣∣∣φA(q),q

(
m

(q)
1

)∣∣∣ = ∣∣∣φA(q),q

(
m

(q)
2

)∣∣∣
has the solution q = q0, for the parameter q∈(q1, q2), numerically determined as:

q0 = 1.84823 . . . .

For value:

d0 =
∣∣∣φA(q0),q0

(
m

(q0)
1

)∣∣∣ = ∣∣∣φA(q0),q0

(
m

(q0)
2

)∣∣∣ = 0.0026604 . . . ,

it holds:
d0 = inf

q∈(0,∞)
sup

x∈(0,π/2)

∣∣φA(q),q(x)
∣∣ .

Hence, the minimax approximant of the family of functions φA(q),q(x) is:

φA(q0),q0(x) =
sinx

x
− 2

π
−A(q0) (π

q0 − (2x)q0) ,

which determines the corresponding (minimax) approximation:

(12)
sinx

x
≈ 2

π
+ 0.043803 . . .

(
π1.84823... − (2x)1.84823...

)
.

Proof. (i) Let us notice that the assertion is equivalent to φA(q),q(x) > 0 for q ≤
2

π − 2
and x∈(0, π/2). Based on (10), it holds:

(13) φA(q),q(x) = 0 ⇐⇒ q = g(x) =

ln
x(π − 2)

π(x− sinx)

ln
π

2x

.
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We first prove that the function g(x) is monotonic on the interval (0, π/2) using
L’Hôpital’s rule for monotonicity (Lemma 1). Let us form the functions f1(x) =

ln
x(π − 2)

π(x− sinx)
and f2(x) = ln

π

2x
on (0, π/2]. Note that f1(π/2) = 0 and f2(π/2) = 0.

It holds:
f ′
1(x)

f ′
2(x)

=
−x cosx+ sinx

x− sinx
.

We now examine the monotonicity of the function h(x) =
−x cosx+ sinx

x− sinx
. The first

derivative of the function h(x) is:

h′(x) =
x cosx+ cosx sinx+ x2 sinx− sinx− x

(x− sinx)2
.

To examine the sign of the function h′(x), let us examine the sign of the MTP function:

h1(x) = x cosx+cosx sinx+x2 sinx−sinx−x = x cosx+
1

2
sin 2x+x2 sinx−sinx−x

on the interval (0, π/2).
We prove that h1(x) < 0 using the method from the paper [32]. If we approximate the
functions cosx and sin 2x by Maclaurin polynomials of degrees 4 and 9 respectively,
and approximate the function sinx by Maclaurin polynomial of degree 5 in the addend
x2 sinx and by Maclaurin polynomial of degree 7 in the addend − sinx, then the
function h′

1(x) has the upward polynomial approximation:

P1(x) =
2

2835
x9 − 1

240
x7.

It is evident that P1(x) < 0 on the interval (0, π/2). Thus:

h1(x) < 0

on the observed interval. From here, we conclude that:

h′(x) < 0

on the interval (0, π/2). Thus, h(x) =
f ′
1(x)

f ′
2(x)

is a decreasing function on the interval

(0, π/2). Furthermore, since f1(π/2) = 0 and f2(π/2) = 0, based on L’Hôpital’s rule

for monotonicity, it follows that g(x) =
f1(x)

f2(x)
is also a decreasing function on the

interval (0, π/2).
By applying L’Hôpital’s rule, it can be shown that:

lim
x→π

2
−
g(x) =

2

π − 2
.

Considering that g(x) is a decreasing function on the interval (0, π/2), we conclude

that the function φA(q),q(x), for q = q1 =
2

π − 2
, does not have a root on the observed

interval. Since φA(q1),q1(π/4) =
2

−2
π−2 (π − 2)− π + 2

√
2

π
= 0.0082048 . . . > 0, we

conclude that:
φA(q1),q1(x) > 0

7



for x∈(0, π/2). Additionally, based on the stratification (Lemma 3), it holds:

φA(q),q(x) > φA(q1),q1(x) > 0

for q <
2

π − 2
on the interval (0, π/2).

(ii) It is easily seen that lim
x→0+

φA(q),q(x) = 0 and lim
x→π/2−

φA(q),q(x) = 0. In the

part (iv) of this proof, it will be shown that each function φA(q),q(x), for q∈ (q1, q2),
has exactly one maximum and exactly one minimum on the interval (0, π/2) respec-
tively. Hence, the stated inequalities follow.

(iii) Continuing from the part (i) of this proof, by multiple applications of L’Hôpital’s
rule, it can be shown that:

lim
x→0+

g(x) = 2 .

Considering that g(x) is a decreasing function on the interval (0, π/2), we conclude
that the function φA(q),q(x), for q = q2 = 2, does not have a root on the observed

interval. Since φA(q2),q2(π/4) =
8
√
2− 2− 3π

4π
= −0.0088386 . . . < 0, it holds:

φA(q2),q2(x) < 0

for x∈(0, π/2). Additionally, based on the stratification (Lemma 3), it holds:

φA(q),q(x) < φA(q2),q2(x) < 0

for q > 2 on the interval (0, π/2).

(iv) Let us examine the monotonicity of functions from the family φA(q),q(x) for
q∈(q1, q2) on (0, π/2). The fourth derivative of φA(q),q(x) with respect to x is:

∂4φA(q),q(x)

∂x4
=

xq+1f4(q) + h4(x)

x5
,

where
f4(q) = π−q−12qq(q − 1)(q − 2)(q − 3)(π − 2)

and
h4(x) = 4x

(
x2 − 6

)
cosx+

(
x4 − 12x2 + 24

)
sinx .

