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Abstract: In this paper, two double Jordan-type inequalities are introduced that generalize some pre-
viously established inequalities. As a result, some new upper and lower bounds and approximations
of the sinc function are obtained. This extension of Jordan’s inequality is enabled by considering
the corresponding inequalities through the concept of stratified families of functions. Based on
this approach, some optimal approximations of the sinc function are derived by determining the
corresponding minimax approximants.
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1. Introduction

The function:

sinc x =


sin x

x
, x ̸= 0

1, x = 0

has numerous applications in mathematics. The basic approximation of the sinc x function
is given by the well-known Jordan’s inequality:

Theorem 1 ([1]). For x∈
(

0,
π

2

]
, it holds that

2
π

≤ sin x
x

< 1. (1)

Since then, many authors have worked on extensions and improvements of Jordan’s
inequality [2–22]. In [7], F. Qi, D.-W. Niu and B.-N. Guo conducted elaborate research, thus
summarizing previously discovered improvements and applications of Jordan’s inequality,
along with related problems. Motivated by some of the following results, this paper
provides an additional contribution to this topic.

F. Qi and B.-N. Guo, in the paper [2], provided an enhancement of Jordan’s inequality
through the following assertion:

Theorem 2. Let x∈
(

0,
π

2

]
. Then, it holds that

2
π

+
2

π2 (π − 2x) ≥ sin x
x

≥ 2
π

+
π − 2

π2 (π − 2x). (2)

F. Qi then, in the paper [3], provided further improvement of Jordan’s inequality
through the following assertion:
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Theorem 3. Let x∈
(

0,
π

2

]
. Then, it holds that

2
π

+
1

π3

(
π2 − 4x2

)
≤ sin x

x
≤ 2

π
+

π − 2
π3

(
π2 − 4x2

)
. (3)

In the paper [4], K. Deng contributed to improvements of Jordan’s inequality by proving
the following:

Theorem 4. Let x∈
(

0,
π

2

]
. Then, it holds that

2
π

+
2

3π4

(
π3 − 8x3

)
≤ sin x

x
≤ 2

π
+

π − 2
π4

(
π3 − 8x3

)
. (4)

Based on the inequality (3), W. D. Jiang and H. Yun provided further extension of
Jordan’s inequality in their paper [5] through the following theorem:

Theorem 5. Let x∈
(

0,
π

2

]
. Then, it holds that

2
π

+
1

2π5

(
π4 − 16x4

)
≤ sin x

x
≤ 2

π
+

π − 2
π5

(
π4 − 16x4

)
. (5)

Shortly afterwards, in the paper [6], J.-L. Li and Y.-L. Li provided a more general
statement that encompasses the previous inequalities, (2)–(5), thereby introducing an entire
family of inequalities. Namely, the following theorem holds:

Theorem 6. Let x∈
(

0,
π

2

]
. Then, it holds that

2
π

+
2

π2 (π − 2x) ≥ sin x
x

≥ 2
π

+
π − 2

π2 (π − 2x) (6)

2
π

+
2

nπn+1

(
πn−(2x)n) ≤ sin x

x
≤ 2

π
+

π−2
πn+1

(
πn−(2x)n) (for n∈N, n≥2) . (7)

Inspired by Theorems 2–6, in this paper, based on the concept of the stratification of
corresponding families of functions from the paper [23], we introduce a new extension
of Jordan’s inequality. Namely, by applying stratification, it is possible to extend the
inequality (7) so that the parameter n can be a positive real number. The extension of
inequalities for real parameters has recently been the subject of various studies [24–27]; see
also [28–31]. Additionally, we provide the best constants for this type of Jordan’s inequality,
as well as an analysis of the upper and lower bounds and minimax approximations of
the sinc x function based on the inequalities (2)–(5), as well as on the newly obtained
inequalities.

2. Preliminaries

Recently, in the paper [23], the authors considered families of functions φp(x), where
x∈ (a, b)⊆R+ and p∈R+, which are monotonic with respect to the parameter p. In that
paper, such families of functions are referred to as stratified families of functions with
respect to the parameter p. If, for each x∈ (a, b), it holds that(

∀p1, p2∈R+
)

p1 < p2 ⇐⇒ φp1(x) < φp2(x) ,

then the family of functions φp(x) is increasingly stratified with respect to the parameter p.
If, for each x∈ (a, b), it holds that(

∀p1, p2∈R+
)

p1 < p2 ⇐⇒ φp1(x) > φp2(x) ,
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then the family of functions φp(x) is decreasingly stratified with respect to the parameter p.
If it is possible to determine a value of the parameter p = p0 ∈ R+ for which the

infimum of the error
d0 = d(p0) = sup

x∈(a,b)

∣∣φp0(x)
∣∣

is attained, then the function φp0(x) is the minimax approximant of the family of functions
φp(x) on the interval (a, b). Based on the stratifiedness, the parameter value p = p0 is
unique.

In this paper, we consider the inequalities (2)–(7) by introducing the corresponding
stratified families of functions. When proving inequalities, we will utilize L’Hôpital’s rule
for monotonicity, as well as the method for proving MTP (Mixed Trigonometric Polynomial)
inequalities described in the paper [32].

L’Hôpital’s rule for monotonicity was described by the author I. Pinelis in the pa-
per [33]; see also [34]. In this paper, we use the following formulation:

Lemma 1. (Monotone form of L’Hôpital’s rule). Let f and g be continuous functions that are
differentiable on (a, b). Suppose f (a+) = g(a+) = 0 or f (b−) = g(b−) = 0, and assume that
g′(x) ̸=0 for all x∈ (a, b). If f ′/g′ is an increasing (decreasing) function on (a, b), then so is f /g.

The method to prove inequalities of the form f (x) > 0 on the interval (a, b) ⊆ R,
where f (x) is an MTP function, as outlined in [32], is based on determining a downward
polynomial approximation P(x) with respect to the observed function f (x). In [32], the
determination of a polynomial P(x) as a polynomial with rational coefficients is considered.
If there exists a polynomial P(x) such that f (x) > P(x) and P(x) > 0 on the interval (a, b),
then f (x) > 0 holds on the interval (a, b). The polynomial P(x) > 0 is determined as a
polynomial with rational coefficients and is examined on the interval (a, b) with rational
endpoints. Then, the proof of the inequality P(x) > 0 is an algorithmically decidable
problem based on Sturm’s theorem; see Theorem 4.2 in [35]. In this paper, the application
of Sturm’s theorem will not be necessary for proving polynomial inequalities.

3. Main Results

In this section, several statements are presented and proven, with a special emphasis
on the connection between Jordan’s inequality and stratification. Particularly, for each
family of functions induced by the aforementioned inequality (7), the best approximations
derived from the minimax approximants are identified in Statements 1 and 2.

Lemma 2. The two-parameter family of functions

φp,q(x) =
sin x

x
− 2

π
− p(πq − (2x)q)

is individually decreasingly stratified both with respect to the parameter p∈R+ and with respect to
the parameter q∈R+ on the interval (0, π/2).

