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A B S T R A C T   

There is a growing interest in estimating urban CO2 emission from space-borne imagery of XCO2. Here, we 
evaluate computationally-light methods (mass-balance approaches and inversions of Gaussian plume models) for 
estimating urban emissions with Paris, France, as an example. This evaluation is based on the application of those 
methods to synthetic high-resolution images of the XCO2 field in the Paris area, either with hypothetical 165km×

200km images at 1km× 1km resolution or using actual ≈2km resolution sampling by OCO-2 and OCO-3. Our 
work quantifies and analyzes the different sources of error when applying these methods and the corresponding 
pre-processing steps in detail. We start with ideal test cases with perfect knowledge of the background con
centration field and of the driving effective wind and area of the plume from Paris, and without measurement 
noise in the images. Then we introduce sources of errors associated to these components of the estimation 
problem step by step. With the best configuration for the different methods, and when accounting for these 
sources of errors, we obtain total errors in the emission estimates with little bias (<10% of the actual emissions) 
and a relatively large interquartile range (≈75% of the actual emissions). Overall, the different methods that are 
tested show similar skills for the emission calculation. The two main sources of uncertainty are the estimates of 
the background concentration and of the effective wind speed. The error statistics are sensitive to meteorological 
conditions, mainly to the spatial variability of the wind direction, and to the variability of the background XCO2 

field. These sources of error and the results’ sensitivity to background and wind field variabilities are theoret
ically shared by the complex atmospheric inversion methods currently used to quantify urban emissions and the 
computationally-light methods tested here. Therefore, these conclusions can be extended to the general problem 
of quantifying urban CO2 emissions from XCO2 imagery. Using OCO-2-like or OCO-3-like samplings, rather than 
hypothetical 200 km wide images at 1 km resolution, increases the random uncertainty in the emission estimates 
but not the biases in these estimates.   

1. Introduction 

Urban areas encompass more than half of the global population, 
hence a significant fraction of fossil fuel emissions (UNDESA, 2018). 
Many cities across the globe have decided to take their part in GHG 
emission reduction (e.g., Covenant of Mayors: https://www.covenantof 
mayors.eu). To assess their reduction pathway, city governments and 
climate policy makers monitor their emissions (both direct -e.g., from 
vehicle traffic in the cities- and indirect -e.g., from road transport or 
power plants outside their boundaries supplying the cities) through self- 

reported inventories (SRIs). However, a recent comparison between 
published SRIs of US cities and the Vulcan inventory by Gurney et al. 
(2021) showed large discrepancies between these two datasets, despite a 
geographic alignment of the city boundaries and emission sectors, gases, 
and scope. This comparison pointed out the inaccuracy of the emission 
evaluation in most SRIs. In principle, quantifying CO2 emissions of cities 
via atmospheric data could provide accurate information to support the 
cities’ SRIs. Studies such as Bréon et al. (2015) or Lauvaux et al. (2016) 
have initiated the assessment of the potential of urban ground-based 
sensors network to quantify CO2 emissions at city scale. However, the 
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required network density (Kort et al., 2013), the cost of the sensors, as 
well as the calibration and maintenance protocols, make the wide 
deployment of this solution difficult (Wu et al., 2016). In principle, 
satellites, with their global coverage, can support quantifying the 
emissions from a larger number of cities and thus the verification of 
mitigation trajectories at large-scale (Janssens-Maenhout et al., 2020). 
However, inverting city emissions using satellite data requires adequate 
observation sampling and raises specific challenges (Ciais et al., 2015). 
Current missions dedicated to monitoring CO2 use passive instruments 
measuring the absorption of reflected sunlight in the short wave infrared 
(SWIR). Such measurements are used to derive the column-average dry 
air mole fraction of CO2 (XCO2). There is currently a lack of missions 
providing observations supporting the estimate of urban emissions. The 
Orbiting Carbon Observatory missions (OCO-2/3) of NASA/JPL offers 
the most suitable dataset to assess the potential of quantifying urban 
emission from space (Chevallier et al., 2022; Lei et al., 2021; Wu et al., 
2020; Ye et al., 2017; Zheng et al., 2020). 

OCO-2’s main goal is the large-scale monitoring of CO2 natural 
fluxes. It has a narrow swath on the ground (<10km) and provides 
measurements at high resolution: at 1.25 km× 2.5 km in nadir mode 
(Eldering et al., 2017). At such a high resolution, OCO-2 captures local 
enhancements of CO2 concentrations when the satellite swath crosses a 
significant mass of CO2 emitted by a city or a large point source 
downwind to this source, i.e., the plume from this source. Different types 
of methods can be used to estimate the emission of the source based on 
the detected enhancements. The observed enhancements can be 
compared to the theoretical enhancements given by a transport model, 
and thus used to rescale the source emission in this model. The transport 
model can be a computationally expensive Eulerian or Lagrangian 
model (Wu et al., 2018; Ye et al., 2017), or a simpler model such as a 
Gaussian plume model (Krings et al., 2011). Alternatively, direct flux 
integration techniques, generally called “mass-balance methods”, can be 
used. These rely on direct multiplication of the enhancements by the 
wind to derive an estimate of the source emission (Zheng et al., 2020). 
Hereafter, all these methods are called inversion methods, as they 
analyze the consequence of the release of XCO2 in the atmosphere i.e. 
the local XCO2 enhancements, to quantify the cause of this release, i.e. 
the source emission. 

However, OCO-2 captures only a small portion of the city plumes 
when crossing them, as its swath is relatively narrow. Indeed, the typical 
length of these plumes is one to a few hundred kilometers. Using images 
that are wide enough to cover the whole sources and a large part of their 
plumes should improve the accuracy of emission estimates (Santaren 
et al., 2021). Indeed, a larger image width provides a broader view of the 
plumes’ shape and of the background fields, and more pixels to analyze 
the plume XCO2 enhancement. It thus increases the potential to detect 
pixels covered by the urban plume, i.e., with significant XCO2 
enhancement due to the city emissions. Furthermore, it increases the 
potential to filter or limit the impact of observational noise and back
ground concentration variations, which are due to the meteorological 
conditions or to other CO2 sources and sinks. Future satellite missions 
will provide high-resolution observations within large swaths (Santaren 
et al., 2020). Despite its moderate extent of about 80km× 80km, the 
Snapshot Area Map (SAM) mode of the OCO-3 instrument, onboard the 
International Space Station (Eldering et al., 2019), is the first attempt to 
deliver images of plumes from cities and industrial plants at ≈2km 
resolution using the pointing capability of the instrument. Thus OCO-3 is 
considered a demonstrator of the future high-resolution imagers like the 
CO2M constellation (Kuhlmann et al., 2021). This study analyzes the 
potential of such imagery for monitoring CO2 emissions from urban 
centers. 

Past studies have examined the potential to monitor urban emissions 
with XCO2 large-swath imagers using inversion methods which relied on 
traditional Bayesian frameworks and complex mesoscale Eulerian or 
Lagrangian atmospheric transport models (Broquet et al., 2018; Pillai 
et al., 2016). These studies focused primarily on the propagation of 

errors associated with satellite data into emission estimates. In such 
inversion frameworks, tranport model errors are often represented by 
unbiased random noise without spatial correlation (Rayner et al., 2019). 
Only a few inversion systems offer the opportunity to adjust the atmo
spheric transport in parallel with the emissions due to the complexity 
implied by such a concept (Liu et al., 2012). However, due to un
certainties in the meteorological fields, in the emission vertical injection 
profile and in vertical motion at high spatial and temporal resolutions, 
atmospheric transport can be responsible for significant mismatches 
between simulated and observed plumes in terms of location, shape, or 
magnitude of the corresponding XCO2 enhancements. For example, Ye 
et al. (2017) pointed out mismatches between the locations of the XCO2 
enhancements corresponding to city plumes simulated by the Weather 
Research and Forecasting (WRF)-Chem model (Skamarock et al., 2008) 
and observed by OCO-2. Consequently, transport errors introduce large 
uncertainties and even biases in emissions estimates. Inversion of 
simplified transport models (like Gaussian models) or direct flux inte
gration techniques relying on pre-calculated wind fields, which are 
studied here, are less computationally expensive (Zheng et al., 2020) 
and offer a more flexible representation of atmospheric transport than 
mesoscale models. In particular, their parameters can be easily adapted 
to fit the observed plume shape and direction. For example, Nassar et al. 
(2017) adjusted the direction of their Gaussian plume model to analyze 
the XCO2 enhancements in OCO-2 data corresponding to power plants 
and quantify the corresponding emissions. 

The low computational cost of these methods is critical for process
ing a large number of images. In October 2022, OCO-3 provided >3000 
SAMs with >1000 valid pixels over large cities and industrial sources. 
Future missions such as CO2M should provide many more images of 
plumes than OCO-3. The wide application of local scale atmospheric 
inversion approaches using Eulerian or Lagrangian models on these 
datasets should be hampered by the cost for setting-up, testing and 
running these models for each source. The light computational ap
proaches studied here can process large amounts of plume images, 
enabling the monitoring of many cities across the globe at a high tem
poral frequency and over multiple years (Chevallier et al., 2020). 