Moreover, the function h4(x) is defined at both endpoints of the interval (0, π/2),
which we will use in the subsequent proof. The first derivative of the function h4(x)
with respect to x is:

h′
4(x) = x4 cosx > 0

for x ∈ (0, π/2). Therefore, the function h4(x) is increasing on the interval (0, π/2).
Since h4(0) = 0, it holds that:

h4(x) > 0

on the interval (0, π/2). It is evident that:

f4(q) > 0

for q∈(q1, q2). Hence, we have:

(14)
∂4φA(q),q(x)

∂x4
> 0

8



on (0, π/2) for q ∈ (q1, q2). Consequently, each function
∂3φA(q),q(x)

∂x3
, for q ∈ (q1, q2),

is increasing on (0, π/2). The third derivative of φA(q),q(x) with respect to x is:

∂3φA(q),q(x)

∂x3
=

xq+1f3(q) + h3(x)

x4
,

where

f3(q) = π−q−12qq(q−1)(q−2)(π−2) and h3(x) =
(
−x3 + 6x

)
cosx+

(
3x2 − 6

)
sinx .

It is evident that f3(q) < 0 for q∈(q1, q2). It holds:

lim
x→0+

f3(q)

x3−q
=−∞ (for q∈(q1, q2)) and lim

x→0+

h3(x)

x4
= lim

x→0+

h′
3(x)

(x4)′
= lim

x→0+

x3 sinx

4x3
=0.

Hence, we have:

(15) lim
x→0+

∂3φA(q),q(x)

∂x3
= −∞

for q∈(q1, q2). It holds:

lim
x→π

2
−

∂3φA(q),q(x)

∂x3
=

(8π − 16)q3 + (48− 24π)q2 + (16π − 32)q + 12π2 − 96

π4
:=k3(q) .

Since k′
3(q) =

8

π4
(3q2 − 6q + 2)(π − 2) > 0 for q ∈ (q1, q2), it follows that k3(q) is an

increasing function for q ∈ (q1, q2). Considering that k3(q) is an increasing function

and that k3(q1) =
12π3 − 48π2 − 16π + 160

π3(π − 2)2
= 0.19968 . . . > 0, it can be concluded

that:

(16) lim
x→π

2
−

∂3φA(q),q(x)

∂x3
> 0

for q∈(q1, q2). Based on (14), (15) and (16) each function
∂2φA(q),q(x)

∂x2
, for q∈(q1, q2),

has exactly one minimum on (0, π/2). The second derivative of φA(q),q(x) with respect
to x is:

∂2φA(q),q(x)

∂x2
=

xq+1f2(q) + h2(x)

x3
,

where:

f2(q) = π−q−12qq(q − 1)(π − 2) and h2(x) = −2x cosx−
(
x2 − 2

)
sinx .

It is evident that f2(q) > 0 for q∈(q1, q2). It holds:

lim
x→0+

f2(q)

x2−q
=∞ (for q∈(q1, q2)) and lim

x→0+

h2(x)

x3
= lim

x→0+

h′
2(x)

(x3)′
= lim

x→0+

−x2 cosx

3x2
=−1

3
.

Hence, we have:

(17) lim
x→0+

∂2φA(q),q(x)

∂x2
= +∞

9



for q∈(q1, q2). It holds:

lim
x→π

2
−

∂2φA(q),q(x)

∂x2
=

(4π − 8)q2 + (−4π + 8)q − 2π2 + 16

π3
:= k2(q) .

Since k′
2(q) =

4

π3
(2q − 1)(π − 2) > 0 for q ∈ (q1, q2), it follows that k2(q) is an

increasing function for q ∈ (q1, q2). Considering that k2(q) is an increasing function

and that k2(q1) =
−2π2 + 4π + 8

π2(π − 2)
= 0.073414 . . . > 0, it can be concluded that:

(18) lim
x→π

2
−

∂2φA(q),q(x)

∂x2
> 0

for q ∈ (q1, q2). We have proven that each function
∂2φA(q),q(x)

∂x2
, for q ∈ (q1, q2), has

exactly one minimum on (0, π/2). Therefore, based on (17) and (18), for functions
∂φA(q),q(x)

∂x
, for q ∈ (q1, q2), there are two possibilities: either they are increasing or

they have exactly one maximum and exactly one minimum on (0, π/2) respectively.
We will prove that:

(∗) lim
x→0+

∂φA(q),q(x)

∂x
= 0 , lim

x→π
2
−

∂φA(q),q(x)

∂x
> 0 and

(
∂φA(q),q

∂x

)
(x)

∣∣∣
x=π

4

< 0

for q∈(q1, q2), thus, it will be clear that each function
∂φA(q),q(x)

∂x
, for q∈(q1, q2), has

exactly one maximum and exactly one minimum on (0, π/2) respectively. The first
derivative of φA(q),q(x) with respect to x is:

∂φA(q),q(x)

∂x
=

xq+1f1(q) + h1(x)

x2
,

where:
f1(q) = π−q−12qq(π − 2) and h1(x) = x cosx− sinx .

It holds:

lim
x→0+

f1(q)

x1−q
= 0 (for q∈(q1, q2)) and lim

x→0+

h1(x)

x2
= 0 .