Proof. For the first derivative of φp,q(x) with respect to p, it holds that

∂φp,q(x)
∂p

= (2x)q − πq < 0

for x∈ (0, π/2) and q∈R+. For the first derivative of φp,q(x) with respect to q, it holds that

∂φp,q(x)
∂q

= p
(
(2x)q ln(2x)− πq ln(π)

)
< 0

for x∈ (0, π/2) and p, q∈R+.
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Based on the inequality (7), we introduce the following stratified families of functions
in the auxiliary statement:

Lemma 3. Let
A(q) =

π − 2
πq+1 and B(q) =

2
qπq+1 .

Then, it holds:
(i) The family of functions

φA(q),q(x) =
sin x

x
− 2

π
− A(q)

(
πq − (2x)q) (8)

is decreasingly stratified with respect to the parameter q∈R+ on the interval (0, π/2).
(ii) The family of functions

φB(q),q(x) =
sin x

x
− 2

π
− B(q)

(
πq − (2x)q) (9)

is increasingly stratified with respect to the parameter q∈R+ on the interval (0, π/2).

Proof. (i) Since A(q) =
π − 2
πq+1 , we obtain the one-parameter family of functions:

φA(q),q(x) =
sin x

x
− 1 +

(
2x
π

)q(
1 − 2

π

)
. (10)

The first derivative of φA(q),q(x) with respect to q is

∂φA(q),q(x)
∂q

=

(
1 − 2

π

)(
2x
π

)q
ln

2x
π

.

It is evident that
∂φA(q),q(x)

∂q
< 0

on the interval (0, π/2) for q∈R+, which concludes the proof.

(ii) Since B(q) =
2

qπq+1 , we obtain the one-parameter family of functions:

φB(q),q(x) =
sin x

x
− 2

π
− 2

qπ
+

2q+1xq

qπq+1 . (11)

The first derivative of φB(q),q(x) with respect to parameter q is

∂φB(q),q(x)
∂q

=
2

q2π
+

2q+1xq(q ln 2 + q ln x − q ln π − 1)
q2πq+1

=
2

q2π

(
2x
π

)q(
ln

(
2x
π

)q
+

( π

2x

)q
− 1

)
.

Let t =
(

2x
π

)q
. We now form the following function:

g(t) = ln(t) +
1
t
− 1 : (0, 1) → R .

Since
d g(t)

d t
=

1
t
− 1

t2 < 0 for t∈ (0, 1), the function g(t) is decreasing on the interval

(0, 1). Considering that g(t) is a decreasing function and that g(1) = 0, we conclude that
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g(t) > 0

for t∈ (0, 1). Thus, it follows that

∂φB(q),q(x)
∂q

> 0

on the interval (0, π/2) because g(t) > 0 on (0, 1). This finishes the proof.

Statement 1. Let
q1 =

2
π − 2

= 1.75193 . . . and q2 = 2 .

Then, it holds:

(i) If q∈ (0, q1], then the lower bounds of the function
sin x

x
are given by

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ A(q1)
(
πq1 − (2x)q1

)
≥ 2

π
+ A(q)

(
πq − (2x)q)

and the constant q1 is the best possible.
(ii) If q∈ (q1, q2), then the equality

φA(q),q(x) =
sin x

x
− 2

π
− A(q)

(
πq − (2x)q) = 0

has a unique solution x(q)0 , and it holds that

x∈
(

0, x(q)0

)
=⇒ sin x

x
>

2
π

+ A(q)
(
πq − (2x)q)

and
x∈

(
x(q)0 ,

π

2

)
=⇒ sin x

x
<

2
π

+ A(q)
(
πq − (2x)q).

(iii) If q∈ [q2,+∞), then the upper bounds of the function
sin x

x
are given by

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ A(q2)
(
πq2 − (2x)q2

)
≤ 2

π
+ A(q)

(
πq − (2x)q)

and the constant q2 is the best possible.
(iv) Each function from the family φA(q),q(x), for q ∈ (q1, q2), has exactly one maximum and

exactly one minimum at certain points m(q)
1 , m(q)

2 ∈ (0, π/2), respectively, on the interval (0, π/2).

Additionally, it holds that m(q)
1 < m(q)

2 . The function φA(q),q(x), for q = q1, has exactly one
maximum on (0, π/2), and for q = q2 has exactly one minimum on (0, π/2).
(v) The equality ∣∣∣φA(q),q

(
m(q)

1

)∣∣∣ = ∣∣∣φA(q),q

(
m(q)

2

)∣∣∣
has the solution q = q0 for the parameter q∈ (q1, q2), which is numerically determined as

q0 = 1.84823 . . . .

For value

d0 =
∣∣∣φA(q0),q0

(
m(q0)

1

)∣∣∣ = ∣∣∣φA(q0),q0

(
m(q0)

2

)∣∣∣ = 0.0026604 . . . ,

it holds that
d0 = inf

q∈(0,∞)
sup

x∈(0,π/2)

∣∣∣φA(q),q(x)
∣∣∣.
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Hence, the minimax approximant of the family of functions φA(q),q(x) is

φA(q0),q0
(x) =

sin x
x

− 2
π

− A(q0)
(
πq0 − (2x)q0

)
,

which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.043803 . . .
(

π1.84823... − (2x)1.84823...
)

. (12)

Proof. (i) Let us notice that the assertion is equivalent to φA(q),q(x) > 0 for q ≤ 2
π − 2

and

x∈ (0, π/2). Based on (10), it holds that

φA(q),q(x) = 0 ⇐⇒ q = g(x) =
ln

x(π − 2)
π(x − sin x)

ln
π

2x

. (13)

We first prove that the function g(x) is monotonic on the interval (0, π/2) using
L’Hôpital’s rule for monotonicity (Lemma 1). Let us form the functions

f1(x) = ln
x(π − 2)

π(x − sin x)
and f2(x) = ln

π

2x
on (0, π/2). Note that f1(π/2−) = 0 and

f2(π/2−) = 0. It holds that

f ′1(x)
f ′2(x)

=
−x cos x + sin x

x − sin x
.

We now examine the monotonicity of the function h(x) =
−x cos x + sin x

x − sin x
on the

interval (0, π/2). The first derivative of the function h(x) is

h′(x) =
x cos x + cos x sin x + x2 sin x − sin x − x

(x − sin x)2 .

To examine the sign of the function h′(x), let us examine the sign of the MTP function

h1(x) = x cos x + cos x sin x + x2 sin x − sin x − x = x cos x +
1
2

sin 2x + x2 sin x − sin x − x

on the interval (0, π/2).
We prove that h1(x) < 0 using the method from the paper [32]. If we approximate the

functions cos x and sin 2x using Maclaurin polynomials of degrees 4 and 9, respectively,
and approximate the function sin x using the Maclaurin polynomial of degree 5 in the
addend x2 sin x and using the Maclaurin polynomial of degree 7 in the addend − sin x,
then the function h1(x) has the upward polynomial approximation

P1(x) =
2

2835
x9 − 1

240
x7

on the interval (0, π/2). It is evident that P1(x) < 0 on the interval (0, π/2). Thus,

h1(x) < 0

on the observed interval. From here, we conclude that

h′(x) < 0

on the interval (0, π/2). Thus, h(x) =
f ′1(x)
f ′2(x)

is a decreasing function on the interval

(0, π/2). Furthermore, since f1(π/2−) = 0 and f2(π/2−) = 0, based on L’Hôpital’s rule
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for monotonicity, it follows that g(x) =
f1(x)
f2(x)

is also a decreasing function on the interval

(0, π/2).
By applying L’Hôpital’s rule, it can be shown that

lim
x→ π

2 −
g(x) =

2
π − 2

.