In this study, we assess the potential of XCO2 images to quantify 
urban CO2 emissions whith the most commonly-used computationally- 
light methods. Our evaluation uses synthetic observations over the Paris 
region, simulated based on a high-resolution inventory of fossil fuel 
emissions (Lian et al., 2022), biogenic fluxes from a simplified vegeta
tion model, and an Eulerian mesoscale atmospheric transport model. We 
compare three variants of Gaussian plume model inversions (GP) to 
several direct flux integration techniques: Integrated Mass Enhancement 
(IME), Source Pixel (SP), and Cross-Sectional (CS) methods. In a general 
way, these methods rely on the assumption of stationarity of the emis
sions and meteorology (wind), even though some of them can provide 
some flexibility to account for temporal variations in the emissions. 
Some studies have applied such methods to quantify urban CO2 emis
sions based on pseudo XCO2 images (Kuhlmann et al., 2020) or based on 
observed XCO2 plume cross-sections from OCO-2 (Chevallier et al., 
2020; Reuter et al., 2019; Zheng et al., 2020). However, these methods 
have never been fully evaluated or compared using various configura
tion options. We aim to maximize their performances by highlighting 
the optimal methods and parameters under various meteorological 
conditions. Using experiments with synthetic data where the true 
emission and concentrations are known, our assessment of the different 
methods and configurations rely on the comparison of their emission 
estimates to the true emissions. We focus on a specific area, the Paris 
metropolitan region, considering three observation modes. Our main 
observation mode assumes a 1 km resolution imagery over an area of 
165km× 200 km. The two other observation modes correspond to OCO- 
2 tracks and OCO-3 SAMs. 

Varon et al. (2018) evaluated the potential of the methods studied 
here to estimate stationary CH4 emissions from industrial point sources 
based on XCH4 images at <1 km resolution. However, the requirements 
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for the estimation of urban CO2 emission based on XCO2 images, with a 
sampling similar to CO2M, can differ from those highlighted by Varon 
et al. (2018). The urban emissions have a spatial distribution which 
generates plumes that are much wider and complex than the plumes 
from point sources. Current XCO2 images have a broader coverage than 
XCH4 images in Varon et al. (2018) but also a coarser spatial resolution. 
Therefore, we re-evaluate the computationally light inversion methods 
for the monitoring of urban XCO2 emissions based on current to near 
term XCO2 images. We also examine the individual pre-processing steps 
associated to these methods: mainly the computation of the effective 
wind speed (i.e., the average wind driving the location and shape of the 
XCO2 plume) and the detection in the XCO2 image of the targeted plume 
enhancements and of the corresponding XCO2 background. 

Section 2 presents the model and the pseudo data used for our tests; 
Section 3 describes the different configurations for the emission esti
mation methods, which combine the inversion methods and their pre- 
processing steps. Section 4 evaluates the results given by the different 
configurations and highlights the optimal ones. Finally, Section 5 dis
cusses the results, the potential errors not considered, and the perspec
tives for the light emission estimation methods. 

2. Idealized simulation and experiment protocol 

2.1. General description of the experiments 

We evaluate the emission estimation methods based on a large 
ensemble of pseudo-images of XCO2 centered on Paris, covering the full 
domain of simulation or corresponding to the actual XCO2 sampling 
from the OCO missions. The application of the estimation methods aims 
at retrieving the emissions from the core urban area of Paris at the time 
of the satellite overpass. This area covers Paris and most of its suburban 
area (see Section 2.2 for a precise definition of these geographical areas). 
The atmospheric plumes that can be detected and analyzed in satellite 
images over the region correspond better to the core urban area than to 
the areas within the different administrative boundaries. The core urban 
area is thus a suitable target for the emission estimation. The city center 
is taken as the point of coordinates 48◦ 51′12″ N 2◦ 20′55″ E. 

The Paris metropolitan area is located in a vast sedimentary basin 
with limited topography, about 150 km away from the coast of the En
glish Channel. The region encompasses about 10% of the national CO2 
emissions (sources: Origins.earth inventory, see Section 2.2 and CITEPA, 
see https://www.citepa.org/fr/2021-co2/, last access March 17th, 
2022) and 11% of the French population (6.8 million inhabitants) over a 
limited surface (0.1% of France surface). Paris is quite isolated from 
other major emitters. Due to its high population density and relatively 
compact urbanisation, the urban area of Paris generates a narrow plume 
that does not overlap other major urban plumes. Therefore, the plumes 
from Paris are easy to detect compared to those from other large 
metropolitan areas (Santaren et al., 2021). However, the XCO2 en
hancements due to the urban emissions simulated in our experiments 
hardly exceed 1 ppm locally, i.e., they are generally smaller than the 
random noise of current XCO2 spaceborne instruments. 

The idealized XCO2 data used in this study are simulated from 
December 1st 2019 to April 30th 2020 using the WRF-Chem model. For 
each day during this period, we extract the resulting XCO2 hourly fields 
between 10:00 and 16:00 (local time) to simulate XCO2 images for each 
observation mode. We conduct an ensemble of emission estimations on 
each of the corresponding 1064 pseudo-images (152 days × 7 h) for each 
observation mode. The timing for the extraction of the images varies in 
order to increase the number of weather conditions represented in the 
ensemble of tests, but restrained to daytime only. To date, all space- 
borne instruments dedicated to monitoring CO2 concentrations collect 
passive measurements of the reflected sunlight and thus provide day
time observations. While sun-synchronous missions like OCO-2 (or 
CO2M in the future) provide images at fixed local time, OCO-3 takes its 

SAMs at local times varying between 10:00 and 18:00 (Eldering et al., 
2019). 

2.2. Model configuration 

We use high-resolution simulations of hourly atmospheric CO2 
concentrations by WRF-Chem V3.9.1 based on the configuration 
described in Lian et al. (2019, 2021, 2022). The WRF model configu
ration uses a one-way nesting across three domains (D01, D02, and D03) 
at 25, 5, and 1 km horizontal resolution respectively, in which the 
innermost domain (D03, shown in Fig. 1) covers the Ile-de-France (IdF) 
region. IdF corresponds to an administrative area which includes the 
Paris core urban area and its surrounding, extending beyond Paris’ 
suburbs. The surface physics schemes in our simulation include the 
Building Effect Parameterization (BEP, (Martilli et al., 2002)), a multi- 
layer urban canopy model evaluated in Lian et al. (2021). To simulate 
turbulent motions in the Planetary Boundary Layer (PBL), we use the 
Mellor-Yamada-Janjic (MYJ) scheme (Janjic, 1990, 1994). This config
uration is used for the simulations from December 1st 2019 to April 30th 

2020. The ERA5 ECMWF re-analysis fields at 0,75◦x0,75◦ horizontal 
resolution are used to impose the meteorological initial and boundary 
conditions. The CO2 boundary conditions are interpolated from the 
Copernicus Atmosphere Monitoring System (CAMS; (Inness et al., 
2019)) analysis. The biogenic CO2 fluxes are calculated online in WRF- 
Chem by the diagnostic biosphere Vegetation Photosynthesis and 
Respiration Model (VPRM; (Ahmadov et al., 2007, 2009; Mahadevan 
et al., 2008). 

A combination of the high-resolution inventory produced by Origins. 
earth over IdF and of the global Open-source Data Inventory for 
Anthropogenic CO2 (ODIAC) (Oda et al., 2019) is used to simulate fossil 
fuel emissions over the entire simulation domain. Fig. 1 shows the 
spatial extent of the high-resolution inventory, which covers most of the 
metropolitan area. 

The Origins.earth inventory provides direct (Scope 1) hourly gridded 
CO2 emissions over Paris for six activity sectors (transportation, resi
dential, tertiary, industry including cement, energy, and waste) at the 
hourly time scale and at 1 km spatial resolution as described in Lian et al. 
(2022, 2023). The IdF total fossil fuel emissions are scaled to the re
ported emissions from the french official climate agency (CITEPA). The 
Origins.earth inventory has been coupled to WRF-Chem and evaluated 
against CO2 concentration data from six ground-based stations across 
the Paris metropolitan region (Lian et al., 2021). The data have been 
recorded using CO2 high-precision Picarro CRDS analyzers with WMO/ 
NOAA international calibration standards. This study confirms that our 
idealized simulations can reproduce the observed CO2 concentration 
gradients over the Paris area. 

ODIAC is a global gridded inventory of fossil fuel emissions at 1km×

1km spatial resolution and one-month temporal resolution based on 
power plant profiles and space-borne observations of nighttime lights 
(Oda et al., 2018). Temporal downscaling was applied to ODIAC using 
daily and hourly coefficients from the TIMES product of Nassar et al. 
(2013) to introduce high-frequency variations in the fossil fuel emissions 
at an hourly scale. 

We analyze separately the Paris core urban area (delimited by the 
light blue line in Fig. 1) to evaluate the potential to retrieve its emis
sions. The definition of the core urban area can be found in the Sup
porting Information of Lian et al. (2022). The XCO2 (and thus XCO2) 
enhancements from the core urban area correspond to the plume tar
geted by the emission estimation methods. Background CO2 correspond 
to the remaining contributors to the overall CO2 fields in the simulation 
domain, i.e., signals originating from the emissions within D03 but 
outside the core urban area, from the biogenic fluxes within D03, and 
from the lateral boundary conditions. 

The WRF-Chem simulations provide the “true” CO2 and meteoro
logical fields. The true signals from the individual flux components 
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detailed above are traced separately by the model. Among the true 
meteorological fields, wind, pressure and potential temperature are 
assumed to be known when applying the emission estimation methods. 
When analyzing real data, these fields are estimated with significant 
uncertainties. This corresponds to a source of error that has not been 
taken into account in this study. However, we discuss in Section 5.1 the 
potential impact of the uncertainties in the wind fields. 

The true CO2, relative humidity and pressure fields are used to 
compute the true XCO2 fields. The computation of the XCO2 value at 
longitude lon and latitude lat follows the simplification proposed by 
Broquet et al. (2018) to overcome the problem of the partial coverage of 
the vertical column by the WRF-Chem model: 

where Pdry is the dry air pressure, Psurf
dry the dry air surface pressure, Ptop

dry 

(≈50hPa) the pressure at the ceiling of the model and CO2 the CO2 dry 
air mole fraction. The second term of the integral assumes that the 
portion of the vertical columns of the atmosphere above the top of WRF- 

Chem corresponds to a homogeneous CO2 concentration of <

CO2

(
PTop

dry

)
>d03 (the mean CO2 concentration at the top of the model 

over domain 3). The underlying assumption is that the variations in the 
upper-atmosphere are small and occur over large spatial scales. There
fore, they should not significantly impact local signals in satellite im
ages, which are dominated by regional surface fluxes. Following Broquet 
et al. (2018) and Santaren et al. (2021), we also assume in this equation 
that the uniform vertical weighting function is a good approximation of 
the CO2 column-averaging kernels associated to actual XCO2 data. Other 
realistic choices of the vertical weighting function would not signifi
cantly impact the analysis and results in this study. 