Hence, we have:

(19) lim
x→0+

∂φA(q),q(x)

∂x
= 0

for q∈(q1, q2). It is easily seen that:

(20) lim
x→π

2
−

∂φA(q),q(x)

∂x
=

2(q(π − 2)− 2)

π2
> 0

for q ∈ (q1, q2). We now examine the sign of the functions φA(q),q(x), for q ∈ (q1, q2),
at the point x = π/4. It holds that:(

∂φA(q),q

∂x

)
(x)

∣∣∣
x=π

4

=
2−qq(4π − 8) + 2

√
2 (π − 4)

π2
:= k1(q) .
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Since k′
1(q) =

−4 2−q(π − 2)(q ln 2− 1)

π2
< 0 for q ∈ (q1, q2), it follows that k1(q)

is a decreasing function. Considering that k1(q) is a decreasing function and that

k1(q1) =
2

3π−8
π−2 π − 2

4π−10
π−2 + (2π2 − 12π + 16)

√
2

(π − 2)π2
= −0.0053418 . . . < 0, it can be

concluded that:

(21)

(
∂φA(q),q

∂x

)
(x)

∣∣∣
x=π

4

< 0

for q ∈ (q1, q2). Hence, each function
∂φA(q),q(x)

∂x
, for q ∈ (q1, q2), has exactly one

maximum and exactly one minimum on (0, π/2) respectively. Note that (∗) is a sub-
stitution for the conjunction (19), (20), (21). Additionally, based on the monotonicity

of the functions
∂φA(q),q(x)

∂x
, for q∈(q1, q2), and (∗), we can conclude that each func-

tion φA(q),q(x), for q ∈ (q1, q2), has exactly one maximum and exactly one minimum
on (0, π/2) respectively.

By analyzing the monotonicity of the functions
∂4φA(q),q(x)

∂x4
,
∂3φA(q),q(x)

∂x3
,
∂2φA(q),q(x)

∂x2
,

∂φA(q),q(x)

∂x
and φA(q),q(x) for q = q1 and for q = q2, in a similar manner, it can be con-

cluded that the function φA(q),q(x), for q = q1, has exactly one maximum on (0, π/2),
while the function φA(q),q(x), for q = q2, has exactly one minimum on (0, π/2).

(v) Note that the infimum of the error d(q) = supx∈(0,π/2) |φA(q),q(x)|, for q∈(q1, q2),
exists and is attained when:

(22)
∣∣∣φA(q),q

(
m

(q)
1

)∣∣∣ = ∣∣∣φA(q),q

(
m

(q)
2

)∣∣∣ .
The equation (22) can be numerically solved using the Computer Algebra System
Maple, yielding in the value of the parameter q = q0 being numerically determined as:

q0 = 1.84823 . . . ,

which determines the minimax approximant φA(q0),q0(x) of the family of functions
φA(q),q(x). □

Figure 1 illustrates the stratified family of functions φA(q),q, see (8). Cases for all
values of the parameter q∈R+ are shown, with a special emphasis on the cases with
constants obtained in Statement 1.
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Figure 1: Stratified family of functions φA(q),q, see (8)

Statement 2 Let:

q1 =
π2

4
− 1 = 1.46740 . . . and q2 =

2

π − 2
= 1.75193 . . . .

Then, it holds:

(i) If q∈(0, q1], then the upper bounds of the function
sinx

x
are given by:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+B(q1) (π

q1 − (2x)q1) ≤ 2

π
+B(q) (πq − (2x)q)

and the constant q1 is the best possible.

(ii) If q∈(q1, q2), then the equality:

φB(q),q(x) =
sinx

x
− 2

π
−B(q) (πq − (2x)q) = 0

has a unique solution x
(q)
0 and it holds:

x∈
(
0, x

(q)
0

)
=⇒ sinx

x
<

2

π
+B(q) (πq − (2x)q)

and

x∈
(
x
(q)
0 ,

π

2

)
=⇒ sinx

x
>

2

π
+B(q) (πq − (2x)q) .

(iii) If q∈ [q2,+∞), then the lower bounds of the function
sinx

x
are given by:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+B(q2) (π

q2 − (2x)q2) ≥ 2

π
+B(q) (πq − (2x)q)

and the constant q2 is the best possible.

(iv) Each function from the family φB(q),q(x), for q ∈ (q1, q2], has exactly one maxi-

mum at a point m(q)∈(0, π/2) on the interval (0, π/2).

12



(v) The equality: ∣∣φB(q),q (0+)
∣∣ = ∣∣∣φB(q),q

(
m(q)

)∣∣∣
has the solution q = q0, for the parameter q∈(q1, q2), numerically determined as:

q0 = 1.72287 . . . .

For value:

d0 =
∣∣φB(q0),q0 (0+)

∣∣ = ∣∣∣φB(q0),q0

(
m(q0)

)∣∣∣ = 0.0061296 . . . ,

it holds:
d0 = inf

q∈(0,∞)
sup

x∈(0,π/2)

∣∣φB(q),q(x)
∣∣.

Hence, the minimax approximant of the family of functions φB(q),q(x) is:

φB(q0),q0(x) =
sinx

x
− 2

π
−B(q0) (π

q0 − (2x)q0) ,

which determines the corresponding (minimax) approximation:

(23)
sinx

x
≈ 2

π
+ 0.051415 . . .

(
π1.72287... − (2x)1.72287...

)
.

Proof. (i) Let us notice that the assertion is equivalent to φB(q),q(x) < 0 for q ≤
π2

4
− 1. We begin by proving that φB(q),q(x) is monotonic function on the interval

(0, π/2) for q =
π2

4
− 1. Through elementary transformations, based on (11), it can

be shown that the following equivalence holds:

(24)

∂φB(q),q(x)

∂x
=

x cosx− sinx+

(
2x

π

)q+1

x2
= 0

⇐⇒ q = g(x) =

ln
2x

π(−x cosx+ sinx)

ln
π

2x

.

It is necessary to prove that g(x) ̸= π2

4
−1 for every x∈(0, π/2) in order for the function

φB(q),q(x) to be monotonic on the interval (0, π/2) for q =
π2

4
− 1. We first prove

that the function g(x) is monotonic on the interval (0, π/2) by applying L’Hôpital’s

rule for monotonicity. Let us form the functions f1(x) = ln
2x

π(−x cosx+ sinx)
and

f2(x) = ln
π

2x
on (0, π/2]. Note that f1(π/2) = 0 and f2(π/2) = 0. It holds:

f ′
1(x)

f ′
2(x)

=
x cosx+ x2 sinx− sinx

−x cosx+ sinx
.