Considering that g(x) is a decreasing function on the interval (0, π/2), we conclude

that the function φA(q),q(x), for q = q1 =
2

π − 2
, does not have a root on the observed inter-

val. Since φA(q1),q1
(π/4) =

2
−2

π−2 (π − 2)− π + 2
√

2
π

= 0.0082048 . . . > 0, we conclude that

φA(q1),q1
(x) > 0

for x∈ (0, π/2). Additionally, based on the stratification (Lemma 3), it holds that

φA(q),q(x) > φA(q1),q1
(x) > 0

for q <
2

π − 2
on the interval (0, π/2).

(ii) It is easily seen that lim
x→0+

φA(q),q(x) = 0 and lim
x→π/2−

φA(q),q(x) = 0. In part (iv) of

this proof, it will be shown that each function φA(q),q(x), for q∈ (q1, q2), has exactly one
maximum and exactly one minimum on the interval (0, π/2), respectively. Hence, the
stated inequalities follow.
(iii) The assertion is equivalent to φA(q),q(x) < 0 for q ≥ 2 and x ∈ (0, π/2). Continu-
ing from part (i) of this proof, using multiple applications of L’Hôpital’s rule, it can be
shown that

lim
x→0+

g(x) = 2 .

Considering that g(x) is a decreasing function on the interval (0, π/2), we conclude
that the function φA(q),q(x), for q = q2 = 2, does not have a root on the observed interval.

Since φA(q2),q2
(π/4) =

8
√

2 − 2 − 3π

4π
= −0.0088386 . . . < 0, it holds that

φA(q2),q2
(x) < 0

for x∈ (0, π/2). Additionally, based on the stratification (Lemma 3), it holds that

φA(q),q(x) < φA(q2),q2
(x) < 0

for q > 2 on the interval (0, π/2).
(iv) Let us examine the monotonicity of functions from the family φA(q),q(x) for q∈ (q1, q2)
on (0, π/2). The fourth derivative of φA(q),q(x) with respect to x is

∂4 φA(q),q(x)

∂x4 =
xq+1 f4(q) + h4(x)

x5 ,

where
f4(q) = π−q−12qq(q − 1)(q − 2)(q − 3)(π − 2)

and
h4(x) = 4x

(
x2 − 6

)
cos x +

(
x4 − 12x2 + 24

)
sin x .

Moreover, the function h4(x) is defined at both endpoints of the interval (0, π/2),
which we will use in the subsequent proof. The first derivative of the function h4(x) with
respect to x is



Axioms 2024, 13, 262 8 of 25

h′4(x) = x4 cos x > 0

for x∈ (0, π/2). Therefore, the function h4(x) is increasing on the interval (0, π/2). Since
h4(0) = 0, it holds that

h4(x) > 0

on the interval (0, π/2). It is evident that

f4(q) > 0

for q∈ (q1, q2). Hence, we have
∂4 φA(q),q(x)

∂x4 > 0 (14)

on (0, π/2) for q ∈ (q1, q2). Consequently, each function
∂3 φA(q),q(x)

∂x3 , for q ∈ (q1, q2), is

increasing on (0, π/2). The third derivative of φA(q),q(x) with respect to x is

∂3 φA(q),q(x)
∂x3 =

xq+1 f3(q) + h3(x)
x4 ,

where

f3(q)=π−q−12qq(q − 1)(q − 2)(π − 2) and h3(x)=
(
−x3 + 6x

)
cos x +

(
3x2 − 6

)
sin x .

It is evident that f3(q) < 0 for q∈ (q1, q2). It holds that

lim
x→0+

f3(q)
x3−q =−∞ (for q∈ (q1, q2)) and lim

x→0+

h3(x)
x4 = lim

x→0+

h′3(x)
(x4)′

= lim
x→0+

x3 sin x
4x3 =0 .

Hence, we have

lim
x→0+

∂3 φA(q),q(x)
∂x3 = −∞ (15)

for q∈ (q1, q2). It holds that

lim
x→ π

2 −

∂3 φA(q),q(x)
∂x3 =

(8π − 16)q3 + (48 − 24π)q2 + (16π − 32)q + 12π2 − 96
π4 := k3(q) .

Since k′3(q) =
8

π4 (3q2 − 6q + 2)(π − 2) > 0 for q∈ (q1, q2), it follows that k3(q) is an

increasing function for q ∈ (q1, q2). Considering that k3(q) is an increasing function and

that k3(q1) =
12π3 − 48π2 − 16π + 160

π3(π − 2)2 = 0.19968 . . . > 0, it can be concluded that

lim
x→ π

2 −

∂3 φA(q),q(x)
∂x3 > 0 (16)

for q∈ (q1, q2). Based on (14)–(16), each function
∂2 φA(q),q(x)

∂x2 , for q∈ (q1, q2), has exactly

one minimum on (0, π/2). The second derivative of φA(q),q(x) with respect to x is

∂2 φA(q),q(x)
∂x2 =

xq+1 f2(q) + h2(x)
x3 ,

where

f2(q) = π−q−12qq(q − 1)(π − 2) and h2(x) = −2x cos x −
(

x2 − 2
)

sin x .



Axioms 2024, 13, 262 9 of 25

It is evident that f2(q) > 0 for q∈ (q1, q2). It holds that

lim
x→0+

f2(q)
x2−q =+∞ (for q∈(q1, q2)) and lim

x→0+

h2(x)
x3 = lim

x→0+

h′2(x)
(x3)′

= lim
x→0+

−x2 cos x
3x2 =−1

3
.

Hence, we have

lim
x→0+

∂2 φA(q),q(x)
∂x2 = +∞ (17)

for q∈ (q1, q2). It holds that

lim
x→ π

2 −

∂2 φA(q),q(x)
∂x2 =

(4π − 8)q2 + (−4π + 8)q − 2π2 + 16
π3 := k2(q) .

Since k′2(q) =
4

π3 (2q − 1)(π − 2) > 0 for q ∈ (q1, q2), it follows that k2(q) is an

increasing function for q ∈ (q1, q2). Considering that k2(q) is an increasing function and

that k2(q1) =
−2π2 + 4π + 8

π2(π − 2)
= 0.073414 . . . > 0, it can be concluded that

lim
x→ π

2 −

∂2 φA(q),q(x)
∂x2 > 0 (18)

for q∈ (q1, q2). We have proven that each function
∂2 φA(q),q(x)

∂x2 , for q∈ (q1, q2), has exactly

one minimum on (0, π/2). Therefore, based on (17) and (18), for functions
∂φA(q),q(x)

∂x
, for

q∈ (q1, q2), there are two possibilities: either they are increasing, or they have exactly one
maximum and exactly one minimum on (0, π/2), respectively. We will prove that

(∗) lim
x→0+

∂φA(q),q(x)
∂x

= 0 , lim
x→ π

2 −

∂φA(q),q(x)
∂x

> 0 and
(

∂φA(q),q

∂x

)
(x)

∣∣∣
x= π

4

< 0

for q∈ (q1, q2); thus, it will be clear that each function
∂φA(q),q(x)

∂x
, for q∈ (q1, q2), has exactly

one maximum and exactly one minimum on (0, π/2), respectively. The first derivative of
φA(q),q(x) with respect to x is

∂φA(q),q(x)
∂x

=
xq+1 f1(q) + h1(x)

x2 ,

where
f1(q) = π−q−12qq(π − 2) and h1(x) = x cos x − sin x .