2.3. Satellite pseudo-images 

Five different sampling configurations are used to generate the 
pseudo-images following three types of satellite observation. First, we 
use the entire WRF-Chem orthonormal grid at 1 km resolution for D03, 
which ignores the potential data loss due to clouds and represents a 
more favorable configuration than that of the future CO2M mission. This 

full sampling entirely exploits the spatial information on XCO2 from the 
model simulation in D03 at the observation time. Second, we use column 
samples corresponding to actual observation coverages from the OCO 
missions. We select cases with limited data loss due to clouds and quality 
control, as we do not apply gap-filling techniques to account for such a 
loss when using direct flux integration techniques (see Sections 4.5 and 
5.3). We select two typical tracks over the area from OCO-2 (OCO Sci
ence Team et al., 2020a) at approximately 1.4km2 resolution and two 
SAMs from OCO-3 (OCO Science Team et al., 2020b) at approximately 
3.7km2 resolution (cf Fig. 2 and Table 1). 

All the corresponding pseudo-images are extracted from the true 
hourly XCO2 1-km resolution field between 10:00 and 16:00 (see Section 

2.1) We add a noise on the XCO2 pseudo-data to represent measurement 
errors, using a Gaussian noise without spatial correlation and with 
0.7 ppm standard deviation. This value corresponds to the targeted 
precision for the individual XCO2 soundings of the CO2M mission (Sierk 
et al., 2021), similar to the current precision of OCO-2 XCO2 measure
ments (Worden et al., 2017). We choose not to study the effect of error 
spatial correlations on the inversion skills since the characterization of 
these correlations has not been documented (Santaren et al., 2020). 
However, we discuss their potential impact in Section 5.3. 

3. Emission estimation methods 

The different inversion methods we test here, i.e., the IME, CS and SP 
methods, and the three versions of the GP inversions (GP1, GP2 and 
GP3), share sequences of all or some of the following pre-processing 
steps (Fig. 3): (i) the definition of the plume area (Section 3.6), (ii) the 
identification of the background field and the separation of the plume 
signal from the background (Section 3.3), (iii) the identification of the 
plume centerline (Section 3.4), (iv) the estimation of the effective wind 
speed and direction (Section 3.6) and (v) the estimation of the area of 
the urban emissions which corresponds to the detected plume, i.e., the 
“footprint” of this detected plume (Section 3.8) before (vi) the actual 
inversion, i.e., the derivation of the fossil fuel CO2 emissions of the core 
urban area of Paris based on these different parameters (Section 3.7). We 
test different techniques for a given step, trying to identify those that are 

Fig. 1. Illustration of the modelling domain and of the different anthropogenic emission areas whose individual atmospheric signals are traced with WRF-Chem; the 
Figure shows the anthropogenic emissions on 9/12/2019 at 13:00. Simulations are performed at 1km× 1km resolution. The dark blue rectangle delimits the ODIAC 
(outside) and Origins.earth (inside) inventories used to prescribe the anthropogenic emissions. The light blue line shows the limits of the Paris core urban area. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

XCO2(lon, lat) =
1

Psurf
dry

(∫ PTop
dry

Psurf
dry

CO2
(
lon, lat,Pdry

)
dPdry + < CO2

(
PTop

dry

)
>d03*PTop

dry

)

(1)   
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the most accurate or that provide the most suitable inputs for the 
inversion. The following sections provide some general insights into 
these techniques and into the different parameters used for their appli
cation. Appendix A.1.1 gives more detailed information on their 
implementation. 

3.1. Definition of the plume area 

The true plume area is defined as the set of observation pixels where 
the true XCO2 signal from the core urban area is superior to 10− 6 ppm. 
This threshold has been set empirically considering the shape and 
typical amplitude (0.1ppm on average above the city) of the signal from 
the core urban area in the WRF-Chem simulations. We test two types of 
methods to identify the plume area when processing the satellite images. 

The first type of plume definition methods are denoted test-based 
methods and are adapted from the technique used by Kuhlmann et al. 
(2019) and Varon et al. (2018). They rely on statistical z-tests to identify 
observation pixels for which the relatively high XCO2 values are prob
ably associated with the plume. Our specific implementation of these 
methods follows five sub-steps (see the Appendix A.1.1). The first step 
consists in a preliminary estimate and removal of the background con
centration on the image. Here, we test 4 options to compute the back
ground concentration. They differ in terms of area of analysis, or in 
terms of computation of the background in this area. They are denoted: 
‘bckgp_mean’, ‘bckgp_med’, ‘bckgp_2df’ and ‘bckgp_upw’, because they 
are respectively based on the average, median value, planar fit of the 
whole XCO2 image and on the average of the XCO2 values upwind to the 
city. The second step consists in a smoothing of the residual image (once 

Fig. 2. Illustration of the different sampling configurations used to generate the pseudo-images: application to the WRF-Chem simulation of the XCO2 anthropogenic 
signal of the Paris core urban area for 09/12/2019 at 13:00. The titles of the subfigures for the OCO-2 and OCO-3 samplings indicate the corresponding time of 
acquisition. 

Table 1 
Main characteristics of the different samplings used to generated the XCO2 pseudo-images.   

Resolution Num. of obs. pixels Dist. to city Mission Date 

1km2 ref. sampling 1km2 165× 200 px above None – 
oco2_180224 ≈1.5km2 533 px 46 km OCO-2 24/02/2018 12:31 
oco2_170316 ≈1.3km2 897 px 25 km OCO-2 16/03/2017 12:37 
oco3_200413 ≈3.6km2 2063 px above OCO-3 13/04/2020 14:25 
oco3_200416 ≈3.7km2 2003 px above OCO-3 16/04/2016 10:26  

Fig. 3. Summary of the pre-processing steps needed for the different inversion methods. Depending of the method used for the plume definition, the emission zone 
definition and plume definition can be switch. 
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the preliminary background estimate has been removed). For each pixel, 
a new XCO2 value is defined via a smoothing over its neighborhood area. 
We test three different types of smoothing with uniform, wiener and 
gaussian functions, with three different smoothing scales: 10, 20 and 
30 km. These smoothing distances are chosen to be of the same order of 
magnitude as the city radius and, thus, of the plume width in the across- 
wind direction. These distances provide a good trade-off between the 
need for large smoothing windows (of several hundred points) and the 
need to avoid diluting the signal too much. The third step consists in 
labeling the pixels of the smoothed image when the statistical z-test 
indicates that the pixels bear a local enhancement likely due to that of 
the true XCO2 field rather than to the observation noise. In practice, we 
label the pixels for which the average value of the surrounding pixels 
differs from 0 with a confidence of >99% using a 0.7 ppm standard 
deviation. Finally, the fourth and firth steps consist respectively in a 
clustering of the labeled pixels with a selection of the cluster corre
sponding the best to the plume from Paris and in a restriction of this 
cluster to its portion downwind to the city. 

The second type of plume definition method only relies on the di
rection of the mean wind in the PBL above the core urban area and is 
denoted wind-based method. The plume area is defined as the area 
comprised within ±22.5◦ from the direction of the mean wind down
wind to the city core urban area. This angle is quite arbitrarily fixed as a 
compromise, selecting a value sufficiently large to entirely cover curved 
plumes and sufficiently low to support a suitable derivation of the 
background (see Section 3.3). The errors from the different pre- 
processing steps result in errors in the emission estimates during the 
final inversion. The error in the emission estimates due to errors in the 
plume definition is evaluated under three different conditions: (i) when 
knowing perfectly the background field (in which case there is no need 
to derive a preliminary estimate for this field) (ii) in the absence of noise 
in the image and (iii) in “realistic” conditions for which we need a 
preliminary estimate of the background and where noise covers the 
image. The idealistic conditions of (i) and (ii) allow us to evaluate 
separately the impacts of the noise and of the background on the plume 
definition. The experiments in conditions (iii) provide an estimate of 
their combination. 

3.2. Analysis zone 

The direct flux integration techniques, the methods based on the 
Gaussian plume model, and the corresponding computation of the 
effective wind are applied to a subpart of the plume area. This subpart of 
the plume area is called analysis zone. On the one hand, in areas close to 
the city, much of the XCO2 emitted at or near the ground by the city 
remains near the ground because the vertical mixing in the PBL is not 
instantaneous. Therefore, the estimation of the effective wind in analysis 
zones close to the city is challenging. On the other hand, the parts of the 
plume far from the city correspond to emissions that occurred hours 
before the acquisition of the satellite image. The inversion methods used 
here assume that the rate of emissions from the city and the wind are 
constant. However, the actual emissions and wind fields can vary 
significantly in time. This is the case in the WRF-Chem simulations that 
are used to simulate the true XCO2 fields here (see Section 2.2). 
Therefore, inversions relying on analysis zones that are far from the city 
may bear significant uncertainties due to the temporal variations of the 
emissions and wind over several hours. 