We now examine the monotonicity of the function h(x) =
x cosx+ x2 sinx− sinx

−x cosx+ sinx
.

The first derivative of the function h(x) is:

h′(x) =
−x(x cosx sinx− 2 sin2 x+ x2)

(−x cosx+ sinx)2
.
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Let us examine the sign of the MTP function:

h1(x) = x cosx sinx− 2 sin2 x+ x2 = cos 2x+
1

2
x sin 2x+ x2 − 1 .

If we approximate the functions cos 2x and sin 2x by Maclaurin polynomials of degrees
6 and 7 respectively, then the function h1(x) has the downward polynomial approxi-
mation:

P1(x) = − 4

315
x8 +

2

45
x6 .

It is evident that P1(x) > 0 on the interval (0, π/2). Thus:

h1(x) > 0

on the observed interval. From here, we conclude that:

h′(x) < 0

on the observed interval. Thus, h(x) =
f ′
1(x)

f ′
2(x)

is a decreasing function on the interval

(0, π/2). Furthermore, since f1(π/2) = 0 and f2(π/2) = 0, based on L’Hôpital’s rule

for monotonicity, it follows that g(x) =
f1(x)

f2(x)
is also a decreasing function on the

interval (0, π/2). By applying L’Hôpital’s rule, it can be shown that:

lim
x→π

2
−
g(x) =

π2

4
− 1 .

Hence, g(x) >
π2

4
− 1 on the interval (0, π/2). Thus, the function φB(q),q(x), for q =

q1 =
π2

4
− 1, is monotonic on the interval (0, π/2). It holds that lim

x→0+
φB(q1),q1(x) =

π2 − 2π − 4

π2 − 4
= −0.070461 . . . < 0 and lim

x→π/2−
φB(q1),q1(x) = 0. Therefore, φB(q1),q1(x)

is an increasing function and negative on (0, π/2). Considering that φB(q1),q1(x) < 0,
based on the stratification (Lemma 3), it holds:

φB(q),q(x) < φB(q1),q1(x) < 0

for q <
π2

4
− 1 on the interval (0, π/2).

(ii) Continuing from the previous part of the proof, (i), by multiple applications of
L’Hôpital’s rule, it can be shown that:

lim
x→0+

g(x) = 2 .

The function g(x) from (24) determines the values of the parameter q for which the
family of functions φB(q),q(x) have extremes or inflection points on the interval (0, π/2).
Considering that the function g(x) is monotonic on (0, π/2) and that lim

x→0+
g(x) = 2

and lim
x→π/2−

g(x) =
π2

4
− 1 = q1, every function from the family φB(q),q(x) has either

exactly one extremum or exactly one inflection point on the interval (0, π/2) for q ∈

14



(
π2

4
− 1, 2

)
, and therefore for q ∈ (q1, q2], where q2 =

2

π − 2
, since q2 < 2. Let

us prove that each function φB(q),q(x), for q ∈ (q1, q2), has exactly one maximum
on the interval (0, π/2) by proving that all these functions are negative in the right
neighborhood of zero and positive and increasing in the left neighborhood of π/2.
It holds:

lim
x→0+

φB(q),q(x) =
(π − 2)q − 2

πq
.

Therefore, there exists a right neighborhood of zero such that:

(25) φB(q),q(x) < 0

for q ∈ (q1, q2). The Taylor expansion of the family of functions φB(q),q(x) around π/2
is:

φB(q),q(x) = −4q − π2 + 4

π3

(
x− π

2

)2

+O

((
x− π

2

)3
)
.

Therefore, there exists a left neighborhood of π/2 such that:

(26) φB(q),q(x) > 0 and
∂φB(q),q(x)

∂x
> 0

for q ∈ (q1, q2). Based on (25) and (26) the functions φB(q),q(x), for q ∈ (q1, q2), have
exactly one maximum on the interval (0, π/2) and the stated inequalities follow.

(iii) The assertion is equivalent to φB(q),q(x) > 0 for q ≥ 2

π − 2
. Let us notice that

A(q) = B(q) for q =
2

π − 2
, where A(q) =

π − 2

πq+1
. In Statement 1, it has already been

proven that φA(q),q(x) = φB(q),q(x) > 0 for q = q2 =
2

π − 2
on the interval (0, π/2).

Given that the family of functions φB(q),q(x) is increasingly stratified with respect to

the parameter q based on Lemma 3, for q >
2

π − 2
, it will also hold that:

φB(q),q(x) > φB(q2),q2(x) > 0

on the interval (0, π/2).

(iv) It has been established in the part (ii) of the proof for q ∈ (q1, q2). Similarly,
the proof holds for q = q2.

(v) Note that the infimum of the error d(q) = supx∈(0,π/2) |φB(q),q(x)|, for q∈(q1, q2),
exists and is attained when:

(27)
∣∣φB(q),q (0+)

∣∣ = ∣∣∣φB(q),q

(
m(q)

)∣∣∣ .
The equation (27) can be numerically solved using the Computer Algebra System
Maple, yielding in the value of the parameter q = q0 being numerically determined as:

q0 = 1.72287 . . . ,

which determines the minimax approximant φB(q0),q0(x) of the family of functions
φB(q),q(x). □

Figure 2 illustrates the stratified family of functions φB(q),q, see (9). Cases for all
values of the parameter q∈R+ are shown, with a special emphasis on the cases with
constants obtained in Statement 2.
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Figure 2: Stratified family of functions φB(q),q, see (9)

In the style of writing Theorem 6, based on Statement 1 and 2, we present the following
assertion:

Statement 3 Let x∈
(
0,

π

2

]
. Then:

(i) For q1 ∈
(
0,

2

π − 2

]
= (0, 1.75193 . . .] and q2 ∈

(
0,

π2

4
− 1

]
= (0, 1.46740 . . .], it

holds:

(28)
2

π
− 2

q1πq1+1
(πq1 − (2x)q1) ≥ sinx

x
≥ 2

π
+

π − 2

πq2+1
(πq2 − (2x)q2) .

