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f College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK 
g Department of Geography, University of Toronto, Toronto ON M5S 3G3, Canada 
h Department of Microbiology and Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman OK 73019, USA 
i Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1350, Denmark 
j Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Surveying and Mapping Institute Lands and Resource Department of 
Guangdong Province, Guangzhou 510663, China 
k Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210042, China   

A R T I C L E  I N F O   

Keywords: 
Canadian boreal forests 
Carbon balance 
Remote sensing 
Forest degradation 

A B S T R A C T   

The carbon sinks of North American boreal forests have been threatened by global warming and forest distur-
bances in recent decades, but knowledge about the carbon balance of these forests in recent years remains un-
known. We tracked annual aboveground carbon (AGC) changes from 2016 to 2021 across the forest regions of 
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) core study domain, using Vegetation Optical Depth 
derived from low-frequency passive microwave observations. The results showed that these forests showed a net 
AGC increase of + 28.49 Tg C/yr during the study period, with total AGC gains of + 219.34 Tg C/yr counter-
acting total AGC losses of − 190.86 Tg C/yr. Forest degradation (-162.21 Tg C/yr), defined as a reduction in the 
capacity of forest to provide goods and services, contributes 5 times more to the total AGC loss than forest cover 
loss (-28.65 Tg C/yr), defined as the complete removal of tree cover. This indicates that degradation has 
dominated AGC loss in the region.   

1. Introduction 

North American boreal forests have attracted particular attention 
due to their critical role in regulating the global carbon budget (Gauthier 
et al., 2015). Global warming, forest disturbances and degradation have 
significant negative impacts on the carbon budget of these forests (Kurz 
et al., 2008b). Yet, global warming may also have the potential to in-
crease the productivity of these forests (Wang et al., 2023). Thus, 
whether North American boreal forests have acted as a carbon sink or 
carbon source in recent years remains uncertain. 

In recent decades, a large variation in carbon estimates has been 
noted in North American boreal forests: +50 Tg C/yr using ecosystem 
models (positive values represent a net carbon sink) (Stinson et al., 
2011); − 53 Tg C/yr using forest inventories (Pan et al., 2011); +14 Tg 
C/yr using optical remote sensing data (Wang et al., 2021); and − 6 Tg 
C/yr using high-frequency passive microwave remote sensing data (Liu 
et al., 2015). These discrepancies in carbon estimates have resulted in a 
limited comprehension of the carbon budget in North American boreal 
forests. 

The carbon budget of North American boreal forests is threatened by 
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forest cover loss and degradation (Kurz, 2010). Forest cover loss, such as 
stand-replacing fires, clear-cutting and severe insect outbreaks, results 
in the elimination of living aboveground biomass and photosyntheti-
cally sequestered carbon from the atmosphere (Hansen et al., 2013). 
During 2000–2012, the carbon loss caused by forest cover loss in 
western North American boreal forests was 22.3 Tg C/yr (Yu et al., 
2023). Forest degradation leads to carbon loss without completely 
removing the living aboveground biomass, including partial mortality 
from non-stand-replacing disturbances (e.g., wildfires, selective logging 
and droughts) (Gao et al., 2020). In recent decades, non-stand-replacing 
insect outbreaks were estimated to have caused a carbon loss of 13.5 Tg 
C/yr in Canada (Kurz et al., 2008a). However, due to challenges in 
separating forest degradation from forest cover loss, most studies on 
forest carbon loss tend to focus primarily on either forest cover loss or 
degradation. Thus, the relative contributions of forest cover loss and 
degradation to carbon loss in North American boreal forests remain 
unknown. 

Previous studies showed that the forest carbon sink is affected by 
forest age and tree species (Gao et al., 2016; Rogers et al., 2015). Forest 
age affects light-use efficiency and the capacity of biomass accumulation 
in forests (Besnard et al., 2018). A previous study revealed that the 
maximum carbon sink occurs primarily in forests aged 30–120 years, 
and the carbon sink of forests older than 120 years is generally reduced 
(Pregitzer and Euskirchen, 2004). In addition, diverse tree species 
exhibit unique capacities to withstand disturbances, which can signifi-
cantly impact the carbon sink in forests (Hermosilla et al., 2022). For 
instance, pine species are prone to infestation by the mountain pine 
beetle (Kurz et al., 2008a) and aspen species are vulnerable to high in-
tensity crown fires (Shinneman et al., 2013). Therefore, exploring the 
carbon changes of different forest ages and tree species is vital for 
gaining insight into the carbon dynamics of North American boreal 
forests. 

Previous estimates of the carbon dynamics of North American boreal 
forests relied primarily on forest inventory data (Stinson et al., 2011), 
atmospheric CO2 observations inversion models (Hayes et al., 2012), 
and satellite optical data (Wang et al., 2021). Yet, estimates from in-
ventory data and atmospheric inversion models can exhibit high un-
certainty due to sparse observation networks and uncertainties in the 
inversion models (Gurney et al., 2004). Using optical remote sensing 
data to infer biomass changes can be hindered by clouds, aerosols, and 
saturation effects in areas with dense vegetation (Myers-Smith et al., 
2020). High-frequency passive microwave remote sensing data are least 
affected by atmospheric and cloud influences, but tend to saturate in 
forested regions and are generally regarded as unsuitable for accurate 
biomass carbon monitoring (Brandt et al., 2018a). The Global Ecosystem 
Dynamics Investigation (GEDI) data are highly promising for above-
ground carbon (AGC) estimation (Xiao et al., 2019). However, the 
limited coverage between 51◦N and 51◦S latitudes restricts its applica-
tion in estimating AGC for North American boreal forests, and inferring 
AGC changes requires models to combine GEDI data with time series 
from other instruments (Dubayah et al., 2020; Shendryk, 2022). 

The low-frequency Vegetation Optical Depth data at L-band (1.4 
GHz) (L-VOD), retrieved from passive microwave satellite observation, 
exhibits high sensitivity to vegetation aboveground biomass and does 
not saturate in dense forests (Frappart et al., 2020; Li et al., 2022; Fan 
et al., 2022). This makes it a good alternative for estimations of 
aboveground biomass (Yang et al., 2023). The availability of L-VOD data 
for multiple years allows us to accurately estimate aboveground biomass 
in North American forests, and thereby infer AGC change over time. 

In this study, L-VOD products were used to estimate AGC stocks and 
changes over the western North American boreal forests for 2016–2021. 
The aims were to: (1) represent the spatial patterns of AGC, (2) inves-
tigate AGC dynamics from 2016 to 2021, related to forest ecoregions, 
forest age and tree species, and (3) quantify AGC loss caused by forest 
cover loss and degradation. 

2. Materials 

2.1. The study region 

The forest regions within NASA’s Arctic Boreal Vulnerability 
Experiment (ABoVE) core study domain, spanning from 100◦W to 
168◦W and 52◦N to 74◦N and encompassing the western provinces of 
Canada and the state of Alaska in the USA (Loboda et al., 2019), were 
selected as the study region (Fig. 1). Based on the Environmental Pro-
tection Agency’s (EPA) Level 2 Ecoregions for North America (Omernik 
and Griffith, 2014), the study region was divided into eight eco-regions, 
including the Alaska boreal interior, the Western cordillera, the Taiga 
cordillera, the Taiga plain, the Softwood shield, the Taiga shield, the 
Boreal cordillera and the Boreal plain eco-regions (Fig. 1). Eco-regions 
such as the Marine West Coast Forest, the Tundra and the Temperate 
Prairies that had limited overlap with the study region were excluded. 