We test different types of analysis zone to assess these potential 
sources of problems and their impact on the different types of estimation 
techniques: (i) the whole plume area (denoted ‘city-∞’) (ii) the restric
tion of the plume area to distances larger than 20 km downwind to the 
city center (‘20 km-∞’) (iii) the restriction of the plume area to distances 
shorter than 40 km (‘city-40 km’) or 60 km (‘city-60 km’) downwind to 
the city center (iv) the restriction of the plume area to distances 
comprised between 20 km and 40 km (‘20 km–40 km’) or 60 km 
(‘20 km–60 km’) downwind to the city center. Note that the SP method 

does not rely on a definition of the plume area: the analysis zone for this 
method is defined as the square of length LSP = 40km centered on the 
city center, and is called the “source area”. 

3.3. Background estimation 

Six methods (mi) are tested for the main estimation of the back
ground values (XCO2mi ), which are used to derive the XCO2 signal 
associated to the plume. Some of them cannot be applied when using SP 
for the final inversion. The methods denoted ‘bckgl_mean’, ‘bckgl_med’ 
and ‘bckgl_2df’ derive the mean, median or planar fit of the XCO2 value 
at the “edges” of the source area when using the SP inversion method 
(see Section 3.2), or of the plume area when using the other inversion 
methods. Edges are defined as pixels located within 8 km from the limits 
of the source or plume area. The value 8 km has been chosen empiri
cally. The method denoted ‘bckgl_upw’ derives the mean XCO2 value 
upwind to the plume area. ‘bckgl_bih’ and ‘bckgl_gau’ extrapolate the 
XCO2 field from the whole image to the source or plume area using bi- 
harmonic functions, or Gaussian kernels giving more weight to the vi
cinity of the plume area. Finally, ‘bckgl_cs’ partitions the plume area and 
its edges into narrow sections normal to the plume direction (see Section 
3.5) and computes a linear background for each of these cross-sections. 
More details about the methods can be found in Appendix A.2. 

Uncertainties in the emissions estimates due to errors in the back
ground estimation are quantified under three different conditions: (i) in 
the absence of noise in the image and with a perfectly-known plume 
area, (ii) with a perfectly-known plume area but with noise, and (iii) in 
“normal” conditions for which the plume area must be detected within a 
noisy image. Our results under perfect conditions allow us to discard 
from the outset of the analysis some of the proposed approaches showing 
poor performances. 

3.4. Plume centerline 

We can define the plume centerline as the curve following the 
effective vertically-averaged wind driving the XCO2 plume from the city 
center. Since the actual wind direction varies in space and time, this 
centerline is often not straight. It is identified in the δXCO2sm,N field 
obtained by removing from the XCO2 image the background estimate 
XCO2mi and by smoothing the resulting field to filter the noise following 
the same smoothing method as that described in Section 3.1. We test two 
methods to identify the plume centerline in this field. Both derive the 
centerline as the curve that best fits the ensemble of pixel locations 
within the plume area, each pixel location being weighted by its 
δXCO2sm,N concentration (similarly to Kuhlmann et al. (2020)). The first 
approach uses a linear fit, while the second uses a fifth-order polynomial 
fit. As expected, the linear fit shows poor performance when the plume is 
strongly curved. However, when the plume is straight, the polynomial fit 
overfits residual observation noise and background in the smoothed 
δXCO2sm,N field. 

We do not attempt to derive the actual plume centerline based on the 
full knowledge of the true meteorological and CO2 fields. This limits our 
ability to quantify the uncertainties associated with the definition of the 
plume centerline. However, uncertainties due to the centerline mislo
cation are part of the total uncertainties in the derivation of the emis
sions that are diagnosed in our experiments. 

3.5. Plume cross-sections 

The GP3 and CS inversion methods, one of the effective wind 
computation method (“tangent wind” method, see Section 3.6) and the 
‘bckgl_cs’ background estimation method rely on the partition of the 
plume area into cross-sections. Those cross-sections consist of bands that 
are normal to the plume centerline. In practice, we sample points along 
the plume centerline with a constant arc length of 5 km. We then derive 
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the normal to the plume centerline on each of these points. Those normal 
lines delimit the plume cross-sections. Therefore, a cross-section has a 
5 km width. Other widths have been tested, but the sensitivity to this 
parameter was low (see Appendix B.1.2). 

For each cross-section, we define the node as the center of the cor
responding portion of the centerline. When GP3 is used for the final 
inversion each cross-section (ics) is further partitioned along the normal 
to the plume centerline in small portions of 5 km length (i.e. these 
portions have a 5 km× 5 km size). The coordinates of each portion of 
each cross-section are defined as (i) the curvilinear abscissa of the cross- 
section node (denoted s) and (ii) the distance along the corresponding 
cross-section between the cross-section node and the portion center 
(denoted n). This coordinates system, which forms a non-regular grid 
(Fig. 4), is used to define the complex Gaussian plume model that is used 
in the GP3 method. 

3.6. Effective wind computation 

The effective wind is defined as the vertically-integrated wind 
driving the XCO2 plume. The vertical integration of the “true” effective 
wind is thus weighted by the vertical distribution of the CO2 mass (see 
Section A.3). When the vertical distribution of CO2 is unknown, effective 
wind estimates rely on simple assumptions regarding this distribution. 
We test three methods of vertical integration or sampling of the 3D wind 
field, this field being perfectly known for the emission estimates in our 
experiments (see Section 2.2). 

The first method computes the mean wind in the PBL, assuming that 
the plume can rapidly mix within the PBL, downwind to the city. The 
second method uses the 10-m surface wind with a multiplicative coef
ficient, as proposed in Varon et al. (2018). The multiplicative coefficient 
representing the relationship between the 10-m surface wind and the 
plume effective wind is derived from meteorological simulations, here in 
the analysis zone ‘20 km–40 km’. The third method (denoted tangent 
wind hereafter) uses the wind sampled at the vertical level for which the 
plume direction aligns the most with the wind direction (i.e., the wind 
direction that aligns most with the tangent of the centerline). More 
details can be found in Appendix A.3. 

These methods are used to derive estimates of the 2D field of effec
tive wind Weff (x, y). These 2D estimates Weff (x, y) are then averaged 

horizontally over the cross-sections, the source area and the analysis 
zone respectively for the CS method, the SP method and for the other 
inversion methods to derive a single value of the horizontally average 
effective wind Wav

eff . This horizontal average weights the values of 
Weff (x, y) by the corresponding values of δXCO2sm,N. These different 
methods to compute the effective wind depend more or less on the 
previous pre-processing steps. The horizontal weighted average of the 
effective wind depends on the plume area and background computation. 
The definition of the plume centerline (and thus the computation of the 
plume area and the background) is a critical step in the computation of 
the effective wind per cross-section in the tangent wind method. The 
methods are evaluated under three different conditions: (i) with perfect 
knowledge of the XCO2 signal from the Paris core urban area; (ii) with a 
perfectly-known plume area and background and with noise in the 
image; and (iii) under “normal” conditions (with unknown plume and 
background, and with noise). 

3.7. Inversion methods 

The details on our implementation of the IME, CS and SP methods 
and of the GP inversions are given in A.4. The IME method (whose 
version used here is slightly modified from Frankenberg et al. (2016); 
Varon et al. (2020)) computes the total mass present in the analysis zone 
and divides it by the estimate of the time of residence of the CO2 mol
ecules in this zone. The SP method, adapted from studies which focused 
on point sources such as Buchwitz et al. (2017) and Varon et al. (2018), 
computes the total mass in the source area (see Section 3.2) and divides 
it by the estimate of the residence time of CO2 molecules in this area. The 
CS method (Krings et al., 2011; Kuhlmann et al., 2020; Varon et al., 
2019) first computes the flux of CO2 across each of the plume cross- 
sections within the analysis zone (see Section 3.5): this results in one 
emissions estimate per cross-section. The final emissions estimate of the 
CS method is the median of the estimates from the different cross- 
sections. However, in the first part of Section 4.1, we will investigate 
the different emissions estimates from the individual cross-sections to 
optimize some of the parameters of the pre-processing steps, such as the 
method used to define the plume centerline and the definition of the 
analysis zone within the plume area. 

The GP inversions use the general formulation of the Gaussian plume 
model for extended sources used by Krings et al. (2011). The inversions 
consist in fitting the Gaussian plume models to the total column mass 
enhancement associated with the plume from the city derived from the 
XCO2 images by optimizing in the model some of the following pa
rameters: the emission from the emission zone, the radius of this emis
sion zone, the direction of the effective wind and the Pasquill stability 
parameter of the atmosphere. Three variants of the Gaussian model or 
the inversion parameters are tested. In the first variant, denoted “simple 
Gaussian plume model inversion” (GP1), the radius of the emission zone, 
the Pasquill parameter and the direction of the effective wind are fixed 
(see Appendix A.4 for values). In particular, the radius of the emission 
zone is fixed so that it corresponds to the Paris core urban area. The 
optimization thus only applies to the emissions from the Paris core urban 
area. In the second variant, denoted “intermediate Gaussian plume 
inversion” (GP2), the emission and the radius of the emission zone, the 
direction of the effective wind and the Pasquill stability parameter are 
optimized simultaneously. In the last variant, denoted “complex 
Gaussian plume inversion” (GP3), the model is adapted to turning 
plumes by applying the Gaussian plume formulation to the non-regular 
grid defined in Section 3.5. In that case, the wind direction is fixed by 
construction, while the emission and the radius of the emission zone, 
and the Pasquill stability parameter are optimized together. 

The inversion methods are first evaluated under idealized conditions 
in the absence of noise in the image and for which the XCO2 signal from 
the Paris core urban area (i.e., the plume area and the background) and 
the effective wind are perfectly known. These first tests are used to select 

Fig. 4. Illustration of the cross-sections definition: example with the applica
tion to the true XCO2 field from the Paris core urban area on December 1st 2019 
at 10:00 and with the definition of the plume centerline based on a 5th order 
polynomial fit. In this figure the width of the cross sections is set to 20 km 
instead of 5 km for the sake of visibility. The blue dashed line indicates the 
centerline of the plume, the plain black line indicate the plume, the dashed 
black lines delineate the cross-sections, the blue lines delineate the portions 
used to build the complex Gaussian plume model (with a 20 km× 20km instead 
of 5 km× 5km size for better visibility) and the blue stars indicate the centers of 
these portions. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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the most suitable methods for defining the plume centerline and cross- 
sections. Most of the tests of the methods with more realistic condi
tions correspond to the extension (with the propagation of error up to 
the emission estimates) of the tests used to evaluate the different pre- 
processing steps detailed above. 