It holds that

lim
x→0+

f1(q)
x1−q = 0 (for q∈ (q1, q2)) and lim

x→0+

h1(x)
x2 = 0 .

Hence, we have

lim
x→0+

∂φA(q),q(x)
∂x

= 0 (19)

for q∈ (q1, q2). It is easily seen that

lim
x→ π

2 −

∂φA(q),q(x)
∂x

=
2(q(π − 2)− 2)

π2 > 0 (20)

for q∈ (q1, q2). We now examine the sign of the functions φA(q),q(x), for q∈ (q1, q2), at the
point x = π/4. It holds that
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(
∂φA(q),q

∂x

)
(x)

∣∣∣
x= π

4

=
2−qq(4π − 8) + 2

√
2 (π − 4)

π2 := k1(q) .

Since k′1(q) =
−4 2−q(π − 2)(q ln 2 − 1)

π2 < 0 for q∈ (q1, q2), it follows that k1(q) is a

decreasing function. Considering that k1(q) is a decreasing function and that

k1(q1) =
2

3π−8
π−2 π − 2

4π−10
π−2 + (2π2 − 12π + 16)

√
2

(π − 2)π2 = −0.0053418 . . . < 0, it can be con-

cluded that (
∂φA(q),q

∂x

)
(x)

∣∣∣
x= π

4

< 0 (21)

for q∈ (q1, q2). Hence, each function
∂φA(q),q(x)

∂x
, for q∈ (q1, q2), has exactly one maximum

and exactly one minimum on (0, π/2), respectively. Note that (∗) is a substitution for
the conjunction (19), (20), (21). Additionally, based on the monotonicity of the functions
∂φA(q),q(x)

∂x
for q ∈ (q1, q2) and (∗), we can conclude that each function φA(q),q(x), for

q∈ (q1, q2), has exactly one maximum and exactly one minimum on (0, π/2), respectively.

By analyzing the monotonicity of the functions
∂4 φA(q),q(x)

∂x4 ,
∂3 φA(q),q(x)

∂x3 ,
∂2 φA(q),q(x)

∂x2 ,

∂φA(q),q(x)
∂x

, and φA(q),q(x) for q = q1 and for q = q2, in a similar manner, it can be

concluded that the function φA(q),q(x), for q = q1, has exactly one maximum on (0, π/2),
while the function φA(q),q(x), for q = q2, has exactly one minimum on (0, π/2).
(v) Note that the infimum of the error d(q) = supx∈(0,π/2) |φA(q),q(x)|, for q ∈ (q1, q2),
exists and is attained when ∣∣∣φA(q),q

(
m(q)

1

)∣∣∣ = ∣∣∣φA(q),q

(
m(q)

2

)∣∣∣. (22)

The Equation (22) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter q = q0, which is numerically determined as

q0 = 1.84823 . . . ,

which determines the minimax approximant φA(q0),q0
(x) of the family of functions

φA(q),q(x).

Figure 1 illustrates the stratified family of functions φA(q),q; see (8). Cases for all values
of the parameter q∈R+ are shown, with a special emphasis on the cases with constants
obtained in Statement 1.

Figure 1. Stratified family of functions φA(q),q; see (8).
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Statement 2. Let

q1 =
π2

4
− 1 = 1.46740 . . . and q2 =

2
π − 2

= 1.75193 . . . .

Then, it holds:

(i) If q∈ (0, q1], then the upper bounds of the function
sin x

x
are given by

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ B(q1)
(
πq1 − (2x)q1

)
≤ 2

π
+ B(q)

(
πq − (2x)q)

and the constant q1 is the best possible.
(ii) If q∈ (q1, q2), then the equality

φB(q),q(x) =
sin x

x
− 2

π
− B(q)

(
πq − (2x)q) = 0

has a unique solution x(q)0 , and it holds that

x∈
(

0, x(q)0

)
=⇒ sin x

x
<

2
π

+ B(q)
(
πq − (2x)q)

and
x∈

(
x(q)0 ,

π

2

)
=⇒ sin x

x
>

2
π

+ B(q)
(
πq − (2x)q).

(iii) If q∈ [q2,+∞), then the lower bounds of the function
sin x

x
are given by

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ B(q2)
(
πq2 − (2x)q2

)
≥ 2

π
+ B(q)

(
πq − (2x)q)

and the constant q2 is the best possible.
(iv) Each function from the family φB(q),q(x), for q∈ (q1, q2], has exactly one maximum at a point
m(q)∈ (0, π/2) on the interval (0, π/2).
(v) The equality ∣∣∣φB(q),q(0+)

∣∣∣ = ∣∣∣φB(q),q

(
m(q)

)∣∣∣
has the solution q = q0 for the parameter q∈ (q1, q2), which is numerically determined as

q0 = 1.72287 . . . .

For value

d0 =
∣∣∣φB(q0),q0

(0+)
∣∣∣ = ∣∣∣φB(q0),q0

(
m(q0)

)∣∣∣ = 0.0061296 . . . ,

it holds that
d0 = inf

q∈(0,∞)
sup

x∈(0,π/2)

∣∣∣φB(q),q(x)
∣∣∣.

Hence, the minimax approximant of the family of functions φB(q),q(x) is

φB(q0),q0
(x) =

sin x
x

− 2
π

− B(q0)
(
πq0 − (2x)q0

)
,

which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.051415 . . .
(

π1.72287... − (2x)1.72287...
)

. (23)
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Proof. (i) Let us notice that the assertion is equivalent to φB(q),q(x) < 0 for q ≤ π2

4
− 1 and

x∈ (0, π/2). We begin by proving that φB(q),q(x) is a monotonic function on the interval

(0, π/2) for q =
π2

4
− 1. Through elementary transformations, based on (11), it can be

shown that the following equivalence holds:

∂φB(q),q(x)
∂x

=

x cos x − sin x +

(
2x
π

)q+1

x2 = 0

⇐⇒ q = g(x) =
ln

2x
π(−x cos x + sin x)

ln
π

2x

.

(24)

It is necessary to prove that g(x) ̸= π2

4
− 1 for every x ∈ (0, π/2) in order for the

function φB(q),q(x) to be monotonic on the interval (0, π/2) for q =
π2

4
− 1. We first prove

that the function g(x) is monotonic on the interval (0, π/2) by applying L’Hôpital’s rule

for monotonicity (Lemma 1). Let us form the functions f1(x) = ln
2x

π(−x cos x + sin x)
and

f2(x) = ln
π

2x
on (0, π/2). Note that f1(π/2−) = 0 and f2(π/2−) = 0. It holds that

f ′1(x)
f ′2(x)

=
x cos x + x2 sin x − sin x

−x cos x + sin x
.