2.2. Land cover map 

We used the CCI land cover map in 2016 (Defourny et al., 2017) to 
identify forest regions (Fig. 1). The spatial resolution of this map (300 m) 
was aggregated to 0.25 degree using the majority rule. This involved 
recording the land cover type that had the largest number of 300 m 
native spatial resolution pixels within each 0.25 degree pixel. The 
aggregated 0.25 degree CCI land cover map contains forest, shrubland, 
grassland, sparse vegetation, cropland, bare area, and water (Table S1). 
Non-forest land cover types were masked as we mainly focused on AGC 
dynamics in forest regions. 

2.3. Aboveground biomass benchmark map 

The updated version of Saatchi et al. (2011) aboveground biomass 
(AGB) benchmark map, which is a static AGB map of global forests with 
1 km spatial resolution in 2015, was used to calibrate L-VOD. This 
updated map was produced by combining the satellite datasets from the 
Shuttle Radar Topography Mission (SRTM) with Landsat data and 
Advanced Land Observing Satellite (ALOS) data (Carreiras et al., 2017). 
The original unit of this AGB density data was Mg/ha, which we con-
verted to AGC density (Mg C/ha) by multiplying it by a factor of 0.5 
(Brandt et al., 2018b). This map was aggregated to 0.25 degree by using 
a simple averaging method. 

2.4. L-VOD 

The SMOS-SMAP-INRAE-BORDEAUX L-VOD Version 1 product 
(SMOSSMAP-IB, V1) (Li et al., 2022), derived from the Soil Moisture and 
Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP) 
satellites, was used to estimate AGC changes. This SMOSSMAP-IB 
product provides global-scale daily L-VOD data with 0.25 degree 
spatial resolution from 1 April 2015 to 31 December 2021. The SMAP-IB 
retrieval algorithm, a mono-angular retrieval algorithm, was used to 
retrieve these L-VOD data (Li et al., 2022; Wigneron et al., 2007). In this 
retrieval algorithm, the merged brightness temperature observations 
from both the SMOS and SMAP sensors were used as input data (Li et al., 
2022). The study period was from 2016 to 2021, which was limited by 
the short coverage time of the SMOSSMAP-IB product. 

To restrict the study to the best quality data, the daily L-VOD pixels 
associated with frozen conditions, water bodies and strong topography 
were excluded. We produced monthly L-VOD by calculating the mean of 
all high-quality daily L-VOD data within each month. Considering that 
VOD data are often affected by frozen and snowy conditions, the yearly 
L-VOD was calculated as the average of the monthly L-VOD from June to 
September in a year. 
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2.5. Forest age data 

The forest age data across Canada provides a distribution of forest 
age with 30 m resolution circa 2019 (Maltman et al., 2023). This map 
was generated from Landsat and MODIS remote sensing data. The 
methods employed to determine forest age included the ‘disturbance 
approach’, ‘recovery approach’ and ‘allometric approach’. Using a 
simple average method, this forest age map was aggregated to 0.25 
degree spatial resolution. The aggregated map encompasses forest age 
spans from 10 to 130 years and was divided into six 20-year age class 
bins: 10–30, 30–50, 50–70, 70–90, 90–110, >110 years (Figure S1). 

2.6. Tree species data 

The tree species data was obtained from Hermosilla et al. (2022). 37 
tree species were mapped at 30 m resolution in this map, representing 
the conditions of 2019. This dataset was produced by integrating Can-
ada’s national forest inventory data, spectral information derived from 
Landsat imagery and ancillary information (e.g., climate data, elevation 
data, and phenology data) using the Random Forests machine learning 
algorithm. The tree species map was aggregated to 0.25 degree spatial 
resolution using the majority rule, which involves recording the tree 
species with the largest number of 30 m native spatial resolution pixels 
within each 0.25 degree pixel. There are 10 tree species in this aggre-
gated map (i.e., Subalpine fir, White birch, Tamarack, Engelmann 
spruce, White spruce, Black spruce, Jack pine, Lodgepole pine, Balsam 
poplar, Trembling aspen). We categorized the species based on their 
genus (i.e., Engelmann spruce, White spruce, and Black spruce were 
grouped as spruce, Jack pine and Lodgepole pine were grouped as pine). 
Also, we calculated the area fraction of each tree species within the 
study region, and the tree species with an area fraction less than 1 % (i. 
e., White birch, Tamarack and Balsam poplar) were excluded. The 0.25 
degree tree species map used in this study included four tree species: 
spruce, fir, pine and aspen (Figure S2). 

2.7. Forest cover loss data 

The forest cover loss data (version 1.9) was obtained from Hansen 
et al. (2013), providing annual forest cover loss from 2000 to 2021 at 30 
m resolution. Forest cover loss refers to the transition from forest to non- 
forest. The “lossyear” layer of this dataset records the year when forest 
cover loss occurred, representing the loss of forest detected during 
2000–2021. The forest cover loss data for 2016–2021 used in this study 
was aggregated to 0.25 degree by summing the forest cover loss area 
within each L-VOD grid cell. 

2.8. Active fire dataset 

The active fire data originated from MOD14A2 (Version 061) (Giglio 

et al., 2016). This dataset is an eight-day composite fire-mask at 1 km 
resolution. According to the quality layer included in each MOD14A2 
file, pixels with nominal and high confidence were selected as the mask 
to identify the good-quality active fire observations. The forest cover 
loss data for 2016–2021 used in this study were aggregated to 0.25 
degree resolution using the summing method, which refers to sum up the 
forest cover loss area within each 0.25 degree pixel. 

2.9. Stand-replacing fire 

We used the MOD14A2 active fire data and the forest cover loss data 
from Hansen et al. (2013) to identify stand-replacing fires. First, the 
forest cover loss map (30 m) was aggregated to 1 km by recording the 
dominant year of forest cover loss within each MOD14A2 active fire grid 
cell. Second, the MOD14A2 active fire data was overlapped with the 
forest cover loss map for each year from 2016 to 2021 at 1 km spatial 
resolution to identify the yearly stand-replacing fire pixels. At last, the 
stand-replacing fire pixels from 2016 to 2021 were aggregated to 0.25 
degree by calculating the sum area of stand-replacing fires within each 
L-VOD grid cell. 

3. Methods 

3.1. L-VOD derived annual AGC dynamics 

Annual AGC was calculated from L-VOD using the method proposed 
by Liu et al. (2015) and Fan et al. (2019). The four-parameter function 
was used to calibrate the relationship between L-VOD and AGC: 

AGC = a ×
arctan(b × (VOD − c) ) − arctan(− b × c)
arctan(b × (Inf − c) ) − arctan(− b × c))

+ d (1)  

where a, b, c and d are the fitted coefficients, Inf was set to 1010. We used 
the Saatchi AGC benchmark map and L-VOD in 2016 to calibrate Eq. (1). 
Using Eq. (1), yearly L-VOD from 2016 to 2021 was converted into 
yearly AGC density (Mg C/ha). The AGC stock was then calculated by 
multiplying the AGC density by the area of the corresponding pixel. The 
year used for calibration proved to have little impact on the calibrated 
curves. The calibrated relationships between L-VOD from 2016 to 2021 
and the Saatchi AGC benchmark map were calculated, showing very 
similar correlations (r: 0.71–0.73) from 2016 to 2021 (Figure S3). 