3.8. Definition of the emission zone corresponding to the emission 
estimates 

The analysis zone can correspond to a fraction of the city core or, on 
the opposite, to a broader area. A precise definition of this footprint, 
called “emission zone” hereafter, can be used to rescale the emission 
estimates to better correspond to the core urban area. 

The SP method requires a pre-determined emission zone: the “source 
area”. For the other methods the definition of the emission zone depends 
on the method used to define the plume area. For the CS method, we 
associate an emission zone to each cross-section. 

When using the wind-based method for the definition of the plume 
area, the definition of the emission zone is assumed to be, by con
struction, the core urban area itself. There is an exception when a cross- 
section of the CS method overlaps a portion of the core urban area. In 
such a case, the emission zone is defined as the fraction of the core urban 
area upwind to the cross section (following the effective wind estimate). 

When using test-based methods to define the plume area, the defi
nition of the emission zones differs between the CS, GP and IME methods 
(see Fig. 5). For the cross-sections of the CS method downwind to the 
core urban area and for the IME method, the emission zone combines all 
the emissions upwind to the cross-section and analysis zone (respec
tively) from or close to the core urban area. For the cross-sections of the 
CS method overlapping with the core urban area, the emission zone is 
the fraction of the core urban area upwind to these cross-sections. For GP 
inversions, we define the emission zone as the circle centered on the city 
center. The radius of this circle is the “radius” parameter of the Gaussian 
plume model fixed or optimized by the inversion (cf. Section 3.7). 

Finally, we compute the ratios in the true emission maps between the 
total emissions of the Paris core urban area and the emissions within the 
emission zones. These ratios are used to rescale the estimated emissions 
to have an emission estimation for the Paris core urban area. Here, we 
assume that this rescaling can rely on a perfect knowledge of the ratios. 
However, in real inversions conditions, there are uncertainties in the 
spatial distribution of the urban inventories, and thus, the derivation of 
these ratios is a source of uncertainty when dealing with actual obser
vations, which is ignored here. Future studies should also account for 
this ratio uncertainty. When using the CS method, emissions estimates 
per cross-section are rescaled using the corresponding emission zone for 

each cross-section. The final estimate of the CS method is based on the 
median of this rescaled ensemble. 

In order to evaluate the need for such a definition of the emission 
zone, we will compare the errors in the emission estimates for the Paris 
core urban area when using the crude emission calculation or when 
rescaling it according to the emission zone. 

3.9. The different error components: Summary of the different sets of tests 

Fig. 6 summarizes the different tests to compute the errors associated 
with the pre-processing and inversion steps and defines the notation for 
these errors. We start from an ideal case with a perfect knowledge of the 
true background, effective wind an plume area and without measure
ment noise. The corresponding errors in the estimates of emissions from 
the Paris core urban area at the overpass time are denoted ε0. Then, we 
introduce the sources of errors step by step. When all sources of error are 
accounted for, we get the total errors in the emission estimates denoted 
εcomb. In between, the statistics of the additional error in the emission 
estimate εnew

previous due to the incremental sources of errors is studied at 
each step by computing the difference between the emission estimate 
from the new step and that from the previous step in the tree, normalized 
with the division by the true emission of the Paris core urban area at the 
overpass time. For ε0 and εcomb, the difference is made with the true 
emission of the Paris core urban area at the overpass time. 

The notation for the errors εnew
previous is as follows: the “new” letter in 

superscript indicates the corresponding source of error while the “pre
vious” letters in index indicate the sources of errors on the top of which it 
is added and estimated. Therefore, the tests used to compute these errors 
combine the sources of errors labeled in index and superscript. The “w”, 
“b” and “p” letters indicate the uncertainties respectively in the effective 
wind, background and plume area, and the “n” indicates the observa
tional noise. For example, εp

b (top box in Fig. 6) is the difference between 
(i) the emission estimate when there are uncertainties in the background 
and plume area, and (ii) the emission estimate when there are un
certainties in the background only, divided by the (iii) true emissions. 

We characterize the distribution of these errors, which can deviate 
from a gaussian distribution, with their median and interquartile range 
(denoted IQR). We also provide the 15.9% and 84.1% quantiles, as they 
would represent the ± 1-standard deviation interval if the distributions 
were gaussians. 

3.10. Temporal representativity of the plume 

City plumes are driven by emissions and winds that can vary 

Fig. 5. Illustration of the analysis zone and emission zone when using the wind-based method for the definition of the plume area on 1/12/2019 at 10 a.m. The blue 
line indicates the analysis zone, the gray one the Paris core urban area and the black one the emission zone for the different inversion methods. The analysis zone used 
are ‘city-40 km’ for CS and IME, and ‘20 km–40 km’ for the gaussian plume inversions. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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significantly over a few hours. However, we evaluate our emissions es
timates by comparing them to the true emissions at the satellite obser
vation time. Similarly, the effective wind is based on the wind field at 
the satellite observation time. In the CS method, temporal variations in 
the emissions can be considered in the emissions calculation. Indeed, for 
each cross-section, we can derive a time corresponding to the emission 
estimate (equal to the distance between the cross-section node and the 
city center divided by the mean effective wind speed). Section 4.1 will 
analyze the fit between these estimates from individual cross-sections 
and the actual emission from the core urban area at the corresponding 
time. 

However, in practice, from Section 4.2, the selection of parameters 
for the plume analysis zone will discard any data located further than 
60 km away from the city center. As detailed in Section 4.1, we will also 
indirectly filter out days with low wind speed by discarding days when 

the spatial variability of the wind direction is high. Therefore, 92% of 
the data that will be used for the final analysis will correspond to CO2 
emitted within the previous 2 h. Within such a short time frame, tem
poral variations remain limited and will znot be considered in our un
certainty analysis. 

4. Results 

4.1. First comparison of the inversion methods and selection of their 
configurations 

Here we study ε0 and its dependency on the meteorological condi
tions and on the parameters of the inversion methods to narrow the 
range of appropriate options and parameters for the configuration of 
these methods. The tests are performed with a perfectly-known plume, 

Fig. 6. Summary of the different error components. * indicates that the step is not applied to the SP method (which does not need a detection of the plume area).  

Fig. 7. Distribution (median in plain line, 1st and 3rd quartiles in dotted line, 15.9–84.1% quantiles range shaded) of the error ε0 for estimates of the emissions per 
cross-section as a function of the distance between the cross-section and the city center when applying the CS method. Each figure shows a binning of the result for a 
quartile of the standard deviation of the spatial variability of the wind direction. Results are obtained with a linear (blue) or fifth order polynomial (orange) fit for the 
centerline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Danjou et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 305 (2024) 113900

10

background, and effective wind. In general, all inversion methods give 
accurate results (with low bias and low IQR of ε0) when the meteoro
logical conditions favor the ventilation of the emitted CO2 in a weakly 
spread and straight plume. These conditions are characterized by high 
wind speed and low wind direction variability (see an illustration in 
Fig. 7). However, when the emitted CO2 accumulates over Paris into a 
large plume with high XCO2 values or forms a plume with a complex 
structure, the results bear significant errors. Those situations can be 
driven by low effective wind speeds or large variations in wind direction 
in space (horizontally and vertically) and time (over the few hours 
before the observation time). We characterize the spatial variability of 
the wind direction via the circular variance of the 3D wind field in the 
PBL at the observation time. It has a correlation of − 0.8 with the mean 
wind speed in the PBL. Therefore, this spatial variability appears to be a 
good index of the main meteorological conditions that challenge the 
inversion methods. 

Fig. 7 illustrates the general increase of ε0 when this spatial vari
ability increases with the example of results from the CS method (see 
Appendix B.1.2 for the similar results from the other methods). It also 
illustrates the error sensitivity to the distance between the analysis zone 
and the city center. More specifically, it shows that when applying the 
CS method to individual cross-sections, the IQR of ε0 increases with the 
distance between the cross-sections and the city center for any level of 
spatial variability in the wind direction. The CS method shows a loss of 
precision over remote parts of the plume, which correspond to a longer 
period of transport and, thus, to larger levels of atmospheric diffusion 
and larger temporal variability in the wind during the corresponding 
period. Indeed, the diffusion increases the overlapping between the 
signal from different hours of emission (Broquet et al., 2018). The 
temporal variability of the wind during the travel time from the city to 
the cross-section (or, more generally, to the full extent of an analysis 
zone, see Appendix B.1.2) challenges the stationarity assumption un
derlying the different inversion methods. However, the bias increase at 
distances higher than 60–70 km away from the city is fed by an artifact: 
at this typical distance from the city, some of the cross-sections are 
cropped by the image borders (depending on the plume direction). 

The study of the sensitivity of the distribution ε0 to the options for 
the inversions focuses, in the following, on the sensitivity to the 
centerline computation methods and to the definition of the analysis 
zones for the CS, IME and GPs methods. We also use a first comparison 
between the results from the different GP methods to assess the rele
vance of using the three of them. Since we have a single configuration 
for the SP method, this method is ignored in these first tests of sensi
tivity. 

The sensitivity of the distribution ε0 to the options for the centerline 
definition is low, even when tested on the GP3 inversion. The bias is just 
slightly lower when using a centerline based on a fifth-order polynomial 
fit when the spatial variability of the wind direction is moderate to high, 
as illustrated in Fig. 7 with the CS method. 