We now examine the monotonicity of the function h(x) =
x cos x + x2 sin x − sin x

−x cos x + sin x
on

the interval (0, π/2). The first derivative of the function h(x) is

h′(x) =
−x(x cos x sin x − 2 sin2 x + x2)

(−x cos x + sin x)2 .

Let us examine the sign of the MTP function

h1(x) = x cos x sin x − 2 sin2 x + x2 = cos 2x +
1
2

x sin 2x + x2 − 1

on the interval (0, π/2). If we approximate the functions cos 2x and sin 2x using Maclaurin
polynomials of degrees 6 and 7, respectively, then the function h1(x) has the downward
polynomial approximation

P1(x) = − 4
315

x8 +
2

45
x6

on the interval (0, π/2). It is evident that P1(x) > 0 on the interval (0, π/2). Thus,

h1(x) > 0

on the observed interval. From here, we conclude that

h′(x) < 0

on the observed interval. Thus, h(x) =
f ′1(x)
f ′2(x)

is a decreasing function on the interval

(0, π/2). Furthermore, since f1(π/2−) = 0 and f2(π/2−) = 0, based on L’Hôpital’s rule
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for monotonicity, it follows that g(x) =
f1(x)
f2(x)

is also a decreasing function on the interval

(0, π/2). By applying L’Hôpital’s rule, it can be shown that

lim
x→ π

2 −
g(x) =

π2

4
− 1 .

Hence, g(x) >
π2

4
− 1 on the interval (0, π/2). Thus, the function φB(q),q(x), for

q = q1 =
π2

4
− 1, is monotonic on the interval (0, π/2). It holds that lim

x→0+
φB(q1),q1

(x) =

π2 − 2π − 4
π2 − 4

= −0.070461 . . . < 0 and lim
x→π/2−

φB(q1),q1
(x) = 0. Therefore, φB(q1),q1

(x) is an

increasing function and negative on (0, π/2). Considering that φB(q1),q1
(x) < 0, based on

the stratification (Lemma 3), it holds that

φB(q),q(x) < φB(q1),q1
(x) < 0

for q <
π2

4
− 1 on the interval (0, π/2).

(ii) Continuing from the previous part of the proof, (i), using multiple applications of
L’Hôpital’s rule, it can be shown that

lim
x→0+

g(x) = 2 .

The function g(x) from (24) determines the values of the parameter q for which the
family of functions φB(q),q(x) have extremes or inflection points on the interval (0, π/2).
Considering that the function g(x) is monotonic on (0, π/2) and that lim

x→0+
g(x) = 2 and

lim
x→π/2−

g(x) =
π2

4
− 1 = q1, every function from the family φB(q),q(x) has either exactly

one extremum or exactly one inflection point on the interval (0, π/2) for q∈
(

π2

4
− 1, 2

)
and therefore for q ∈ (q1, q2], where q2 =

2
π − 2

, since q2 < 2. Let us prove that each

function φB(q),q(x), for q ∈ (q1, q2), has exactly one maximum on the interval (0, π/2) by
proving that all these functions are negative in the right neighborhood of zero and positive
and decreasing in the left neighborhood of π/2.

It holds that

lim
x→0+

φB(q),q(x) =
(π − 2)q − 2

πq
.

Therefore, there exists a right neighborhood of zero such that

φB(q),q(x) < 0 (25)

for q ∈ (q1, q2). The Taylor expansion of the family of functions φB(q),q(x) around π/2 is

φB(q),q(x) =
4q − π2 + 4

π3

(
x − π

2

)2
+ O

((
x − π

2

)3
)

.

Therefore, there exists a left neighborhood of π/2 such that

φB(q),q(x) > 0 and
∂φB(q),q(x)

∂x
< 0 (26)

for q ∈ (q1, q2). Based on (25) and (26), the functions φB(q),q(x), for q ∈ (q1, q2), have exactly
one maximum on the interval (0, π/2), and the stated inequalities follow.
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(iii) The assertion is equivalent to φB(q),q(x) > 0 for q ≥ 2
π − 2

and x∈ (0, π/2). Let us

notice that A(q) = B(q) for q =
2

π − 2
, where A(q) =

π − 2
πq+1 . In Statement 1, it has already

been proven that φA(q),q(x) = φB(q),q(x) > 0 for q = q2 =
2

π − 2
on the interval (0, π/2).

Given that the family of functions φB(q),q(x) is increasingly stratified with respect to the

parameter q based on Lemma 3, for q >
2

π − 2
, it will also hold that

φB(q),q(x) > φB(q2),q2
(x) > 0

on the interval (0, π/2).
(iv) It has been established in part (ii) of the proof for q ∈ (q1, q2). Similarly, the proof
holds for q = q2.
(v) Note that the infimum of the error d(q) = supx∈(0,π/2) |φB(q),q(x)|, for q∈ (q1, q2), exists
and is attained when ∣∣∣φB(q),q(0+)

∣∣∣ = ∣∣∣φB(q),q

(
m(q)

)∣∣∣. (27)

Equation (27) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter q = q0, which is numerically determined as

q0 = 1.72287 . . . ,

which determines the minimax approximant φB(q0),q0
(x) of the family of functions

φB(q),q(x).

Figure 2 illustrates the stratified family of functions φB(q),q; see (9). Cases for all values
of the parameter q∈R+ are shown, with a special emphasis on the cases with constants
obtained in Statement 2.

Figure 2. Stratified family of functions φB(q),q; see (9).

In the style of writing Theorem 6, based on Statements 1 and 2, we present the follow-
ing assertion:

Statement 3. Let x∈
(

0,
π

2

]
. Then, we have the following:

(i) For q1∈
(

0,
π2

4
− 1

]
= (0, 1.46740 . . .] and q2∈

(
0,

2
π − 2

]
= (0, 1.75193 . . .], it holds that

2
π

+
2

q1πq1+1

(
πq1 − (2x)q1

)
≥ sin x

x
≥ 2

π
+

π − 2
πq2+1

(
πq2 − (2x)q2

)
. (28)
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(ii) For q1∈
[

2
π − 2

,+∞
)
= [1.75193 . . . ,+∞) and q2∈ [2,+∞), it holds that

2
π

+
2

q1πq1+1

(
πq1 − (2x)q1

)
≤ sin x

x
≤ 2

π
+

π − 2
πq2+1

(
πq2 − (2x)q2

)
. (29)

Remark 1. The equalities in (28) and (29) clearly hold for x = π/2.

Remark 2. Note that the inequalities (28) and (29) reduce to inequalities (6) and (7), respectively,
when q1, q2∈N.

4. Applications

In this section, we present two applications. The first application is about the im-
provements and expansions of Theorems 2–5. The second application refers to obtaining
some approximations of the sinc function based on some upper and lower bounds of this
function and minimax approximants of the corresponding families of functions.