We conducted a bootstrap cross-validation (sampling rate = 80 %, 
iterations = 1000) method to evaluate the calibration errors for the year 
2016 (Fan et al., 2019). The cross-validation results showed high cor-
relation values (r = 0.75) and low root mean square difference values 
(RMSE = 0.04 Pg C) between the benchmark AGC map and the boot-
strapped AGC estimates (Table S2), suggesting that errors caused by 
sampling and calibration are limited. Furthermore, the retrieved AGC 
displays a small 95 % bootstrap confidence interval, suggesting limited 

Fig. 1. The distribution of forest regions and the EPS’s Level 2 Eco-regions. The background shows the forest regions that were obtained from the European Space 
Agency’s Climate Change Initiative (CCI) for the year 2016. 
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errors stemming from the process of sampling and calibration 
(Table S2). 

To quantify the accuracy of the AGC derived from L-VOD, we 
compared the L-VOD AGC with the Saatchi AGC benchmark map. A high 
correlation value (r = 0.74) was achieved when comparing the esti-
mated AGC with the Saatchi AGC benchmark map (Figure S4). 
Furthermore, in order to conduct the temporal validation, we used 
multi-year AGC maps from CCI to validate the AGC changes derived 
from L-VOD for 2017–2020 (Zhao et al., 2023). A significant correlation 
(r = 0.86, p < 0.01) was observed between the AGC changes derived 
from L-VOD and those obtained from CCI data (Figure S5), and the grid 
cells with lower uncertainty of AGC changes in the CCI data (lighter 
color in Figure S5) are closer to the 1:1 line. 

3.2. AGC loss caused by forest cover loss and degradation 

Forest cover loss and degradation dominate the total AGC loss in a 
grid cell (Fan et al., 2022). All mechanisms that do not result in forest 
cover loss were defined as forest degradation in this study. To conduct a 
simple estimate of the AGC loss resulting from forest cover loss and 
degradation, the method introduced by Harris et al. (2012) and Qin et al. 
(2021) was adopted in this study. First, the total AGC loss (AGCtotalloss) at 
0.25 degree spatial resolution was calculated using Eq. (2). Second, the 
AGC loss caused by forest cover loss (AGCforestcoverloss) was computed by 
multiplying the total area of forest cover loss during 2017–2021 
(Arealosstotal) by the AGC density in 2016 (AGCdensity2016) using Eq. (3). 
The total area of forest cover loss (Arealosstotal) was computed by sum-
ming the forest loss area from 2017 to 2021 at 0.25 degree resolution 
using the Hansen et al. (2013) forest cover loss data. Third, we calcu-
lated the difference between the total AGC loss (AGCtotalloss) and the AGC 
loss from forest cover loss (AGCforestcoverloss) as the AGC loss from degra-
dation (AGCdegradation), as shown in Eq. (4). 

AGCtotalloss =
∑

(AGCi+1 − AGCi), with (AGCi+1 − AGCi < 0) (2)  

AGCforestcoverloss =
∑

(Arealosstotal × AGCdensity2016) (3)  

AGCdegradation = AGCtotalloss − AGCforestcoverloss (4)  

where i represents the year from 2016 to 2020. 
The total AGC loss cause by forest cover loss was subsequently 

divided into components stemming from stand-replacing fires and other 
stand-replacing processes (e.g., clear-cutting, severe insect outbreaks, 
and drought) (Fan et al., 2022). The AGC loss from stand-replacing fires 
(AGCfire) was calculated by multiplying the gross area of stand-replacing 
fire during 2017–2021 (Arealossfire) by the AGC density in 2016 
(AGCdensity2016) using Eq. (5), in which Arealossfire was calculated as the 
sum of stand-replacing fire area from 2017 to 2021 over each 0.25 de-
gree resolution pixel. At last, the AGC loss from other stand-replacing 
processes (AGCothers) was computed as the difference of the AGC loss 
from forest cover loss (AGCforestcoverloss) and the AGC loss from stand- 
replacing fires (AGCfire) using Eq. (6) (Fan et al., 2022). 

AGCfire =
∑(

Arealossfire × AGCdensity2016
)

(5)  

AGCothers = AGCforestcoverloss − AGCfire (6)  

3.3. Statistical analysis 

To analyze the spatial patterns of AGC density, we calculated vari-
ations in AGC density based on forest age, eco-region, and tree species. A 
one-way analysis of variance (ANOVA) method was employed to test for 
significant differences (p < 0.05) in AGC density among different forest 
ages, eco-regions, and tree species. In addition, we used the standard 
deviation to represent the uncertainties of AGC change for different 

forest ages and tree species, which was calculated based on the bootstrap 
cross-validation method (sampling rate = 80 %, iterations = 1000). 

4. Results 

4.1. Spatial patterns of AGC 

Over the study period (2016–2021), the average AGC density derived 
from L-VOD across the study region was 23.72 Mg C/ha (Fig. 2a). AGC 
density varied substantially by latitude, forest age, eco-region, and tree 
species. The AGC density exhibited a decreasing trend as latitude 
increased from 52◦N to 70◦N (Fig. 2a, Fig. 2b). The highest AGC density 
was found around 52◦N (34.37 Mg C/ha), and the lowest AGC density 
was mainly distributed around 70◦N (11.93 Mg C/ha) (Fig. 2b). These 
results suggest that there is a large latitudinal gradient in the distribu-
tion of AGC density. 

AGC density increased with increasing forest age across the six forest 
age classes averaged over the 0.25 degree pixels (Fig. 3a). The highest 
AGC density, reaching 31.39 Mg C/ha, was observed in forests aged 
90–110 years old, for then to level out in forests that were older than 
110 years old (Fig. 3a). The lowest AGC density was observed in forests 
aged 10–30 years old at 10.89 Mg C/ha (Fig. 3a). 

In terms of tree species, fir had the largest AGC density (34.50 Mg C/ 
ha), followed by aspen (26.11 Mg C/ha) and pine (25.68 Mg C/ha), 
while spruce showed the lowest AGC density (22.02 Mg C/ha) (Fig. 3b). 
Regarding eco-regions, the Western cordillera eco-region had the largest 
AGC density (38.45 Mg C/ha) (Fig. 3c), while the Softwood shield eco- 
region had the lowest AGC density (8.28 Mg C/ha) (Fig. 3c). 

4.2. AGC dynamics from 2016 to 2021 

AGC estimates for Western North American boreal forests using L- 
VOD showed a net increase of 28.49 Tg C/yr from 2016 to 2021 in the 
study region (Fig. 4a). This net AGC increase reflects a balance between 
total AGC gains of + 219.34 Tg C/yr and total AGC losses of − 190.86 Tg 
C/yr (Table S3). With regard to the spatial pattern of AGC change, a 
widespread net increase was observed over 63 % of the study region 
(Fig. 4b). The most pronounced net AGC increase was observed in the 
Boreal cordillera and the Alaska boreal interior eco-regions (Fig. 4b). 
About 37 % of the study region exhibited a net AGC decrease, primarily 
in the Taiga plain and the Boreal plain eco-regions (Fig. 4b). 