As explained above, the IQR of the distribution of ε0 increases with 
the distance of the analysis zone to the city center. However, the 
sensitivity of the bias of the distribution of ε0 to the analysis zone differs 
depending on the type of plume inversion method: CS and IME following 
a mass-balance approach or Gaussian plume inversions. The mass loss at 
the image borders (where the plumes are cropped) causes a slight un
derestimation (1–2%) of the emissions with the IME and CS methods 
when the analysis zone covers the fraction of the plume beyond 60 km (i. 
e., with the ‘city-∞’ and ‘20 km-∞’ analysis zones). The Gaussian plume 
model inversions rely on the fit to the individual XCO2 concentrations 
per available observation pixel rather than on a mass balance. Therefore 
they are not biased by the plume cropping at the image borders. How
ever, due to the approximate modelling of the emission spatial distri
bution in the Gaussian models used here, the GP inversion 
underestimate the spread of emission source along the wind direction. 
Therefore the emissions are underestimated by the GP inversions when 

the analysis zone overlaps the Paris core urban area (i.e., with the ‘city- 
40 km’, ‘city-60 km’ and ‘city-∞’ analysis zones), with 6 to 12% biases 
for the intermediate and complex Gaussian plume inversions. 

The simplest Gaussian plume inversion method yields substantial (16 
to 19% in absolute values) biases, which can be attributed to the lack of 
flexibility to fit complex shape of the actual plumes. The stability 
parameter and the radius of the emission zone, both pre-determined in 
this method, are generally far from those derived by the other Gaussian 
plume inversion methods. For example, in GP1, the radius of the emis
sion zone if fixed to that of the Paris core urban area, i.e., to 20 km. 
However, in GP2 and GP3, the distributions of the retrieved radius of the 
emission zone have a median ranging from 27 to 29 km, depending on 
the analysis zone (cf Appendix B.1.2). 

Following these first insights, we narrow the options for the inver
sion methods. Only the fifth-order polynomial fit is kept for the 
centerline definition. The analysis zones ‘city-∞’ and ‘20 km-∞’ are not 
kept for any of the plume inversion methods and only the ‘20 km–40 km’ 
and ‘20 km–60 km’ analysis zones are retained for the GP inversion 
methods. The GP1 method is left out. For the following analysis, we also 
discard the cases for which the spatial variability of the wind direction is 
superior to 7◦ (17% of the images). This selection discards most of the 
days with low wind speed due to the correlation between the wind speed 
and the spatial variability of the wind direction. It reduces the IQR of the 
distribution of ε0 from 11%–17% to 9%–15%. 

4.2. Narrowing the range of options for the pre-processing steps 

The analysis in this section are used to select most suitable methods 
to address the pre-processing steps. The final analyses presented in 
sections 4.4 and 4.5 will rely on this selection of the methods. 

4.2.1. Evaluation of the wind calculation methods 
We assess the wind calculation methods based on the analysis of the 

distributions of εw
0 and εw

n . Both distributions show a low bias (<5% in 
absolute value) but a high IQR (between 29% and 38%, cf. Table 2 and 
Appendix B.2.1 and B.2.2) when using the tangent wind method. 
Conversely, when using the mean and surface wind methods, the IQR of 
the errors is small (between 10% and 30%), but the bias is significant (up 
to 43% in absolute value). Biases in both εw

0 and εw
n distributions decrease 

with the distance of the analysis zone to the city center when using the 
mean wind method. In particular, they are low when using the 
‘20 km–40 km’ and ‘20 km–60 km’ analysis zone, i.e., analysis zone at 
>20 km from the city center, since the corresponding part of the CO2 
plume is well mixed in the PBL. Overall, the mean wind method pro
duces errors with biases slightly larger than those obtained with the 
tangent wind method (between 7% and 11%) but with a much smaller 
IQR (<14%) for the ‘20 km–40 km’ and ‘20 km–60 km’ analysis zones. 
Therefore, we select the method of wind estimation as a function of the 
analysis zone. The tangent wind is used with the ‘city-40 km’ and ‘city- 
60 km’ analysis zones, while the mean wind in the PBL is used with the 
‘20 km–40 km’ and ‘20 km–60 km’ analysis zones. The surface wind 
method is not retained hereafter for two main reasons: its lower preci
sion (with an IQR of εw

0 and εw
n between 14% and 23%) compared to the 

mean wind method, and the need for precise information from meteo
rological model simulations for the derivation of the multiplicative co
efficient used to convert 10-m surface wind into effective wind (Varon 
et al., 2018). 

4.2.2. Evaluation of the background calculation methods 
The assessment of the background calculation methods is based on 

the analysis of εb
0 and εb

n but also on the direct comparison between the 
background concentration estimate and the true values of the back
ground concentrations in the analysis zone. The median of the differ
ences between these background concentrations is studied as the 
“background error”. Even though there is no strict relationship between 
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Table 2 
Range of the median (med.) and interquartile range (IQR) for the different error distributions in function of the methods tested for a given step. Here, εcomb distributions are calculated after the selection of the most suitable 
methods for the of the plume definition, background calculation and effective wind estimation.   

wind method bckg. calc. method plume detect. method analysis zone  

tangent 
wind 

mean wind surface wind bckgl_xxx bckgl_cs bckgl_gau test-based, wo/ 
rescaling 

test-based, w/ 
rescaling 

wind-based city-40 km city-60 km 20 km–40 km 20 km–60 km 

ε0 Used for inversion methods parametrization (cf Section 4.1). 

εw
0 

med. [− 4%;6%] 
[8%;37%] [− 43%;9%]           
([7%;11%])1 ([− 3%;9%])1           

IQR [24%;36%] 
[8%;21%] [12%;30%]           
([8%;10%])1 ([13%;16%])1           

εw
n 

med. [− 3%;3%] 
[6%;36%] [− 32%;9%]           
([6%;11%])1 ([3%;9%])1           

IQR [20%;36%] 
[8%;25%] [11%;33%]           
([8%;13%])1 ([14%;20%])1           

ε0
b 

med.    cf. Appendix 
B.4.1 

[− 3%;13%] [− 10%;13%]        
IQR    [57%;70%] [47%;63%]        

εn
b 

med.    cf. Appendix 
B.4.2 

[− 1%;12%] [− 3%;11%]        
IQR    [58%;84%] [51%;70%]         

εp
n Used for parametrization of thest-based methods for plume definition (cf Appendix B.3). 

εp
b 

med.     [− 3%;15%]2 [− 8%;1%]2 [− 3%;22%]3 [− 27%;1%]3 [− 8%;1%]3     

IQR     [38%;76%]2 [25%;58%]2 [36%;75%]3 [34%;58%]3 [25%;58%]3     

εp
nb 

med.     [4%;16%]2 [− 8%;6%]2 [− 21%;-6%]3 [− 34%;-16%]3 [− 8%;6%]3     

IQR     [42%;90%]2 [34%;68%]2 [49%;78%]3 [42%;70%]3 [34%;68%]3      

εw
nbp Not used for parameter selection. 

εcomb med.          [− 7%;7%] [2%;17%] [8%;13%] [11%;26%] 
IQR          [72%;74%] [75%;78%] [73%;92%] [78%;100%]  

1 results obtained with the ‘20 km–40 km and ‘20 km–60 km analysis zones. 
2 results obtained with the wind-based method for the plume definition. 
3 results obtained with the bckgl_gau method for the background calculation. 

A
. D

anjou et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 305 (2024) 113900

12

such a definition of the background error and εb
0 and εb

n, results confirm 
that the distribution of the background error and of εb

0 and εb
n are 

strongly linked. 
For the estimate of the background corresponding to the analysis 

zone of the IME, CS and GP methods, the local methods, i.e., ‘bckgl_gau’ 
and ‘bckgl_cs’, outperform the other methods. These local methods yield 
background errors with biases of <0.01 ppm and with IQR ranging be
tween 0.06 ppm and 0.1 ppm, which is lower than the biases or IQR 
obtained with the other methods, both when processing images without 
noise and when processing images with noise, and regardless of the 
option taken for the analysis zone. Indeed those other background 
calculation methods yield background errors with a high IQR 
([0.09 ppm;0.11 ppm], [0.09 ppm;0.17 ppm] and [0.08 ppm;0.12 ppm] 
for ‘bckgl_mean’, ‘bckgl_upw’ and ‘bckgl_med’ respectively) or a high 
bias (>0.01 ppm for ‘bckgl_bih’ and ‘bckgl_2df’). Accordingly, the values 
of εb

0 obtained with the methods ‘bckgl_mean’, ‘bckgl_upw’, ‘bckgl_med’, 
‘bckgl_bih’ and ‘bckgl_2df’ are higher than those obtained with the local 
methods. Therefore, these methods are discarded at this stage of the 
analysis. Furthermore, the analysis of εp

b reveals that when the plume is 
unknown, the overall errors from the plume definition and background 
estimation are larger when using the ‘bckgl_cs’ method than when using 
the ‘bckgl_gau’ method (Table 2 and Appendix B.5.2 -Fig. S12-). This 
supports the selection of the ‘bckgl_gau’ method only for the background 
estimation when using the IME, CS and GP methods. 

For the background estimation when using the SP method, the 
‘bckgl_gau’ method yields background errors with a smaller bias and 
IQR (0.00 ppm and 0.08 ppm) than that from the ‘bckgl_mean’ method 
(− 0.01 ppm and 0.09 ppm). Therefore, ‘bckgl_gau’ is the most suitable 
method for all the inversion methods. We select it as the unique back
ground calculation method in the following. 