(ii) For q1∈
[

2

π − 2
,+∞

)
= [1.75193 . . . ,+∞) and q2∈ [2,+∞), it holds:

(29)
2

π
− 2

q1πq1+1
(πq1 − (2x)q1) ≤ sinx

x
≤ 2

π
+

π − 2

πq2+1
(πq2 − (2x)q2) .

Remark 7 The equalities in (28) and (29) clearly hold for x = π/2.

Remark 8 Note that the inequalities (28) and (29) reduce to inequalities (6) and (7)
respectively when q1, q2∈N .

4 Applications

In this section, we present two applications. The first application is about the im-
provements and expansions of Theorems 2, 3, 4 and 5. The second application refers
to obtaining some approximations of the sinc function based on some upper and lower
bounds of this function and minimax approximants of the corresponding families of
functions.
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4.1 Improvements of Theorems 2, 3, 4 and 5

In order to obtain a generalization of all inequalities from Theorems 3, 4, 5 and 6,
for the stratified family of functions φp,q(x) from Lemma 2, we considered the values

of the parameter p = A(q) =
π − 2

πq+1
and p = B(q) =

2

qπq+1
as functions depending

on the parameter q. It is possible to consider the family of functions φp,q(x) from
Lemma 2 by fixing either parameter p or q to some real value. For the cases q =
1, q = 2, q = 3 and q = 4, by applying Statement 1 and 2, improvements and
extensions of Theorems 2, 3, 4, 5 respectively can be obtained, as will be shown in
the following. Particularly, for each family of functions induced by the considered
inequalities, the best approximations derived from the minimax approximants are
identified in Statements 4, 5, 6 and 7.

In order to improve and extend Theorem 2, we consider the family of functions φp,q(x)
for the case q = 1. The family of functions φp,1(x) reduces to:

(30) φp,1(x) =
sinx

x
− 2

π
− p(π − 2x)

and is decreasingly stratified with respect to the parameter p ∈ R+ on the interval
(0, π/2), as proven in Lemma 2. For this family, the following statement holds:

Statement 4 Let:

p1 =
π − 2

π2
= 0.11566 . . . and p2 =

2

π2
= 0.20264 . . . .

Then, it holds:

(i) If p∈(0, p1], then:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+ p1(π − 2x) ≥ 2

π
+ p(π − 2x) .

(ii) If p∈(p1, p2), then the equality:

φp,1(x) =
sinx

x
− 2

π
− p(π − 2x) = 0

has a unique solution x
(p)
0 and it holds:

x∈
(
0, x

(p)
0

)
=⇒ sinx

x
<

2

π
+ p(π − 2x)

and

x∈
(
x
(p)
0 ,

π

2

)
=⇒ sinx

x
>

2

π
+ p(π − 2x) .

(iii) If p∈ [p2,+∞), then:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+ p2(π − 2x) ≤ 2

π
+ p(π − 2x) .

(iv) Each function from the family φp,1(x), for p∈(p1, p2], has exactly one maximum
at a point m(p)∈(0, π/2) on the interval (0, π/2).
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(v) The equality:

|φp,1 (0+)| =
∣∣∣φp,1

(
m(p)

)∣∣∣
has the solution p = p0, for the parameter p∈(p1, p2), numerically determined as:

p0 = 0.13323 . . . .

For value:
d0 = |φp0,1 (0+)| =

∣∣∣φp0,1

(
m(p0)

)∣∣∣ = 0.055187 . . . ,

it holds:
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

|φp,1(x)| .

Hence, the minimax approximant of the family of functions φp,1(x) is:

φp0,1(x) =
sinx

x
− 2

π
− p0(π − 2x) ,

which determines the corresponding (minimax) approximation:

(31)
sinx

x
≈ 2

π
+ 0.13323 . . . (π − 2x) .

Proof. (i) The claim follows directly from Statement 1 and based on the stratification.

Namely, for q = 1, it holds that A(q) =
π − 2

πq+1
= p1.

(ii) Let us examine the monotonicity of functions φp,1(x) for p∈(p1, p2) on the interval
(0, π/2) in a similar manner as in the proof of Statement 1. The second derivative of
φp,1(x) with respect to x is:

∂2φp,1(x)

∂x2
=

f(x)

x3
,

where the function f(x) is an MTP function given by:

f(x) = −2x cosx− x2 sinx+ 2 sinx .

Let us note that:
f ′(x) = −x2 cosx < 0

on the interval (0, π/2). Thus, the function f(x) is decreasing on the observed inter-
val. Considering that f(x) is a decreasing function on the interval (0, π/2) and that
f(0+) = 0, it follows that:

f(x) < 0

for x∈(0, π/2). Hence:

(32)
∂2φp,1(x)

∂x2
< 0

for x∈(0, π/2).
The Taylor expansion of the family of functions φp,1(x) around zero is:

φp,1(x) =

(
1− 2

π
− pπ

)
+ 2px+O

(
x2) .

Therefore, there exists a right neighborhood of zero such that:

(33) φp,1(x) < 0 and
∂φp,1(x)

∂x
> 0

18



for p∈(p1, p2). The Taylor expansion of the family of functions φp,2(x) around π/2 is:

φp,1(x) =

(
− 4

π2
+ 2p

)(
x− π

2

)
+O

((
x− π

2

)2
)
.

Therefore, there exists a left neighborhood of π/2 such that:

(34) φp,1(x) > 0 and
∂φp,1(x)

∂x
< 0

for p∈(p1, p2).