In terms of eco-region, the Boreal cordillera eco-region showed the 
largest AGC increase (+18.09 Tg C/yr) (Fig. 5g), followed by the Alaska 
boreal interior eco-region (+13.17 Tg C/yr) (Fig. 5a). In contrast, the 
Taiga plain eco-region and the Boreal plain eco-region showed a net 
AGC decline of − 4.44 Tg C/yr (Fig. 5c) and − 3.05 Tg C/yr (Fig. 5f), 
respectively. The Taiga cordillera eco-region and the Western cordillera 
eco-region had a net AGC increase of + 3.44 Tg C/yr and + 1.19 Tg C/yr, 
respectively (Fig. 5b, Fig. 5h). The Taiga shield eco-region and the 
Softwood shield eco-region had a nearly neutral AGC balance (Fig. 5d, 

Fig. 2. Spatial distribution of AGC density based on L-VOD. (a) Averaged AGC 
density for the period from 2016 to 2021. (b) Variation of AGC density 
with latitude. 
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Fig. 5e). 
During the study period, there was a considerable decline in AGC in 

2019 (-312.21 Tg C) (Fig. 4a). The Boreal cordillera eco-region 
contributed the largest AGC decline (-159.57 Tg C) (Fig. 5g), followed 
by the Boreal plain eco-region (-69.72 Tg C) (Fig. 5f), Taiga cordillera 
eco-region and Alaska boreal interior eco-region were ranked 3rd 
(-41.27 Tg C) (Fig. 5b) and 4th (-26.87 Tg C) (Fig. 5a) in terms of 
contribution to this decrease, respectively. This is partly because of the 
increase in forest cover loss in 2019 (Figure S6). In 2019, Hansen et al. 
(2013) documented an increase of 199 % in forest loss (2.8 × 106 ha) 
compared with 2018 (1.4 × 106 ha) (Figure S6). Forest cover loss in 
2019 mainly occurred in the Alaska boreal interior eco-region (Fig. 5a), 
the Boreal plain eco-region (Fig. 5f) and the Boreal cordillera eco-region 
(Fig. 5g). 

Forests aged 50–70 years old had the maximum net AGC increase 
(+16.59 Tg C/yr) (Fig. 6a). This increase represented 59 % of the net 
AGC increase in the study region, suggesting that forests at this stage 
have the greatest capacity for AGC sequestration. Forests aged 30–50 
years old also showed a small AGC increase (+1.99Tg C/yr) (Fig. 6a). 
Forests older than 70 years showed a decrease in AGC (Fig. 6a), pri-
marily due to an increase in disturbances. The forests aged 10–30 years 
old was also found to be close to AGC neutrality (Fig. 6a). Regarding tree 
species, both spruce- and pine forests were the primary contributors to 
the forest’s net AGC increase, representing a net increase of + 9.26 Tg C/ 
yr and + 7.95 Tg C/yr from 2016 to 2021, respectively (Fig. 6b). In 
contrast, aspen forests were found to experience a net AGC decrease 
(-4.68 Tg C/yr) (Fig. 6b). 

4.3. AGC loss resulting from forest cover loss and degradation 

We estimated AGC loss resulting from forest cover loss and degra-
dation, respectively (Fig. 7a). Our results showed that 85 % of the total 
AGC loss was attributed to forest degradation (-162.21 Tg C/yr), with 
the remaining 15 % attributed to forest cover loss (-28.65 Tg C/yr), 
indicating that forest degradation contributes significantly more to AGC 
loss than forest cover loss in North American boreal forests. The major 
contributors to the total AGC loss from forest cover loss were the Boreal 
plain eco-region (-9.24 Tg C/yr), the Alaska boreal interior eco-region 
(-5.53 Tg C/yr), and the Boreal cordillera eco-region (-5.29 Tg C/yr) 
(Fig. 7a). The collective AGC loss in these three eco-regions constituted 
70 % of the total AGC loss attributed to forest cover loss. Additionally, 
the total AGC loss resulting from degradation was primarily found in the 
Taiga plain eco-region (-53.72 Tg C/yr), the Boreal plain eco-region 
(-44.66 Tg C/yr) and the Boreal cordillera eco-region (-39.21 Tg C/yr) 
(Fig. 7a). In sum, AGC loss in these three eco-regions contributed to 85 % 
of the total AGC loss resulting from degradation. 

The total AGC loss from forest cover loss was subdivided into con-
tributions from stand-replacing fires and other stand-replacing processes 
(e.g., clear cutting, severe insect outbreaks, and drought). Stand- 
replacing fires (5.2 × 106 ha), covering 44 % of the forest cover loss, 
contributed 47 % (-13.40 Tg C/yr) of the total AGC loss, with other 
stand-replacing processes contributed 53 % (-15.25 Tg C/yr) (Fig. 7b). 
This result suggests that the contribution of stand-replacing fire to AGC 
loss is comparable to the total AGC loss from all other stand-replacing 
processes in the study region. The AGC loss from stand-replacing fires 
was mainly distributed in the Boreal plain eco-region (-3.85 Tg C/yr), 
the Alaska boreal interior eco-region (-3.09 Tg C/yr) and the Boreal 
cordillera eco-region (-2.34 Tg C/yr) (Fig. 7b). The Boreal plain eco- 
region (-5.39 Tg C/yr) also exhibited the largest AGC loss from other 
stand-replacing processes in the study region, followed by the Boreal 
cordillera eco-region (-2.95 Tg C/yr) and the Alaska boreal interior eco- 
region (-2.44 Tg C/yr) (Fig. 7b). 

5. Discussion 

5.1. AGC dynamics from 2016 to 2021 

Over the period 2016–2021, the average AGC density within the 
study region was 23.72 Mg C/ha, which is similar to the estimated 
values using remote sensing method, indicated by 21.36 Mg C/ha for 
1984–2014 (Wang et al., 2021); 26.16 Mg C/ha for 2010 (Spawn and 
Gibbs., 2020), and 27.23 Mg C/ha for 2020 (Santoro, 2023). Note that 
the AGC density derived from remote sensing methods in the study re-
gion (from 21.36 Mg C/ha to 27.23 Mg C/ha), including the AGC density 
derived from L-VOD (23.72 Mg C/ha), is approximately half lower than 
the values reported by the forest resource assessment in Canada (45.22 
Mg C/ha) (FAO, 2020) and the study based on national forest inventory 
in Canada (41.3 Mg C/ha) (Sothe et al., 2022). The lower AGC estimates 
from remote sensing studies (e.g., our study) could be partly explained 
by the coarser spatial resolution (0.25 degree) of the L-VOD data, which 

Fig. 3. Variations in AGC density across forest ages (a), tree species (b) and 
eco-regions (c). a ~ e in each sub-figure shows whether there is a significant 
difference (p < 0.05) in AGC density between forest age, tree species and 
ecoregions, with the same letter indicating a non-significant difference and 
different letters indicating a significant difference. 

Fig. 4. Spatio-temporal variations in annual AGC in the study region. (a) 
Annual AGC changes in the study region, expressed as the difference from 2016 
values. (b) The spatial patterns of yearly AGC net change from 2016 to 2021. 
The pie graph in (b) represents the percentage of grid cells with gains 
and losses. 
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incorporates non-forest vegetation and potentially results in an under-
estimation of AGC density. To further analyze the impact of the coarser 
spatial resolution (0.25 degree) on the underestimation of AGC density, 
the tree cover data from Hansen et al. (2013) was used to calculate the 
average tree cover of our study region, which is 49 % (Figure S7). Also, 
this 49 % tree cover in our study region could be the reason for our AGC 
estimation being half lower than national forest inventory. 

Our results showed that there was a net AGC increase of + 28.49 Tg 
C/yr in the study region from 2016 to 2021, which contrasts with pre-
vious studies reporting AGC declines of about − 53.00 Tg C/yr for 
2000–2007 (Pan et al., 2011) and − 6.42 Tg C/yr for 1993–2012 (Liu 
et al., 2015). These results partly indicate that North American boreal 
forests may have transitioned from a state of AGC loss to gain from the 
late 2000 s to the late 2010 s. It is generally considered that the AGC in 
North American boreal forests has been declining due to the increasing 
disturbances in past decades (Kurz et al., 2013). This transition from 

AGC loss to gain may be due to the high sensitivity of tree growth to the 
higher temperatures caused by global warming. The increase in AGC 
from tree growth caused by global warming may have offset the AGC 
loss from the increase in disturbances in North American boreal forests 
(Wang et al., 2023). In addition, non-disturbance effects, such as CO2 
fertilization and nitrogen (N) deposition can also serve as significant 
contributors to forest growth in North American boreal forests (Chen 
et al., 2000). 