4.1. Improvements of Theorems 2–5

In order to obtain a generalization of all inequalities from Theorems 3–6 for the
stratified family of functions φp,q(x) from Lemma 2, we considered the values of the

parameter p = A(q) =
π − 2
πq+1 and p = B(q) =

2
qπq+1 as functions depending on the

parameter q. It is possible to consider the family of functions φp,q(x) from Lemma 2 by
fixing either parameter p or q to some real value. For the cases q = 1, q = 2, q = 3, and
q = 4, by applying Statements 1 and 2, improvements and extensions of Theorems 2–5,
respectively, can be obtained, as will be shown in the following. Particularly, for each family
of functions induced by the considered inequalities, the best approximations derived from
the minimax approximants are identified in Statements 4–7.

In order to improve and extend Theorem 2, we consider the family of functions φp,q(x)
for the case q = 1. The family of functions φp,1(x) reduces to

φp,1(x) =
sin x

x
− 2

π
− p(π − 2x) (30)

and is decreasingly stratified with respect to the parameter p∈R+ on the interval (0, π/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 4. Let

p1 =
π − 2

π2 = 0.11566 . . . and p2 =
2

π2 = 0.20264 . . . .

Then, it holds:
(i) If p∈ (0, p1], then

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ p1(π − 2x) ≥ 2
π

+ p(π − 2x).

(ii) If p∈ (p1, p2), then the equality

φp,1(x) =
sin x

x
− 2

π
− p(π − 2x) = 0

has a unique solution x(p)
0 , and it holds that

x∈
(

0, x(p)
0

)
=⇒ sin x

x
<

2
π

+ p(π − 2x)
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and
x∈

(
x(p)

0 ,
π

2

)
=⇒ sin x

x
>

2
π

+ p(π − 2x).

(iii) If p∈ [p2,+∞), then

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ p2(π − 2x) ≤ 2
π

+ p(π − 2x).

(iv) Each function from the family φp,1(x), for p∈ (p1, p2], has exactly one maximum at a point
m(p)∈ (0, π/2) on the interval (0, π/2).
(v) The equality ∣∣φp,1(0+)

∣∣ = ∣∣∣φp,1

(
m(p)

)∣∣∣
has the solution p = p0 for the parameter p∈ (p1, p2), which is numerically determined as

p0 = 0.13323 . . . .

For value
d0 =

∣∣φp0,1(0+)
∣∣ = ∣∣∣φp0,1

(
m(p0)

)∣∣∣ = 0.055187 . . . ,

it holds that
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

∣∣φp,1(x)
∣∣.

Hence, the minimax approximant of the family of functions φp,1(x) is

φp0,1(x) =
sin x

x
− 2

π
− p0(π − 2x),

which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.13323 . . . (π − 2x). (31)

Proof. (i) The claim follows directly from Statement 1 and based on the stratification.

Namely, for q = 1, it holds that A(q) =
π − 2
πq+1 = p1.

(ii) Let us examine the monotonicity of functions φp,1(x) for p∈ (p1, p2) on the interval
(0, π/2) in a similar manner as in the proof of Statement 1. The second derivative of φp,1(x)
with respect to x is

∂2 φp,1(x)
∂x2 =

f (x)
x3 ,

where the function f (x) is an MTP function given by

f (x) = −2x cos x − x2 sin x + 2 sin x .

Let us note that
f ′(x) = −x2 cos x < 0

on the interval (0, π/2). Thus, the function f (x) is decreasing on the observed interval.
Considering that f (x) is a decreasing function on the interval (0, π/2) and that f (0+) = 0,
it follows that

f (x) < 0

for x∈ (0, π/2). Hence,
∂2 φp,1(x)

∂x2 < 0 (32)

for x∈ (0, π/2).
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The Taylor expansion of the family of functions φp,1(x) around zero is

φp,1(x) =
(

1 − 2
π

− pπ

)
+ 2px + O

(
x2
)

.

Therefore, there exists a right neighborhood of zero such that

φp,1(x) < 0 and
∂φp,1(x)

∂x
> 0 (33)

for p∈ (p1, p2). The Taylor expansion of the family of functions φp,1(x) around π/2 is

φp,1(x) =
(
− 4

π2 + 2p
)(

x − π

2

)
+ O

((
x − π

2

)2
)

.

Therefore, there exists a left neighborhood of π/2 such that

φp,1(x) > 0 and
∂φp,1(x)

∂x
< 0 (34)

for p∈ (p1, p2).

By analyzing the monotonicity of the functions
∂2 φp,1(x)

∂x2 ,
∂φp,1(x)

∂x
, and φp,1(x) for

p∈ (p1, p2) on the interval (0, π/2), in a similar manner as in the proof of Statement 1 and
based on (32)–(34), it can be concluded that each function φp,1(x), for p∈ (p1, p2), has exactly
one maximum on the interval (0, π/2). From lim

x→0+
φp,1(x) < 0 and lim

x→π/2−
φp,1(x) > 0,

for p∈ (p1, p2), the corresponding inequalities follow.
(iii) The claim follows directly from Statement 2 and based on the stratification. Namely,

for q = 1, it holds that B(q) =
2

qπq+1 = p2.

(iv) It has been proven within proof (ii).
(v) Note that the infimum of the error d(p) = supx∈(0,π/2) |φp,1(x)|, for p∈ (p1, p2), exists
and is attained when ∣∣φp,1(0+)

∣∣ = ∣∣∣φp,1

(
m(p)

)∣∣∣. (35)

Equation (35) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter p = p0, which is numerically determined as

p0 = 0.13323 . . . ,

which determines the minimax approximant φp0,1(x) of the family of functions φp,1(x).

In order to improve and extend Theorem 3, we consider the family of functions φp,q(x)
for the case q = 2. The family of functions φp,2(x) reduces to

φp,2(x) =
sin x

x
− 2

π
− p

(
π2 − 4x2

)
(36)

and is decreasingly stratified with respect to the parameter p∈R+ on the interval (0, π/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 5. Let

p1 =
1

π3 = 0.032251 . . . and p2 =
π − 2

π3 = 0.036818 . . . .

Then, it holds:
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(i) If p∈ (0, p1], then

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ p1

(
π2 − 4x2

)
≥ 2

π
+ p

(
π2 − 4x2

)
.

(ii) If p∈ (p1, p2), then the equality

φp,2(x) =
sin x

x
− 2

π
− p

(
π2 − 4x2

)
= 0

has a unique solution x(p)
0 , and it holds that

x∈
(

0, x(p)
0

)
=⇒ sin x

x
>

2
π

+ p
(

π2 − 4x2
)

and
x∈

(
x(p)

0 ,
π

2

)
=⇒ sin x

x
<

2
π

+ p
(

π2 − 4x2
)

.

(iii) If p∈ [p2,+∞), then

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ p2

(
π2 − 4x2

)
≤ 2

π
+ p

(
π2 − 4x2

)
.

(iv) Each function from the family φp,2(x), for p∈ (p1, p2], has exactly one minimum at a point
m(p)∈ (0, π/2) on the interval (0, π/2).
(v) The equality ∣∣φp,2(0+)

∣∣ = ∣∣∣φp,2

(
m(p)

)∣∣∣
has the solution p = p0 for the parameter p∈ (p1, p2), which is numerically determined as

p0 = 0.036014 . . . .