By analyzing the monotonicity of the functions
∂2φp,1(x)

∂x2
,
∂φp,1(x)

∂x
and φp,1(x) for

p∈ (p1, p2) on the interval (0, π/2), in a similar manner as in the proof of Statement
1, based on (32), (33) and (34), it can be concluded that each function φp,1(x), for
p∈(p1, p2), has exactly one maximum on the interval (0, π/2). From lim

x→0+
φp,1(x) < 0

and lim
x→π/2−

φp,1(x) > 0, for p∈(p1, p2), the corresponding inequalities follow.

(iii) The claim follows directly from Statement 2 and based on the stratification.

Namely, for q = 1, it holds that B(q) =
2

qπq+1
= p2.

(iv) It has been proven within the proof (ii).

(v) Note that the infimum of the error d(p) = supx∈(0,π/2) |φp,1(x)|, for p∈ (p1, p2),
exists and is attained when:

(35) |φp,1 (0+)| =
∣∣∣φp,1

(
m(p)

)∣∣∣ .
The equation (35) can be numerically solved using the Computer Algebra System
Maple, yielding in the value of the parameter p = p0 being numerically determined as:

p0 = 0.13323 . . . ,

which determines the minimax approximant φp0,1(x) of the family of functions φp,1(x).
□

In order to improve and extend Theorem 3, we consider the family of functions φp,q(x)
for the case q = 2. The family of functions φp,2(x) reduces to:

(36) φp,2(x) =
sinx

x
− 2

π
− p

(
π2 − 4x2)

and is decreasingly stratified with respect to the parameter p ∈ R+ on the interval
(0, π/2), as proven in Lemma 2. For this family, the following statement holds:

Statement 5 Let:

p1 =
1

π3
= 0.032251 . . . and p2 =

π − 2

π3
= 0.036818 . . . .

Then, it holds:

(i) If p∈(0, p1], then:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+ p1

(
π2 − 4x2) ≥ 2

π
+ p

(
π2 − 4x2) .
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(ii) If p∈(p1, p2), then the equality:

φp,2(x) =
sinx

x
− 2

π
− p

(
π2 − 4x2) = 0

has a unique solution x
(p)
0 and it holds:

x∈
(
0, x

(p)
0

)
=⇒ sinx

x
>

2

π
+ p

(
π2 − 4x2)

and

x∈
(
x
(p)
0 ,

π

2

)
=⇒ sinx

x
<

2

π
+ p

(
π2 − 4x2) .

(iii) If p∈ [p2,+∞), then:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+ p2

(
π2 − 4x2) ≤ 2

π
+ p

(
π2 − 4x2) .

(iv) Each function from the family φp,2(x), for p∈(p1, p2], has exactly one minimum
at a point m(p)∈(0, π/2) on the interval (0, π/2).

(v) The equality:

|φp,2 (0+)| =
∣∣∣φp,2

(
m(p)

)∣∣∣
has the solution p = p0, for the parameter p∈(p1, p2), numerically determined as:

p0 = 0.036014 . . . .

For value:
d0 = |φp0,2 (0+)| =

∣∣∣φp0,2

(
m(p0)

)∣∣∣ = 0.0079283 . . . ,

it holds:
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

|φp,2(x)| .

Hence, the minimax approximant of the family of functions φp,2(x) is:

φp0,2(x) =
sinx

x
− 2

π
− p0

(
π2 − 4x2) ,

which determines the corresponding (minimax) approximation:

(37)
sinx

x
≈ 2

π
+ 0.036014 . . .

(
π2 − 4x2) .

Proof. (i) The claim follows directly from Statement 2 and based on the stratification.

Namely, for q = 2, it holds that B(q) =
2

qπq+1
= p1.

(ii) Let us examine the monotonicity of functions φp,2(x) for p∈(p1, p2) on the interval
(0, π/2) in a similar manner as in the proof of Statement 1. The third derivative of
φp,2(x) with respect to x is:

∂3φp,2(x)

∂x3
=

f(x)

x4
,

where the function f(x) is an MTP function given by:

f(x) = −x3 cosx+ 6x cosx+ 3x2 sinx− 6 sinx .
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Let us note that:
f ′(x) = x3 sinx > 0

on the interval (0, π/2). Thus, the function f(x) is increasing on the observed inter-
val. Considering that f(x) is an increasing function on the interval (0, π/2) and that
f(0+) = 0, it follows that:

f(x) > 0

for x∈(0, π/2). Hence:

(38)
∂3φp,2(x)

∂x3
> 0

for x∈(0, π/2).
The Taylor expansion of the family of functions φp,2(x) around zero is:

φp,2(x) =

(
1− 2

π
− pπ2

)
+

(
−1

6
+ 4p

)
x2 +O

(
x4) .

Therefore, there exists a right neighborhood of zero such that:

(39) φp,2(x) > 0 ,
∂φp,2(x)

∂x
< 0 and

∂2φp,2(x)

∂x2
< 0

for p∈(p1, p2). The Taylor expansion of the family of functions φp,2(x) around π/2 is:

φp,2(x) =

(
− 4

π2
+ 4πp

)(
x− π

2

)
+

(
8

π3
− 1

π
+ 4p

)(
x− π

2

)2

+O

((
x− π

2

)3
)
.

Therefore, there exists a left neighborhood of π/2 such that:

(40) φp,2(x) < 0 ,
∂φp,2(x)

∂x
> 0 and

∂2φp,2(x)

∂x2
> 0

for p∈(p1, p2).

By analyzing the monotonicity of the functions
∂3φp,2(x)

∂x3
,
∂2φp,2(x)

∂x2
,
∂φp,2(x)

∂x
and

φp,2(x) for p ∈ (p1, p2) on the interval (0, π/2), in a similar manner as in the proof
of Statement 1, based on (38), (39) and (40), it can be concluded that each func-
tion φp,2(x), for p∈ (p1, p2), has exactly one minimum on the interval (0, π/2). From
lim

x→0+
φp,2(x) > 0 and lim

x→π/2−
φp,2(x) < 0, for p∈ (p1, p2), the corresponding inequali-

ties follow.