By comparing our estimated AGC change over 2016–2021 with that 
of Xu et al. (2021) over 2000–2019, we found that our estimated net 
AGC change (+28.49 Tg C/yr) is larger than those of Xu et al. (2021) 
(+10.00 Tg C/yr). The possible explanation for this result could be the 
saturation observed in the optical remote-sensing data used in the esti-
mation of Xu et al. (2021) over the forest regions, resulting in the high 
uncertainties in estimates of forest AGC changes (Huete et al., 2002). 
Relative to optical remote sensing data, L-VOD is less affected by 

Fig. 5. Annual AGC changes in the eight eco-regions, expressed as the difference from 2016 values. (a) Alaska boreal interior eco-region. (b) Taiga cordillera eco- 
region. (c) Taiga plain eco-region. (d) Taiga shield eco-region. (e) Softwood shield eco-region. (f) Boreal plain eco-region. (g) Boreal cordillera eco-region. (h) 
Western cordillera eco-region. The yellow bars in (a)-(h) represent the forest loss area. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. AGC net change for different forest ages (a) and tree species (b). Error bars represent the standard deviation (std).  
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saturation influence and more correlated with stem-branch AGC (Fan 
et al., 2019). Thus, L-VOD is likely to provide a more accurate estimation 
of AGC changes in forests than optical or high-frequency remote sensing 
datasets. 

The total carbon loss across the study region was higher than that 
estimated by Harris et al. (2021) (–190.86 Tg C/yr vs − 123.80 Tg C/yr). 
The underestimation in Harris et al. (2021) compared to our result can 
be attributed to the fact that the total carbon loss in Harris et al. (2021) 
was from stand-replacing disturbances and did not account for the car-
bon loss from degradation. 

5.2. Relationships of AGC change with forest age and tree species 

Forest age has a direct impact on its ability to absorb carbon from the 
atmosphere (Besnard et al., 2021). Our results revealed that the net AGC 
gain peaked in forests aged 50–70 years old, supporting previous finding 
that forests at this age have the largest carbon sequestration ability 
(Kolari et al., 2004). This is due to the fact that boreal forests at this 
stand age (50–70 years old) are typically characterized by closed can-
opies, and their leaf area index (LAI) generally reaches maximum values 
(Goulden et al., 2011). Since leaves serve as the primary location for 
photosynthesis in plants, the photosynthetic capacity of vegetation im-
proves with an increase of LAI (Chen et al., 2019). During this stage 
(50–70 years old), vegetation respiration is typically weak (Goulden 
et al., 2011), resulting in a rapid accumulation of vegetation AGC. Our 
results showed a shift in the net AGC change from an increase to a 
decline as the forest age exceeded 70 years. This result differs from 
previous study that suggested old-growth forests uaually function as 
carbon sinks (Luyssaert et al., 2008). The decline in net AGC change in 
forests older than 70 years may be attributed to the forest area loss 
caused by disturbances. By analyzing AGC loss in forests older than 70 
years, it was found that AGC loss occurred mainly in the Taiga plain and 
Boreal plain ecoregion, which shown the greatest forest area loss ac-
cording to Hansen et al. (2013) (Figure S8). This result suggests that as 
forests continue to age, they become more vulnerable to disturbances 
(Kurz et al., 2008b), ultimately resulting in forest AGC loss. 

Our results also showed that aspen was a carbon source over the 
study period. This could be partly due to the weak resistance of aspen to 
fire (Shinneman et al., 2013). In Canada, crown fires were found to be 
the predominant forest fire regime (de Groot et al., 2013). Aspen, due to 
their vulnerability to crown fires, is particularly affected by this type of 
fire (Shinneman et al., 2013). The thin bark of aspen renders it vulner-
able to mixed- or high-severity effects even from low-intensity fires. 
Furthermore, surviving aspen trees often experience post-fire stress and 
are highly susceptible to secondary mortality agents (i.e., drought, insect 
outbreaks and pathogens) (Baker, 2009). 

5.3. AGC loss caused by forest cover loss and degradation 

Our results showed that AGC loss due to forest degradation is 5 times 
greater than AGC loss due to forest cover loss. This is partly because we 
attributed degradation to mechanisms not causing forest cover loss. 
Forest degradation resulting from selective logging (Wang et al., 2021), 
insect outbreaks (Kurz et al., 2008a), wildfire (Phillips et al., 2022), and 
drought (Wu and Chen, 2013) can have severe impacts on carbon sinks 
in North American boreal forests. According to our estimate, the 
considerable AGC loss stemming from forest degradation should be 
explicitly factored into carbon budget assessments in North American 
boreal forests. 

We estimated that almost half of the AGC loss due to forest cover loss 
comes from stand-replacing fire, supporting the primary role of stand- 
replacing fire in causing carbon loss in this region. Fire stands out as 
the foremost factor causing stand-replacing disturbance in North 
American boreal forests, attributed to the vulnerability of tree species to 
crown fires (Rogers et al., 2015). This type of fire completely burns the 
aboveground biomass, leading to substantial carbon loss (Zhang et al., 
2016). In addition, our results showed that more than half of the AGC 
loss resulting from forest cover loss comes from other stand-replacing 
processes (e.g., clear-cutting, severe insect outbreaks and drought), 
indicating that the role of these processes cannot be ignored in esti-
mating carbon loss in North American boreal forests. In recent years, 
under the influence of global warming, stand-replacing processes have 
become increasingly severe (Zhang et al., 2022). The impact of these 
processes should be emphasized in future estimates of the carbon bal-
ance of boreal forests. 

5.4. Limitations of this study and prospects 

The coarse spatial resolution (0.25 degree) of the L-VOD data used in 
this study limited its capacity to estimate AGC dynamics at a finer scale 
(Fan et al., 2022). Constrained by the spatial resolution of L-VOD data, 
both tree species and forest age data were aggregated to 0.25 degree 
spatial resolution to explore the spatial–temporal variation of AGC 
across different tree species and forest ages. Yet, the tree species data at 
0.25 degree spatial resolution could lead to the loss of some tree species. 
Thus, the aggregated tree species data only reflects AGC variation for the 
major tree species. Furthermore, at a spatial resolution of 0.25 degrees, 
the forest age data could neglect the spatial variability of forest age 
within a pixel scale, resulting in the underestimation of age in old- 
growth forests and the overestimation of age in young forests. Thus, 
future studies should consider finer spatial resolution L-VOD data to 
accurately estimate AGC and analyze AGC dynamics for finer-scale tree 
species and forest ages. 

The study period from 2016 to 2021 is not long enough to monitor 
the AGC dynamics over a longer time series. The current retrieval of L- 
VOD from merged SMOS and SMAP satellite data mainly focuses on 
improving the accuracy of the algorithm (Li et al., 2022). In the future, 
studies should concentrate on retrieving longer time series of SMOSS-
MAP L-VOD products to estimate the AGC dynamics over a longer time 
period in North American boreal forests. 