For value
d0 =

∣∣φp0,2(0+)
∣∣ = ∣∣∣φp0,2

(
m(p0)

)∣∣∣ = 0.0079283 . . . ,

it holds that
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

∣∣φp,2(x)
∣∣.

Hence, the minimax approximant of the family of functions φp,2(x) is

φp0,2(x) =
sin x

x
− 2

π
− p0

(
π2 − 4x2

)
,

which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.036014 . . .
(

π2 − 4x2
)

. (37)

Proof. (i) The claim follows directly from Statement 2 and based on the stratification.

Namely, for q = 2, it holds that B(q) =
2

qπq+1 = p1.

(ii) Let us examine the monotonicity of functions φp,2(x) for p∈ (p1, p2) on the interval
(0, π/2) in a similar manner as in the proof of Statement 1. The third derivative of φp,2(x)
with respect to x is

∂3 φp,2(x)
∂x3 =

f (x)
x4 ,

where the function f (x) is an MTP function given by

f (x) = −x3 cos x + 6x cos x + 3x2 sin x − 6 sin x .
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Let us note that
f ′(x) = x3 sin x > 0

on the interval (0, π/2). Thus, the function f (x) is increasing on the observed interval.
Considering that f (x) is an increasing function on the interval (0, π/2) and that f (0+) = 0,
it follows that

f (x) > 0

for x∈ (0, π/2). Hence,
∂3 φp,2(x)

∂x3 > 0 (38)

for x∈ (0, π/2).
The Taylor expansion of the family of functions φp,2(x) around zero is

φp,2(x) =
(

1 − 2
π

− pπ2
)
+

(
−1

6
+ 4p

)
x2 + O

(
x4
)

.

Therefore, there exists a right neighborhood of zero such that

φp,2(x) > 0 ,
∂φp,2(x)

∂x
< 0 and

∂2 φp,2(x)
∂x2 < 0 (39)

for p∈ (p1, p2). The Taylor expansion of the family of functions φp,2(x) around π/2 is

φp,2(x) =
(
− 4

π2 + 4πp
)(

x − π

2

)
+

(
8

π3 − 1
π

+ 4p
)(

x − π

2

)2
+ O

((
x − π

2

)3
)

.

Therefore, there exists a left neighborhood of π/2 such that

φp,2(x) < 0 ,
∂φp,2(x)

∂x
> 0 and

∂2 φp,2(x)
∂x2 > 0 (40)

for p∈ (p1, p2).

By analyzing the monotonicity of the functions
∂3 φp,2(x)

∂x3 ,
∂2 φp,2(x)

∂x2 ,
∂φp,2(x)

∂x
, and

φp,2(x) for p ∈ (p1, p2) on the interval (0, π/2), in a similar manner as in the proof of
Statement 1 and based on (38)–(40), it can be concluded that each function φp,2(x), for
p∈ (p1, p2), has exactly one minimum on the interval (0, π/2). From lim

x→0+
φp,2(x) > 0 and

lim
x→π/2−

φp,2(x) < 0, for p∈ (p1, p2), the corresponding inequalities follow.

(iii) The claim follows directly from Statement 1 and based on the stratification. Namely,

for q = 2, it holds that A(q) =
π − 2
πq+1 = p2.

(iv) It has been proven within proof (ii).
(v) Note that the infimum of the error d(p) = supx∈(0,π/2) |φp,2(x)|, for p∈ (p1, p2), exists
and is attained when ∣∣φp,2(0+)

∣∣ = ∣∣∣φp,2

(
m(p)

)∣∣∣. (41)

Equation (41) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter p = p0, which is numerically determined as

p0 = 0.036014 . . . ,

which determines the minimax approximant φp0,2(x) of the family of functions φp,2(x).



Axioms 2024, 13, 262 20 of 25

In order to improve and extend Theorem 4, we consider the family of functions φp,q(x)
for the case q = 3. The family of functions φp,3(x) reduces to

φp,3(x) =
sin x

x
− 2

π
− p

(
π3 − 8x3

)
(42)

and is decreasingly stratified with respect to the parameter p∈R+ on the interval (0, π/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 6. Let

p1 =
2

3π4 = 0.0068439 . . . and p2 =
π − 2

π4 = 0.011719 . . . .

Then, it holds:
(i) If p∈ (0, p1], then

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ p1

(
π3 − 8x3

)
≥ 2

π
+ p

(
π3 − 8x3

)
.

(ii) If p∈ (p1, p2), then the equality

φp,3(x) =
sin x

x
− 2

π
− p

(
π3 − 8x3

)
= 0

has a unique solution x(p)
0 , and it holds that

x∈
(

0, x(p)
0

)
=⇒ sin x

x
>

2
π

+ p
(

π3 − 8x3
)

and
x∈

(
x(p)

0 ,
π

2

)
=⇒ sin x

x
<

2
π

+ p
(

π3 − 8x3
)

.

(iii) If p∈ [p2,+∞), then

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ p2

(
π3 − 8x3

)
≤ 2

π
+ p

(
π3 − 8x3

)
.

(iv) Each function from the family φp,3(x), for p∈ (p1, p2], has exactly one minimum at a point
m(p)∈ (0, π/2) on the interval (0, π/2).
(v) The equality ∣∣φp,3(0+)

∣∣ = ∣∣∣φp,3

(
m(p)

)∣∣∣
has the solution p = p0 for the parameter p∈ (p1, p2), which is numerically determined as

p0 = 0.010441 . . . .

For value
d0 =

∣∣φp0,3(0+)
∣∣ = ∣∣∣φp0,3

(
m(p0)

)∣∣∣ = 0.039635 . . . ,

it holds that
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

∣∣φp,3(x)
∣∣.

Hence, the minimax approximant of the family of functions φp,3(x) is

φp0,3(x) =
sin x

x
− 2

π
− p0

(
π3 − 8x3

)
,
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which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.010441 . . .
(

π3 − 8x3
)

. (43)

Proof. It is analogous to the proof of Statement 5.

In order to improve and extend Theorem 5, we consider the family of functions φp,q(x)
for the case q = 4. The family of functions φp,4(x) reduces to

φp,4(x) =
sin x

x
− 2

π
− p

(
π4 − 16x4

)
(44)

and is decreasingly stratified with respect to the parameter p∈R+ on the interval (0, π/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 7. Let

p1 =
1

2π5 = 0.0016338 . . . and p2 =
π − 2

π5 = 0.0037304 . . . .

Then, it holds:
(i) If p∈ (0, p1], then

x∈
(

0,
π

2

)
=⇒ sin x

x
>

2
π

+ p1

(
π4 − 16x4

)
≥ 2

π
+ p

(
π4 − 16x4

)
.

(ii) If p∈ (p1, p2), then the equality

φp,4(x) =
sin x

x
− 2

π
− p

(
π4 − 16x4

)
= 0

has a unique solution x(p)
0 , and it holds that

x∈
(

0, x(p)
0

)
=⇒ sin x

x
>

2
π

+ p
(

π4 − 16x4
)

and
x∈

(
x(p)

0 ,
π

2

)
=⇒ sin x

x
<

2
π

+ p
(

π4 − 16x4
)

.