(iii) The claim follows directly from Statement 1 and based on the stratification.

Namely, for q = 2, it holds that A(q) =
π − 2

πq+1
= p2.

(iv) It has been proven within the proof (ii).

(v) Note that the infimum of the error d(p) = supx∈(0,π/2) |φp,2(x)|, for p∈ (p1, p2),
exists and is attained when:

(41) |φp,2 (0+)| =
∣∣∣φp,2

(
m(p)

)∣∣∣ .
The equation (41) can be numerically solved using the Computer Algebra System
Maple, yielding in the value of the parameter p = p0 being numerically determined as:

p0 = 0.036014 . . . ,
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which determines the minimax approximant φp0,2(x) of the family of functions φp,2(x).
□

In order to improve and extend Theorem 4, we consider the family of functions φp,q(x)
for the case q = 3. The family of functions φp,3(x) reduces to:

(42) φp,3(x) =
sinx

x
− 2

π
− p

(
π3 − 8x3)

and is decreasingly stratified with respect to the parameter p ∈ R+ on the interval
(0, π/2), as proven in Lemma 2. For this family, the following statement holds:

Statement 6 Let:

p1 =
2

3π4
= 0.0068439 . . . and p2 =

π − 2

π4
= 0.011719 . . . .

Then, it holds:

(i) If p∈(0, p1], then:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+ p1

(
π3 − 8x3) ≥ 2

π
+ p

(
π3 − 8x3) .

(ii) If p∈(p1, p2), then the equality:

φp,3(x) =
sinx

x
− 2

π
− p

(
π3 − 8x3) = 0

has a unique solution x
(p)
0 and it holds:

x∈
(
0, x

(p)
0

)
=⇒ sinx

x
>

2

π
+ p

(
π3 − 8x3)

and

x∈
(
x
(p)
0 ,

π

2

)
=⇒ sinx

x
<

2

π
+ p

(
π3 − 8x3) .

(iii) If p∈ [p2,+∞), then:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+ p2

(
π3 − 8x3) ≤ 2

π
+ p

(
π3 − 8x3) .

(iv) Each function from the family φp,3(x), for p∈(p1, p2], has exactly one minimum
at a point m(p)∈(0, π/2) on the interval (0, π/2).

(v) The equality:

|φp,3 (0+)| =
∣∣∣φp,3

(
m(p)

)∣∣∣
has the solution p = p0, for the parameter p∈(p1, p2), numerically determined as:

p0 = 0.010441 . . . .

For value:
d0 = |φp0,3 (0+)| =

∣∣∣φp0,3

(
m(p0)

)∣∣∣ = 0.039635 . . . ,

it holds:
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

|φp,3(x)| .
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Hence, the minimax approximant of the family of functions φp,3(x) is:

φp0,3(x) =
sinx

x
− 2

π
− p0

(
π3 − 8x3) ,

which determines the corresponding (minimax) approximation:

(43)
sinx

x
≈ 2

π
+ 0.010441 . . .

(
π3 − 8x3) .

Proof. Analogously to the proof of Statement 5. □

In order to improve and extend Theorem 5, we consider the family of functions φp,q(x)
for the case q = 4. The family of functions φp,4(x) reduces to:

(44) φp,4(x) =
sinx

x
− 2

π
− p

(
π4 − 16x4)

and is decreasingly stratified with respect to the parameter p ∈ R+ on the interval
(0, π/2), as proven in Lemma 2. For this family, the following statement holds:

Statement 7 Let:

p1 =
1

2π5
= 0.0016338 . . . and p2 =

π − 2

π5
= 0.0037304 . . . .

Then, it holds:

(i) If p∈(0, p1], then:

x∈
(
0,

π

2

)
=⇒ sinx

x
>

2

π
+ p1

(
π4 − 16x4) ≥ 2

π
+ p

(
π4 − 16x4) .

(ii) If p∈(p1, p2), then the equality:

φp,4(x) =
sinx

x
− 2

π
− p

(
π4 − 16x4) = 0

has a unique solution x
(p)
0 and it holds:

x∈
(
0, x

(p)
0

)
=⇒ sinx

x
>

2

π
+ p

(
π4 − 16x4)

and

x∈
(
x
(p)
0 ,

π

2

)
=⇒ sinx

x
<

2

π
+ p

(
π4 − 16x4) .

(iii) If p∈ [p2,+∞), then:

x∈
(
0,

π

2

)
=⇒ sinx

x
<

2

π
+ p2

(
π4 − 16x4) ≤ 2

π
+ p

(
π4 − 16x4) .

23



(iv) Each function from the family φp,4(x), for p∈(p1, p2], has exactly one minimum
at a point m(p)∈(0, π/2) on the interval (0, π/2).

(v) The equality:

|φp,4 (0+)| =
∣∣∣φp,4

(
m(p)

)∣∣∣
has the solution p = p0, for the parameter p∈(p1, p2), numerically determined as:

p0 = 0.0031146 . . . .

For value:

d0 = |φp0,4 (0+)| =
∣∣∣φp0,4

(
m(p0)

)∣∣∣ = 0.059981 . . . ,

it holds:

d0 = inf
p∈(0,∞)

sup
x∈(0,π/2)

|φp,4(x)| .

Hence, the minimax approximant of the family of functions φp,4(x) is:

φp0,4(x) =
sinx

x
− 2

π
− p0

(
π4 − 16x4) ,

which determines the corresponding (minimax) approximation:

(45)
sinx

x
≈ 2

π
+ 0.0031146

(
π4 − 16x4) .