This study only concentrated on the live aboveground biomass, and 
did not address dead wood biomass (e.g., coarse woody debris) and 

Fig. 7. The AGC loss stemming from forest cover loss and degradation. (a) AGC 
loss stemming from forest cover loss and degradation. (b) AGC loss stemming 
from stand-replacing fire and other stand-replacing processes. 
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belowground biomass (e.g., root materials, soils, peatlands, and lakes). 
A previous study revealed that stand-replacing disturbances or degra-
dation not only cause immediate CO2 release but also increase carbon 
stocks in dead wood, leading to delayed CO2 emissions from decaying 
debris and litter (Fan et al., 2022). Furthermore, belowground biomass 
(e.g., root materials, soils, peatlands, and lakes) accounts for 93 % of the 
terrestrial carbon pool (Scharlemann et al., 2014), playing a crucial role 
in determining whether North American boreal forests function as a 
carbon sink or a carbon source, which is not considered in this study. 
Thus, future studies that include assessments of live aboveground 
biomass, dead wood biomass, and belowground biomass will enable a 
comprehensive assessment of the contribution of North American boreal 
forests to global carbon dynamics. 

6. Conclusion 

Estimating AGC based on L-VOD provides new insights into how the 
AGC of western North American boreal forests changes. This study used 
L-VOD to estimate AGC in western North American boreal forests from 
2016 to 2021 and analyzed the spatial–temporal variations of AGC. By 
combining EPS’s Level 2 Ecoregions data, forest age data, and tree 
species data, we explored AGC changes for different eco-regions, forest 
age, and tree species. According to the global forest cover loss data, we 
further estimated the total AGC loss caused by forest cover loss and 
degradation. Our results showed that the average AGC density in the 
study region was 23.72 Mg C/ha, and variations observed based on 
latitude, forest age, eco-region, and tree species. Annual AGC changes 
indicated that western North American boreal forests experienced a net 
AGC increase of + 28.49 Tg C/yr from 2016 to 2021, suggesting that 
these forests acted as a net AGC sink during the study period. Forests at 
intermediate stand ages (50–70 years old) contributed the most to the 
AGC increase, followed by forests aged 30–50 years. Yet, forests older 
than 70 years showed a net AGC decrease. Additionally, both spruce- 
and pine forests showed a net AGC increase, while aspen forests were 
found to have a net AGC decrease. Our result also showed that AGC loss 
due to forest degradation is 5 times greater than AGC loss due to forest 
cover loss. These results suggest that forest degradation is an important 
process driving AGC loss in North American boreal forests. Therefore, 
more attention should be paid to forest degradation in future forest 
management to protect these forests as a sustainable AGC sink. 
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Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B., Baghdadi, N., 2020. Global 

L. Yu et al.                                                                                                                                                                                                                                       

https://doi.org/10.11888/Terre.tpdc.301109
https://doi.org/10.11888/Terre.tpdc.301109
https://doi.org/10.1016/j.jag.2024.103729
https://doi.org/10.1016/j.jag.2024.103729
http://refhub.elsevier.com/S1569-8432(24)00083-9/h0005
http://refhub.elsevier.com/S1569-8432(24)00083-9/h0005
https://doi.org/10.1088/1748-9326/aaeaeb
https://doi.org/10.1088/1748-9326/aaeaeb
https://doi.org/10.5194/essd-13-4881-2021
https://doi.org/10.1038/s41559-018-0530-6
https://doi.org/10.1038/s41559-018-0530-6
https://doi.org/10.1029/2018ef000890
https://doi.org/10.1029/1999gb001207
https://doi.org/10.1029/1999gb001207
https://doi.org/10.1038/s41467-019-12257-8
https://doi.org/10.1016/j.foreco.2012.07.033
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.1038/s41477-019-0478-9
https://doi.org/10.1038/s41561-022-01087-x
https://doi.org/10.1016/j.rse.2022.113283
https://doi.org/10.1016/j.rse.2022.113283


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103729

9

Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A 
Review. Remote Sens. 12 (18), 2915. https://doi.org/10.3390/rs12182915. 

Gao, Y., Skutsch, M., Paneque-Gálvez, J., Ghilardi, A., 2020. Remote sensing of forest 
degradation: a review. Environ. Res. Lett. 15 (10), 103001 https://doi.org/10.1088/ 
1748-9326/abaad7. 

Gao, S., Zhou, T., Zhao, X., Wu, D., Li, Z., Wu, H., Du, L., Luo, H., 2016. Age and climate 
contribution to observed forest carbon sinks in East Asia. Environ. Res. Lett. 11 (3), 
034021 https://doi.org/10.1088/1748-9326/11/3/034021. 

Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., Schepaschenko, D.G., 2015. 
Boreal forest health and global change. Science 349 (6250), 819–822. https://doi. 
org/10.1126/science.aaa9092. 

Giglio, L., Schroeder, W., Justice, C.O., 2016. The collection 6 MODIS active fire 
detection algorithm and fire products. Remote Sens. Environ. 178, 31–41. https:// 
doi.org/10.1016/j.rse.2016.02.054. 

Goulden, M.L., McMillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W., 
Bond-Lamberty, B.P., 2011. Patterns of NPP, GPP, respiration, and NEP during 
boreal forest succession. Glob. Change Biol. 17 (2), 855–871. https://doi.org/ 
10.1111/j.1365-2486.2010.02274.x. 

Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Pak, B.C., Baker, D., Bousquet, P., 
Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., 
Maksyutov, S., Peylin, P., Prather, M., Taguchi, S., 2004. Transcom 3 inversion 
intercomparison: Model mean results for the estimation of seasonal carbon sources 
and sinks. Glob. Biogeochem. Cycle 18 (1), GB1010. https://doi.org/10.1029/ 
2003gb002111. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., 
Chini, L., Justice, C.O., Townshend, J.R., 2013. High-resolution global maps of 21st- 
century forest cover change. Science 342 (6160), 850–853. https://doi.org/ 
10.1126/science.1244693. 

Harris, N.L., Brown, S., Hagen, S.C., Saatchi, S.S., Petrova, S., Salas, W., Hansen, M.C., 
Potapov, P.V., Lotsch, A., 2012. Baseline map of carbon emissions from deforestation 
in tropical regions. Science 336 (6088), 1573–1576. https://doi.org/10.1126/ 
science.1217962. 

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., 
Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman- 
Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 2021. 
Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11 (3), 
234–240. https://doi.org/10.1038/s41558-020-00976-6. 

Hayes, D.J., Turner, D.P., Stinson, G., McGuire, A.D., Wei, Y., West, T.O., Heath, L.S., 
Jong, B., McConkey, B.G., Birdsey, R.A., Kurz, W.A., Jacobson, A.R., Huntzinger, D. 
N., Pan, Y., Post, W.M., Cook, R.B., 2012. Reconciling estimates of the contemporary 
North American carbon balance among terrestrial biosphere models, atmospheric 
inversions, and a new approach for estimating net ecosystem exchange from 
inventory-based data. Glob. Change Biol. 18 (4), 1282–1299. https://doi.org/ 
10.1111/j.1365-2486.2011.02627.x. 

Hermosilla, T., Bastyr, A., Coops, N.C., White, J.C., Wulder, M.A., 2022. Mapping the 
presence and distribution of tree species in Canada’s forested ecosystems. Remote 
Sens. Environ. 282, 113276 https://doi.org/10.1016/j.rse.2022.113276. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview 
of the radiometric and biophysical performance of the MODIS vegetation indices. 
Remote Sens. Environ. 83 (1–2), 195–213. https://doi.org/10.1016/S0034-4257 
(02)00096-2. 

Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., Berninger, F., 2004. Carbon 
balance of different aged Scots pine forests in Southern Finland. Glob. Change Biol. 
10 (7), 1106–1119. https://doi.org/10.1111/j.1529-8817.2003.00797.x. 