(iii) If p∈ [p2,+∞), then

x∈
(

0,
π

2

)
=⇒ sin x

x
<

2
π

+ p2

(
π4 − 16x4

)
≤ 2

π
+ p

(
π4 − 16x4

)
.

(iv) Each function from the family φp,4(x), for p∈ (p1, p2], has exactly one minimum at a point
m(p)∈ (0, π/2) on the interval (0, π/2).
(v) The equality ∣∣φp,4(0+)

∣∣ = ∣∣∣φp,4

(
m(p)

)∣∣∣
has the solution p = p0 for the parameter p∈ (p1, p2), which is numerically determined as

p0 = 0.0031146 . . . .

For value
d0 =

∣∣φp0,4(0+)
∣∣ = ∣∣∣φp0,4

(
m(p0)

)∣∣∣ = 0.059981 . . . ,

it holds that
d0 = inf

p∈(0,∞)
sup

x∈(0,π/2)

∣∣φp,4(x)
∣∣.
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Hence, the minimax approximant of the family of functions φp,4(x) is

φp0,4(x) =
sin x

x
− 2

π
− p0

(
π4 − 16x4

)
,

which determines the corresponding (minimax) approximation

sin x
x

≈ 2
π

+ 0.0031146
(

π4 − 16x4
)

. (45)

Proof. It is analogous to the proof of Statement 5.

Figure 3 illustrates the stratified families of functions φp,1(x), φp,2(x), φp,3(x), and
φp,4(x); see (30), (36), (42) and (44), respectively. For each family, cases for all values of
the parameter p∈R+ are shown. Particularly, cases with constants obtained in Statements
4–7, some of which are also obtained in Theorems 2–5, are singled out.

(a) φp,1(x), see (30) (b) φp,2(x), see (36)

(c) φp,3(x), see (42) (d) φp,4(x), see (44)

Figure 3. Stratified families of functions (a) φp,1(x), (b) φp,2(x), (c) φp,3(x), and (d) φp,4(x) .

4.2. Approximations of the Sinc Function

In this subsection, we provide some approximations of the sinc function and analyze the
maximum approximation errors. The previously obtained upper and lower bounds of the
sinc function can be used to derive some approximations of this function. Furthermore, more
optimal approximations can be obtained through the corresponding minimax approximants.
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In Table 1, we present some upper bounds of the sinc function derived from
Theorems 2–5, that is, Statements 4–7 and Statements 1 and 2. It is noteworthy that
the upper bound from Theorem 3 (the best upper bound from Statement 5) is identical to
the best upper bound from Statement 1.

Table 1. Upper bounds of the sinc x function on the interval (0, π/2).

Upper Bound Maximum Deviation
of the Sinc x Function from the Sinc x Function

on the Interval (0, π/2) on the Interval (0, π/2)

sin x
x

<
2
π

+
2

π2 (π − 2x)
π − 4

π
= 0.27323 . . .

sin x
x

<
2
π

+
π − 2

π3

(
π2 − 4x2) 0.011612 . . .

sin x
x

<
2
π

+
π − 2

π4

(
π3 − 8x3) 0.065358 . . .

sin x
x

<
2
π

+
π − 2

π5

(
π4 − 16x4) 0.10245 . . .

sin x
x

<
2
π

+
2(

π2

4 − 1
)

π
π2
4

(
π

π2
4 −1 − (2x)

π2
4 −1

)
−π2 + 2π + 4

π2 − 4
= 0.070461 . . .

In Table 2, we present some lower bounds of the sinc function derived from
Theorems 2–5, that is, Statements 4–7 and Statements 1 and 2. It is noteworthy that the best
lower bound from Statement 1 is identical to the best lower bound from Statement 2.

Table 2. Lower bounds of the sinc x function on the interval (0, π/2).

Lower Bound Maximum Deviation
of the Sinc x Function from the Sinc x Function

on the Interval (0, π/2) on the Interval (0, π/2)

2
π

+
π − 2

π2 (π − 2x) <
sin x

x 0.082395 . . .

2
π

+
1

π3

(
π2 − 4x2) < sin x

x
π − 3

π
= 0.045070 . . .

2
π

+
2

3π4

(
π3 − 8x3) < sin x

x
3π − 8

3π
= 0.15117 . . .

2
π

+
1

2π5

(
π4 − 16x4) < sin x

x
2π − 5

2π
= 0.20422 . . .

2
π

+
π − 2

π
2

π−2 +1

(
π

2
π−2 − (2x)

2
π−2

)
<

sin x
x 0.0085153 . . .

In Table 3, we present some minimax approximations of the sinc function derived
from the minimax approximants of the families φp,1(x), φp,2(x), φp,3(x), φp,4(x), φA(q),q(x),
and φB(q),q(x), respectively. These families are considered in Statements 4, 5, 6, and 7 with
the aim of improving Theorems 2, 3, 4, and 5, respectively, and in Statements 1 and 2.
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Table 3. Minimax approximations of the sinc x function on the interval (0, π/2).

Minimax Approximation Maximum Deviation
of the Sinc x Function from the Sinc x Function

on the Interval (0, π/2) on the Interval (0, π/2)

sin x
x

≈ 2
π

+ 0.13323 . . . (π − 2x) 0.055187 . . .

sin x
x

≈ 2
π

+ 0.036014 . . .
(
π2 − 4x2) 0.0079283 . . .

sin x
x

≈ 2
π

+ 0.010441 . . .
(
π3 − 8x3) 0.039635 . . .

sin x
x

≈ 2
π

+ 0.0031146 . . .
(
π4 − 16x4) 0.059981 . . .

sin x
x

≈ 2
π

+ 0.043803 . . .
(

π1.84823... − (2x)1.84823...
)

0.0026604 . . .

sin x
x

≈ 2
π

+ 0.051415 . . .
(

π1.72287... − (2x)1.72287...
)

0.0061296 . . .

5. Conclusions

In this paper, two double Jordan-type inequalities have been obtained, thereby en-
compassing the inequalities established in papers [2–6]. These inequalities were explored
in the context of stratified families of functions, which is a concept introduced in recent
research [23]. The introduction of stratified families of functions enables the derivation of
known results for specific parameter choices, including the analysis of parameter values
previously unknown in the Theory of Analytic Inequalities. Furthermore, we identify
parameter values within each examined family of functions for which the function, as a
member of that family, exhibits some optimal properties (minimax approximant). Based on
these minimax approximants and functions representing the upper and lower bounds of
the sinc function, we provided some approximations of the sinc function. Additionally, we
analyzed the errors associated with all mentioned approximations.

It is crucial to emphasize that the minimax approximant of the stratified family of
functions is the function for which the minimal error in approximations is obtained within
the given family of functions. Therefore, identifying those parameter values is significant
in the Approximation Theory.

By considering the stratified family of functions individually with respect to two
parameters, we were able to analyze Jordan-type inequalities in a unified manner, thereby
resulting in both previously established and novel findings. Future research endeavors will
focus on extending this approach even further.
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