Proof. Analogously to the proof of Statement 5. □

Figure 3 illustrates the stratified families of functions φp,1(x), φp,2(x), φp,3(x) and
φp,4(x) respectively, see (30), (36), (42) and (44). For each family, cases for all values
of the parameter p ∈ R+ are shown. Particularly, cases with constants obtained in
Statement 4, 5, 6 and 7, some of which are also obtained in Theorems 2, 3, 4 and 5,
are singled out.
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(a) φp,1(x), see (30) (b) φp,2(x), see (36)

(c) φp,3(x), see (42) (d) φp,4(x), see (44)

Figure 3: Stratified families of functions: (a) φp,1(x), (b) φp,2(x), (c) φp,3(x),
(d) φp,4(x)

4.2 Approximations of the sinc function

In this subsection, we provide some approximations of the sinc function and analyze the
maximum approximation errors. The previously obtained upper and lower bounds of
the sinc function can be used to derive some approximations of this function. Further,
more optimal approximations can be obtained through the corresponding minimax
approximants.

In Table 1, we present some upper bounds of the sinc function derived from Theorems
2, 3, 4 and 5, that is, Statements 4, 5, 6 and 7 and Statements 1 and 2. It is noteworthy
that the upper bound from Theorem 3 (the best upper bound from Statement 5) is
identical to the best upper bound from Statement 1.
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Maximum deviation

Upper bound of the sincx function from the sincx function

over the interval (0, π/2)

sinx

x
<

2

π
+

2

π2
(π − 2x)

π − 4

π
= 0.27323 . . .

sinx

x
<

2

π
+

π − 2

π3

(
π2 − 4x2

)
0.011612 . . .

sinx

x
<

2

π
+

π − 2

π4

(
π3 − 8x3

)
0.065358 . . .

sinx

x
<

2

π
+

π − 2

π5

(
π4 − 16x4

)
0.10245 . . .

sinx

x
<

2

π
+

2(
π2

4 − 1
)
π

π2

4

(
π

π2

4 −1 − (2x)
π2

4 −1

)
−π2 + 2π + 4

π2 − 4
= 0.070461 . . .

Table 1: Upper bounds of the sinc function

In Table 2, we present some lower bounds of the sinc function derived from Theorems
2, 3, 4 and 5, that is, Statements 4, 5, 6 and 7 and Statements 1 and 2. It is noteworthy
that the best lower bound from Statement 1 is identical to the best lower bound from
Statement 2.

Maximum deviation

Lower bound of the sincx function from the sincx function

over the interval (0, π/2)

2

π
+

π − 2

π2
(π − 2x) <

sinx

x
0.082395 . . .

2

π
+

1

π3

(
π2 − 4x2

)
<

sinx

x

π − 3

π
= 0.045070 . . .

2

π
+

2

3π4

(
π3 − 8x3

)
<

sinx

x

3π − 8

3π
= 0.15117 . . .

2

π
+

1

2π5

(
π4 − 16x4

)
<

sinx

x

2π − 5

2π
= 0.20422 . . .

2

π
+

π − 2

π
2

π−2+1

(
π

2
π−2 − (2x)

2
π−2

)
<

sinx

x
0.0085153 . . .

Table 2: Lower bounds of the sinc function
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In Table 3, we present some minimax approximations of the sinc function derived from
the minimax approximants of the families φp,1(x), φp,2(x), φp,3(x), φp,4(x), φA(q),q(x)
and φB(q),q(x) respectively. These families are considered in Statements 4, 5, 6 and 7
with the aim of improving Theorems 2, 3, 4 and 5, respectively, and in Statements 1
and 2.

Maximum deviation

Minimax approximation of the sincx function from the sincx function

over the interval (0, π/2)

sinx

x
≈ 2

π
+ 0.13323 . . . (π − 2x) 0.055187 . . .

sinx

x
≈ 2

π
+ 0.036014 . . .

(
π2 − 4x2

)
0.0079283 . . .

sinx

x
≈ 2

π
+ 0.010441 . . .

(
π3 − 8x3

)
0.039635 . . .

sinx

x
≈ 2

π
+ 0.0031146 . . .

(
π4 − 16x4

)
0.059981 . . .

sinx

x
≈ 2

π
+ 0.043803 . . .

(
π1.84823... − (2x)

1.84823...
)

0.0026604 . . .

sinx

x
≈ 2

π
+ 0.051415 . . .

(
π1.72287... − (2x)

1.72287...
)

0.0061296 . . .

Table 3: Minimax approximations of the sinc function

5 Conclusion

In this paper, two double Jordan-type inequalities have been derived, encompassing

the inequalities obtained in the papers [1]-[5]. These inequalities were explored
in the context of stratified families of functions, a concept introduced in re-
cent research [6]. The introduction of stratified families of functions enables the
derivation of known results for specific parameter choices, including the analysis
of parameter values previously unknown in the Theory of Analytic Inequalities.
Furthermore, we identify parameter values within each examined family of func-
tions for which the function, as a member of that family, exhibits some optimal
properties (minimax approximant). Based on these minimax approximants and
functions representing the upper and lower bounds of the sinc function, we pro-
vided some approximations of the sinc function. Additionally, we analyzed the
errors associated with all mentioned approximations.
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It is crucial to emphasize that the minimax approximant of the stratified fam-
ily of functions is the function for which the minimal error in approximations
is obtained within the given family of functions. Therefore, identifying these
parameter values is significant Approximation Theory.

By considering the stratified family of functions individually with respect to
two parameters, we were able to analyze Jordan-type inequalities in a unified
manner, resulting in both previously established and novel findings. Future
research endeavors will focus on extending this approach even further.

Acknowledgments. The authors are supported by the Serbian Ministry of Ed-
ucation, Science and Technological Development, under project 451-03-47/2023-
01/200103.
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