4.2.3. Evaluation of the methods for the definition of the plume area 
The assessment of the methods for the definition of the plume area is 

based on the analysis of εp
n, εp

b and εp
nb. We first try to derive the optimal 

configuration for the test-based methods and the corresponding sub- 
steps (in particular, the preliminary computation of the background 
and the smoothing of the image prior to the statistical z-test). Results 
show that when using these methods (see Appendix B.3 and B.5), the 
distributions of εp

n, εp
b and εp

nb are sensitive to the smoothing scale and to 
the preliminary background calculation method. However, the choice of 
the function for the smoothing has a marginal impact on the results: we 
thus retain the uniform smoothing, which is easier to apply to complex 
observation sampling. When using small smoothing scales, the parts of 
the plume with a low signal are missed by the statistical z-test. In 
contrast, when using large smoothing scales, the statistical z-test tends 
to retain pixels that do not belong to the actual plume and thus to 
enlarge artificially this plume. We fix the smoothing scale to 20 km, 
which leads to the smallest errors. The analysis of εp

b and εp
nb also in

dicates that the best method for the preliminary background computa
tion is ‘bckgp_mean’. Therefore, the only configuration we keep for the 
test-based method uses ‘bckgp_mean’ for the preliminary background 
computation, the 20 km scale uniform smoothing and the standard z-test 
and clustering presented in Section 3.1. 

The rescaling of the emission estimation to account for the difference 
between the emission zone of the plume definition and the Paris core 
urban area when using the test-based method (see Section 3.8) reduces 
the IQR of the distributions εp

b (from 45–98% to 42–77%) and εp
nb (from 

61–107% to 53–99%). However, this rescaling introduces a negative 
bias: the distribution εp

b (resp. εp
nb) has a bias between − 27 and − 1% 

(resp. -38 and − 16%), whereas the bias is between − 3 and 21% (resp. 
-28 and − 6%) without rescaling. Therefore, we do not retain this 
rescaling. 

The final selection of the plume definition method is based on 
comparing this configuration of the test-based method and the wind- 

based method. The test-based and wind-based methods produce 
similar distributions of εp

n. However, the IQR of the distribution of εp
b is 

smaller when using the wind-based method : 30 to 69% using the wind- 
based method, 45 to 97% errors when using the testbased method. 
Biases in εp

b are smaller when using the wind-based method compared to 
the test-based method (with values ranging between − 7% and + 1% and 
between − 3% and + 22% respectively). When noise is added to the 
image, the error distribution εp

nb from the test-based methods shows a 
non-negligible bias (from − 6 to − 29%), whereas biases obtained with 
the wind-based methods remain between 16 and − 10%. Therefore, we 
select the wind-based method as the unique plume definition method for 
the following analysis. 

4.2.4. Evaluation of the analysis zones 
The choice of the analysis zone impacts each step (plume inversion, 

background and wind calculation, and the definition of the plume area) 
of the overall emissions estimation with the CS, IME and GP methods. 
This complicates the assessment of the best option for this choice. For 
example, the choice of the analysis zones which are the closest to the city 
results in a smaller IQR for ε0, but larger for εw (see Sup. Mat. B.1.2 and 
B.2.1). Therefore, our assessment focuses on analyzing the distribution 
of εcomb. For all inversion methods, the IQR of εcomb increases with the 
distance of the analysis zone to the city (Table 2). We thus select the 
‘city-40 km’ analysis zone for the CS and IME methods and the 
‘20 km–40 km’ analysis zone for the GP inversions. 

Fig. 8 summarizes the list of configurations that are selected for the 
following analysis. 

4.3. Filtering the background conditions 

The analysis of the results from the list of emission estimation con
figurations presented in Fig. 8 reveals a strong sensitivity of εcomb to the 
complexity of the background field (strongly driven by the contribution 
from the biogenic fluxes), in addition to that of the meteorological 
conditions (see Section 4.1). In the following, we characterize this 
complexity by the spatial variability (the standard deviation) of the 
XCO2 field over the whole image. The IQR of εcomb scales primarily with 
the ratio between the mean XCO2 signal in the plume area and the 
variability in the XCO2 field, whereas the bias of εcomb is mainly due to 
the background error (as defined in Section 4.2). By filtering out images 
with large variability in XCO2 signals (> 0.75 ppm) and with a large 
spatial variability of the wind direction (see Section 4.1), the error εcomb 

decreases by 13 to 22%, depending on the emission calculation method, 
while removing 43% of the 1064 initial pseudo-images. More specif
ically, its IQR decreases from 99% down to 78% with the IME method, 
from 100 to 89% with CS method, from 109 to 89% with SP method, 
from 94 to 74% with GP2 inversion and from 103% to 78% with GP3 
inversion. 

4.4. Error analysis with the selected emission estimation configurations 
and cases 

Fig. 9 shows the distribution of the different error components when 
filtering out images following the criteria defined in Sections 4.1 and 4.3 
on the spatial variability of the wind direction and of XCO2. The dis
tributions εcomb (the total error) obtained with the different emission 
estimation methods are similar, with bias inferior to 10% and IQR be
tween 74 and 89%, except when using the SP method that leads to a bias 
of 38% and an IQR of 89%. 

The analysis of the error components (Fig. 9) shows that the back
ground calculation step is the main source of error for all emission 
estimation methods. Indeed, the IQR of the distributions of εb

0 and εb
n are 

between 54 and 71%, whereas the IQR of the other error component are 
below 58%. The second most important error source is the estimation of 
the effective wind. Indeed the distributions εw

0 , εw
n and εw

nbp show large 
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IQR (29–50%) when using the tangent wind method (with CS and IME 
inversion methods) or large bias (9–37%) when using the mean wind 
method (with the GP and SP inversion methods). 

Unlike other methods, the SP method shows a large bias, which is 
due to the wind calculation step. The mean wind method accurately 
estimates the effective wind for analysis zones far from the city -where 
the CO2 is well mixed- but not above the city and, therefore, not in the 
source area. This explains the high bias of the distributions of εw

0 , εw
n and 

εw
nbp (and consequently εcomb) when using the SP method. 

4.5. Influence of satellite spatial sampling 

This section analyzes how the distributions of the total error εcomb 

and of the error components vary when the selected emission estimation 
configurations are applied to the realistic OCO-like observation sam
plings detailed in Section 2.3. When considering the OCO-2-samplings, 
we limit our analysis to the application of an adapted version of the 
CS method and of the GP2 inversion because the single-track sampling 
near the city does not allow for a plume centerline calculation (which is 
required for the GP3 inversion, for the IME method and for the strict 
application of the CS method detailed in Section 3.7) nor for a calcula
tion of the CO2 mass in the source area (and thus nor for the application 
of the SP method). The whole and undivided track is used as a single 
cross-section for the CS method and is, therefore, not necessarily 
perpendicular to the wind direction. Still, the principle of the back
ground calculation, of the definition of the plume area along this section 
and of the flux calculation applies. All the cases when the meteorological 

situations are such that the plume does not cross the OCO-2 sampling are 
discarded from the computations and error statistics. In principle, 
applying the SP, CS and IME methods could require some image gap- 
filling to account for the loss of mass associated to the loss of pixels in 
the analysis zone due to cloud cover or quality control (Kuhlmann et al., 
2020). However, we do not study this problem nor apply any gap-filling. 
Indeed, it would increase the complexity of the study and we expect that 
it would have a weak impact on the results here by considering the low 
number of observation pixels lost within the selected samplings. 

Fig. 10 shows the distributions of errors for each tested track as a 
function of the inversion method. The distribution of ε0 when using the 
OCO-3 samplings is similar to that when using the WRF grid (the ab
solute bias and IQR of this error are inferior to 5% and 20%) except 
when using the IME method (with which the bias is around -16%). The 
underestimation of the emissions of the core urban area obtained with 
the IME method may be due to the limited extent and asymmetric shape 
of the OCO-3 samplings. Indeed, this limited extent sometimes restricts 
the edges of the analysis zone, resulting in a loss of a significant part of 
the plume mass, and therefore an underestimation of emissions. The 
asymmetrical shape, meanwhile, perturbs our centerline definition: the 
derived centerline is slighty over-curved, resulting in an overestimation 
of the plume length and hence an underestimation of emissions. The 
errors obtained with the other inversion methods are slightly larger 
when using the OCO-3 samplings than when using the full WRF grid. The 
smaller number of points in OCO-3 samplings compared to the WRF grid 
enhances the impact of the measurement noise and thus increases the 
IQR of the error distributions. The IQR of εcomb (Table 3) increases by 10 

Fig. 8. Retained configurations for the emission estimation.  

Fig. 9. Distribution of the error components when using the retained configurations for the emission estimation.  
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to 23% for the CS, GP and SP methods when using the OCO-3 samplings 
compared to when using the WRF-grid sampling. For the IME method, 
the IQR of εcomb with the OCO-3 samplings is close to the IQR obtained 
with the WRF grid sampling (<2% difference) but its bias, as for ε0, is 
larger with the OCO-3 sampling. 

The IQR of the distribution of ε0 is larger when using OCO-2 sam
plings (over 35% whereas it is inferior to 20% for OCO-3 samplings), as 
the cross-section of the plume is far from the city in the selected sam
pling cases. The difference between the results obtained when using the 
two OCO-2 samplings can be explained by their different distances to the 
city center but also by the loss of the data due to quality control or cloud 
cover in the South-West fringe of one of the two track sampling. This 
highlights the need for gap-filling or rejecting results from the CS and 
IME methods when the plume is observed with a sparse sampling. The 
smaller IQR of the εw

0 distribution when using the OCO-2 samplings 
rather than the OCO-3 samplings or the full WRF grid is due to the ac
curacy in the wind estimation method over analysis zone far from the 
city (see Section 4.2). However, this does not compensate for the poorer 
results from the emission estimation methods with analysis zones far 
from the city, nor the degraded results in the background estimation due 
to the small size of the sampling area when using the OCO-2 samplings. 