Kurz, W.A., 2010. An ecosystem context for global gross forest cover loss estimates. Proc. 
Natl. Acad. Sci. U.S.A. 107 (20), 9025–9026. https://doi.org/10.1073/ 
pnas.1004508107. 

Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., 
Ebata, T., Safranyik, L., 2008a. Mountain pine beetle and forest carbon feedback to 
climate change. Nature 452 (7190), 987–990. https://doi.org/10.1038/ 
nature06777. 

Kurz, W.A., Stinson, G., Rampley, G.J., Dymond, C.C., Neilson, E.T., 2008b. Risk of 
natural disturbances makes future contribution of Canada’s forests to the global 
carbon cycle highly uncertain. Proc. Natl. Acad. Sci. u. s. a. 105 (5), 1551–1555. 
https://doi.org/10.1073/pnas.0708133105. 

Kurz, W.A., Shaw, C.H., Boisvenue, C., Stinson, G., Metsaranta, J., Leckie, D., Dyk, A., 
Smyth, C., Neilson, E.T., 2013. Carbon in Canada’s boreal forest — A synthesis. 
Environ. Rev. 21 (4), 260–292. https://doi.org/10.1139/er-2013-0041. 

Li, X., Wigneron, J.-P., Frappart, F., Lannoy, G.D., Fan, L., Zhao, T., Gao, L., Tao, S., 
Ma, H., Peng, Z., Liu, X., Wang, H., Wang, M., Moisy, C., Ciais, P., 2022. The first 
global soil moisture and vegetation optical depth product retrieved from fused SMOS 
and SMAP L-band observations. Remote Sens. Environ. 282, 113272 https://doi.org/ 
10.1016/j.rse.2022.113272. 

Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., 
Wang, G., 2015. Recent reversal in loss of global terrestrial biomass. Nat. Clim. 
Chang. 5 (5), 470–474. https://doi.org/10.1038/nclimate2581. 

Loboda, T., Hoy, E., Carroll, M., 2019. ABoVE: Study Domain and Standard Reference 
Grids, Version 2. ORNL DAAC, Oak Ridge, Tennessee, USA, http://doi.rog/https:// 
doi.org/10.3334/ORNLDAAC/1527. 

Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., 
Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455 (7210), 
213–215. https://doi.org/10.1038/nature07276. 

Maltman, J.C., Hermosilla, T., Wulder, M.A., Coops, N.C., White, J.C., 2023. Estimating 
and mapping forest age across Canada’s forested ecosystems. Remote Sens. Environ. 
290, 113529 https://doi.org/10.1016/j.rse.2023.113529. 

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J., 
John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P.S.A., Berner, L.T., Bhatt, U. 
S., Bjorkman, A.D., Blok, D., Bryn, A., Christiansen, C.T., Cornelissen, J.H.C., 
Cunliffe, A.M., Elmendorf, S.C., Forbes, B.C., Goetz, S.J., Hollister, R.D., de Jong, R., 
Loranty, M.M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. 
C., Parmentier, F.-J.-W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P.F., 
Thomas, H.J.D., Tømmervik, H., Treharne, R., Tweedie, C.E., Walker, D.A., 
Wilmking, M., Wipf, S., 2020. Complexity revealed in the greening of the Arctic. Nat. 
Clim. Chang. 10 (2), 106–117. https://doi.org/10.1038/s41558-019-0688-1. 

Omernik, J.M., Griffith, G.E., 2014. Ecoregions of the conterminous United States: 
evolution of a hierarchical spatial framework. Environ. Manage. 54 (6), 1249–1266. 
https://doi.org/10.1007/s00267-014-0364-1. 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., 
Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., 
McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and 
Persistent Carbon Sink in the World’s Forests. Science 333 (6045), 988–993. https:// 
doi.org/10.1126/science.1201609. 

Phillips, C.A., Rogers, B.M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J.T., 
Frumhoff, P.C., 2022. Escalating carbon emissions from North American boreal 
forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8 
(17), eabl7161. https://doi.org/10.1126/sciadv.abl7161. 

Pregitzer, K.S., Euskirchen, E.S., 2004. Carbon cycling and storage in world forests: 
biome patterns related to forest age. Glob. Change Biol. 10 (12), 2052–2077. https:// 
doi.org/10.1111/j.1365-2486.2004.00866.x. 

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., 
Doughty, R., Zhang, Y., Liu, F., Sitch, S., Moore, B., 2021. Carbon loss from forest 
degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. 
Chang. 11 (5), 442–448. https://doi.org/10.1038/s41558-021-01026-5. 

Rogers, B.M., Soja, A.J., Goulden, M.L., Randerson, J.T., 2015. Influence of tree species 
on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8 (3), 
228–234. https://doi.org/10.1038/ngeo2352. 

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., 
Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A., 
2011. Benchmark map of forest carbon stocks in tropical regions across three 
continents. Proc. Natl. Acad. Sci. U.S.A. 108 (24), 9899–9904. https://doi.org/ 
10.1073/pnas.1019576108. 

Santoro, M.C., O. , 2023. ESA Biomass Climate Change Initiative (Biomass_cci): Global 
datasets of forest above-ground biomass for the years 2010, 2017, 2018, 2019 and 
2020, v4. NERC EDS Centre for Environmental Data Analysis, 21 April 2023. 
Available from.https://dx.doi.org/10.5285/af60720c1e404a9e9d2c145d2b2ead4e. 

Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: 
understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5 
(1), 81–91. https://doi.org/10.4155/cmt.13.77. 

Shendryk, Y., 2022. Fusing GEDI with earth observation data for large area aboveground 
biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 115, 103108 https://doi.org/ 
10.1016/j.jag.2022.103108. 

Shinneman, D.J., Baker, W.L., Rogers, P.C., Kulakowski, D., 2013. Fire regimes of 
quaking aspen in the Mountain West. For. Ecol. Manage. 299, 22–34. https://doi. 
org/10.1016/j.foreco.2012.11.032. 

Sothe, C., Gonsamo, A., Arabian, J., Kurz, W.A., Finkelstein, S.A., Snider, J., 2022. Large 
Soil Carbon Storage in Terrestrial Ecosystems of Canada. Glob. Biogeochem. Cycle 
36 (2). https://doi.org/10.1029/2021gb007213. 

Spawn, S.A., Gibbs., H.K., 2020. Global Aboveground and Belowground Biomass Carbon 
Density Maps for the Year 2010. ORNL DAAC, Oak Ridge, Tennessee, USA., http:// 
doi.rog/https://doi.org/10.3334/ORNLDAAC/1763. 

Stinson, G., Kurz, W.A., Smyth, C.E., Neilson, E.T., Dymond, C.C., Metsaranta, J.M., 
Boisvenue, C., Rampley, G.J., Li, Q., White, T.M., Blain, D., 2011. An inventory- 
based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. 
Change Biol. 17 (6), 2227–2244. https://doi.org/10.1111/j.1365-2486.2010.02369. 
x. 

Wang, J.A., Baccini, A., Farina, M., Randerson, J.T., Friedl, M.A., 2021. Disturbance 
suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. 
Chang. 11 (5), 435–441. https://doi.org/10.1038/s41558-021-01027-4. 

Wang, J., Taylor, A.R., D’Orangeville, L., 2023. Warming-induced tree growth may help 
offset increasing disturbance across the Canadian boreal forest. Proc. Natl. Acad. Sci. 
u. s. a. 120 (2) https://doi.org/10.1073/pnas.2212780120. 

Wigneron, J.P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M.J., Richaume, P., 
Ferrazzoli, P., de Rosnay, P., Gurney, R., Calvet, J.C., Grant, J.P., Guglielmetti, M., 
Hornbuckle, B., Mätzler, C., Pellarin, T., Schwank, M., 2007. L-band Microwave 
Emission of the Biosphere (L-MEB) Model: Description and calibration against 
experimental data sets over crop fields. Remote Sens. Environ. 107 (4), 639–655. 
https://doi.org/10.1016/j.rse.2006.10.014. 

Wu, C., Chen, J.M., 2013. Diverse responses of vegetation production to interannual 
summer drought in North America. Int. J. Appl. Earth Obs. Geoinf. 21, 1–6. https:// 
doi.org/10.1016/j.jag.2012.08.001. 

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., 
Pang, Y., Rahman, A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X., 2019. Remote 
sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote 
Sens. Environ. 233, 111383 https://doi.org/10.1016/j.rse.2019.111383. 

Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A.A., Bowman, K., Worden, J., 
Liu, J., Yin, Y., Domke, G., McRoberts, R.E., Woodall, C., Nabuurs, G.J., de-Miguel, 
S., Keller, M., Harris, N., Maxwell, S., Schimel, D., 2021. Changes in global terrestrial 
live biomass over the 21st century. Sci. Adv. 7(27), eabe9829. http://doi.rog/ 
10.1126/sciadv.abe9829. 

Yang, H., Ciais, P., Frappart, F., Li, X.J., Brandt, M., Fensholt, R., Fan, L., Saatchi, S., 
Besnard, S., Deng, Z., Bowring, S., Wigneron, J.P., 2023. Global increase in biomass 

L. Yu et al.                                                                                                                                                                                                                                       

https://doi.org/10.3390/rs12182915
https://doi.org/10.1088/1748-9326/abaad7
https://doi.org/10.1088/1748-9326/abaad7
https://doi.org/10.1088/1748-9326/11/3/034021
https://doi.org/10.1126/science.aaa9092
https://doi.org/10.1126/science.aaa9092
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1111/j.1365-2486.2010.02274.x
https://doi.org/10.1111/j.1365-2486.2010.02274.x
https://doi.org/10.1029/2003gb002111
https://doi.org/10.1029/2003gb002111
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1217962
https://doi.org/10.1126/science.1217962
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1111/j.1365-2486.2011.02627.x
https://doi.org/10.1111/j.1365-2486.2011.02627.x
https://doi.org/10.1016/j.rse.2022.113276
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1111/j.1529-8817.2003.00797.x
https://doi.org/10.1073/pnas.1004508107
https://doi.org/10.1073/pnas.1004508107
https://doi.org/10.1038/nature06777
https://doi.org/10.1038/nature06777
https://doi.org/10.1073/pnas.0708133105
https://doi.org/10.1139/er-2013-0041
https://doi.org/10.1016/j.rse.2022.113272
https://doi.org/10.1016/j.rse.2022.113272
https://doi.org/10.1038/nclimate2581
https://doi.org/10.1038/nature07276
https://doi.org/10.1016/j.rse.2023.113529
https://doi.org/10.1038/s41558-019-0688-1
https://doi.org/10.1007/s00267-014-0364-1
https://doi.org/10.1126/science.1201609
https://doi.org/10.1126/science.1201609
https://doi.org/10.1126/sciadv.abl7161
https://doi.org/10.1111/j.1365-2486.2004.00866.x
https://doi.org/10.1111/j.1365-2486.2004.00866.x
https://doi.org/10.1038/s41558-021-01026-5
https://doi.org/10.1038/ngeo2352
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.4155/cmt.13.77
https://doi.org/10.1016/j.jag.2022.103108
https://doi.org/10.1016/j.jag.2022.103108
https://doi.org/10.1016/j.foreco.2012.11.032
https://doi.org/10.1016/j.foreco.2012.11.032
https://doi.org/10.1029/2021gb007213
https://doi.org/10.1111/j.1365-2486.2010.02369.x
https://doi.org/10.1111/j.1365-2486.2010.02369.x
https://doi.org/10.1038/s41558-021-01027-4
https://doi.org/10.1073/pnas.2212780120
https://doi.org/10.1016/j.rse.2006.10.014
https://doi.org/10.1016/j.jag.2012.08.001
https://doi.org/10.1016/j.jag.2012.08.001
https://doi.org/10.1016/j.rse.2019.111383


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103729

10

carbon stock dominated by growth of northern young forests over past decade. Nat. 
Geosci. https://doi.org/10.1038/s41561-023-01274-4. 

Yu, L., Fan, L., Ciais, P., Sitch, S., Fensholt, R., Xiao, X., Yuan, W., Chen, J., Zhang, Y., 
Wu, X., Qin, Y., Ma, M., Chang, Z., Wang, M., Yan, K., Song, L., Wigneron, J.-P., 
2023. Carbon dynamics of Western North American boreal forests in response to 
stand-replacing disturbances. Int. J. Appl. Earth Obs. Geoinf. 122, 103410 https:// 
doi.org/10.1016/j.jag.2023.103410. 

Zhang, Y., Qin, D., Yuan, W., Jia, B., 2016. Historical trends of forest fires and carbon 
emissions in China from 1988 to 2012. J. Geophys. Res.-Biogeosci. 121 (9), 
2506–2517. https://doi.org/10.1002/2016jg003570. 

Zhang, Y., Woodcock, C.E., Chen, S., Wang, J.A., Sulla-Menashe, D., Zuo, Z., Olofsson, P., 
Wang, Y., Friedl, M.A., 2022. Mapping causal agents of disturbance in boreal and 
arctic ecosystems of North America using time series of Landsat data. Remote Sens. 
Environ. 272, 112935 https://doi.org/10.1016/j.rse.2022.112935. 

Zhao, Z., Ciais, P., Wigneron, J.-P., Santoro, M., Brandt, M., Kleinschroth, F., L. Lewis, S., 
Chave, J., Fensholt, R., Laporte, N., Jean Sonwa, D., S. Saatchi, S., Fan, L., Yang, H., 
Li, X., Wang, M., Zhu, L., Xu, Y., He, J., Li, W., 2023. Central African biomass carbon 
loss counterbalanced by carbon gains during 2010-2019. One Earth (accept). 

L. Yu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1038/s41561-023-01274-4
https://doi.org/10.1016/j.jag.2023.103410
https://doi.org/10.1016/j.jag.2023.103410
https://doi.org/10.1002/2016jg003570
https://doi.org/10.1016/j.rse.2022.112935

	Forest degradation contributes more to carbon loss than forest cover loss in North American boreal forests
	1 Introduction
	2 Materials
	2.1 The study region
	2.2 Land cover map
	2.3 Aboveground biomass benchmark map
	2.4 L-VOD
	2.5 Forest age data
	2.6 Tree species data
	2.7 Forest cover loss data
	2.8 Active fire dataset
	2.9 Stand-replacing fire

	3 Methods
	3.1 L-VOD derived annual AGC dynamics
	3.2 AGC loss caused by forest cover loss and degradation
	3.3 Statistical analysis

	4 Results
	4.1 Spatial patterns of AGC
	4.2 AGC dynamics from 2016 to 2021
	4.3 AGC loss resulting from forest cover loss and degradation

	5 Discussion
	5.1 AGC dynamics from 2016 to 2021
	5.2 Relationships of AGC change with forest age and tree species
	5.3 AGC loss caused by forest cover loss and degradation
	5.4 Limitations of this study and prospects

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary material
	References