The typical total error amount to 6% [− 34%,47%] with the WRF 
sampling, − 5% [− 48%,45%] with OCO-3 and − 17% [− 91%,84%] with 
OCO-2 (Table 3). 

5. Discussion 

5.1. Impact of the errors in the 3D wind field 

In Section 4.2 (and Appendix B.2), we estimate the errors in the 
emission estimates that are associated to the uncertainty in the deriva
tion of the effective wind from a given 3D wind field. However, in the 
corresponding analysis with pseudo-data, the computation of the 
effective wind field can rely on a perfect knowledge of the true 3D wind 
field. When analyzing real data, one has to rely on 3D wind field from 
model simulations of from reanalysis products like ERA5, which can 

bear significant errors, especially when considering the urban scales 
(Lian et al., 2021). Errors in the 3D wind field products yield additional 
errors in the effective wind estimate, in the plume definition and, 
consequently, in the background estimates. Therefore, in this new sec
tion, we aim to provide insights on the emission estimation errors that 
are due to errors in the 3D wind field products used for the derivation of 
the effective wind in real conditions. Previous studies have used plume 
perturbation techniques (Ye et al., 2020), model comparison (Lei et al., 
2021), or ensembles of simulations to estimate wind model errors (Díaz- 
Isaac et al., 2018). However, producing a well-calibrated ensemble re
mains challenging unless considerable computing resources are avail
able to generate a sufficiently large ensemble of perturbed simulations. 
Furthermore, errors in wind fields differ across analysis products. As a 
first step, we perform here a simple evaluation of the impact of errors in 
wind speed and wind direction on emission estimation errors. 

A spatial bias in the wind speed would only affect the calculation of 
the effective wind speed, and emission estimates are proportional to the 
effective wind speed for all emission calculation methods. Taszarek et al. 
(2020) compared the ERA5 wind fields to rawinsonde observations and 
diagnosed average and root-mean-square misfits of respectively 0.35 m/ 
s and 1.93 m/s in the first kilometer of the atmosphere. The median 
value of the wind speed distribution in our WRF-Chem simulations of the 
Paris area is of 11 m/s. Assuming that the typical values of errors in wind 
analysis from Taszarek et al. (2020) apply to analysis and simulations 
over the Paris area and that the typical value of the wind speed from 
WRF-Chem is well representative of the wind speed over Paris, we get a 
typical relative error on the effective wind, and thus on the emission 
estimate for Paris, with a bias under 5% and a standard deviation of 
≈20%. 

In order to evaluate the additional uncertainties from spatial biases 
in the wind direction in wind fields used to analyze the XCO2 images, we 
conduct a specific set of sensitivity experiments. In these experiments, 
we apply a random and spatially homogeneous rotation (one angle per 
image) to the true wind vector. The rotation for each image is sampled 
from an unbiased and normal distribution whose standard deviation is 
varied as a function of the experiment across the following values: 0∘, 
10∘, 20∘, 25∘, 30∘, 35∘, 45∘, 60∘ and 90∘. This set of standard deviations 
corresponds to the range of standard deviations found by Deng et al. 
(2017); Feng et al. (2016); Lian et al. (2018) (see below). In each 
experiment, the resulting wind field is used for the estimation of the 
emissions with the optimal configurations of the GP2, GP3, CS and IME 
methods. 

Fig. 11 illustrates the results from these sensitivity experiments, 
characterizing the impact of the spatial biases on the wind direction in 
terms of variations of εcomb, of the background error (see Section 4.2) 
and of the ratio between the number of pixels of the true plume that have 

Fig. 10. Summary of the different error distributions when using OCO-3 (left panels) and OCO-2 (right panels) samplings.  

Table 3 
Total error (εcomb) for the different samplings and inversion methods. The me
dian and the 1st and 3rd quartiles are shown.   

WRF-grid OCO-3 OCO-2 

IME +7% [− 29%,+50%] − 12% [− 52%, +28%] – 
CS − 7% [− 48%,+41%] − 15% [− 58%, +41%] − 28% [− 118%,+101%] 
GP2 +4% [− 29%,+45%] +5% [− 38%,+53%] − 5% [− 63%,+66%] 
GP3 +7% [− 28%,+51%] +3% [− 44%,+57%] –  
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been detected and (i) the number of pixels in the real plume (denoted 
detection sensitivity) or (ii) the number of pixels in the detected plume 
(denoted detection precision). The distributions of εcomb, of the back
ground error, of the detection sensitivity and the detection precision do 
not vary significantly as a function of the spatial bias in the wind di
rection long as the standard deviation of this bias is lower than 15∘. 
However, when this standard deviation exceeds 25∘, the plume defini
tion misses large fractions of the true city plume. A direct consequence is 
the over-estimation of the background concentration (part of the signal 

from the city being analyzed as part of the background field) and thus 
the under-estimation of the emissions from the Paris core urban area. 

Lian et al. (2018) compared measurements of surface wind direction 
above the Paris region to ECMWF high-resolution operational forecasts 
(HRES) with the Integrated Forecasting System (IFS) at 3-h resolution 
and to WRF simulations assimilating the meteorological observations. 
They show 5–8∘ biases and 41–47∘ RMS misfits between these meteo
rological analysis and the measurements. However, other studies 
comparing surface wind observations to wind directions modeled with 

Fig. 11. Evolution of the distributions (median in plain line, 1st and 3rd quartiles in dotted line, 15.9–84.1% quantiles range in colour) of the detection precision, 
detection level, background error and εcomb as a function of the wind direction error. εcomb is shown for the IMECS, GP2 and GP3 methods. 

Fig. 12. Seasonal variations of the spatial variability of the wind direction, of the XCO2 signal-to-noise ratio, cloud coverage and standard deviation of the XCO2 

signal in the image for the year 2018 as simulated by WRF. 
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WRF typically found few ∘ biases and approximately 25∘ RMS misfits 
(Deng et al., 2017; Feng et al., 2016) Whereas the impact of the errors in 
the wind field product diagnosed by Lian et al. (2018) would be 
important (leading to emission underestimates of 20–40%) the impact of 
the errors diagnosed by Deng et al. (2017); Feng et al. (2016) would be 
relatively small. Therefore a more systematic characterization of the 
impact of wind direction errors from re-analysis wind products in urban 
areas is needed. 

5.2. Monthly dependency of the results 

The precision of the emission estimation methods is sensitive to the 
spatial variability of the wind direction on the one hand and to the ratio 
of the average plume signal over the background variability (called 
signal-to-noise ratio in the following) and the standard deviation of the 
XCO2 signals on the other hand. Fig. 12 shows the seasonal variations of 
these three parameters. We also show the variations of the proportion of 
cloudy pixels (i.e. pixels with cloud fraction >1%, threshold defined 
following Kuhlmann et al. (2019)). 

During Summer, emissions decrease due to low energy consumption 
and reduced activity (summer vacation) in cities in the temperate mid- 
latitudes, such as Paris. Hence, the correlation between the signal-to- 
noise ratio and the standard deviation of the XCO2 signals decreases. 
However, our filtering of the images when background conditions are 
not favorable to the emission estimation (Section 4.3) is based on the 
standard deviation of XCO2 signals only. We need to reconsider this 
selection criteria, especially if analyzing images over different cities. 

Following any of the criteria for good observation conditions (stan
dard deviation of the XCO2 signal, spatial variation in wind direction 
and the signal-to-noise ratio), the best seasons for the estimations of the 
emissions from Paris are Winter and Fall. Indeed, Spring and Summer 
seasons are impacted by a high variability of the wind directions, low 
signal-to-noise ratios, and high standard deviation of the XCO2 signals. 
However, Winter and Fall correspond to higher cloud coverage, 
reducing the number of usable satellite images over Paris. 

5.3. Potential error sources not taken into account 

Our current analysis considered measurement error estimates from 
previous studies, hence directly dependent on satellite instruments, 
processing algorithms, and calibration procedures. The value of 0.7 ppm 
corresponds to empirical error estimates from Worden et al. (2017), 
similar to the expected CO2M measurement errors (Sierk et al., 2021). 
We assumed here that XCO2 measurements are bias-free, thanks to a re- 
calibration of OCO-2 data using Total Carbon Column Observing 
Network (TCCON) XCO2 measurements as reference (Wunch et al., 
2017). However, residual biases remain in the OCO-2 retrievals 
(<0.4 ppm) depending on latitude, surface properties, and scattering by 
aerosols. Local biases (i.e., aerosols and surface properties) might 
degrade further our current flux uncertainty estimates. On the opposite, 
regional biases affecting retrievals at larger scales are removed by our 
approach. We also assumed that measurement errors were uncorrelated 
spatially due to a lack of detailed characterization at fine scales in the 
current literature. Ongoing work will help quantify potential error cor
relations in OCO-3 SAMs data caused by aerosol plumes, topography, 
and spatial patterns in surface characteristics (esp. albedo), which 
generate non-linearities and spatial error correlations at high resolution. 

Cloud and aerosol filtering leads to partial data loss within obser
vation sampling areas and, thus, in the analysis zone. While the GP 
inversion techniques, as defined here, can adapt to such cases, applying 
the direct flux integration methods may require some gap-filling of the 
XCO2 image to avoid negative biases in the emission estimates (Kuhl
mann et al., 2019). If the data loss is limited (as in Section 4.5), gap 
filling could be straightforward but its impact would be limited. When 
the data loss generates significant gaps resulting in relatively sparse 
sampling across the analysis zone, the choice and configuration of the 

gap-filling method could significantly impact on the emission estimate 
and, in any case, raise new uncertainties. Applying such gap-filling 
techniques, and assessing the various methods with their associated 
uncertainties (Gerber et al., 2018) is thus a complex topic that we did not 
address in this study and will require extensive tests and analyses. 

Recent studies have shown that data loss in current OCO missions is 
about 85% over the largest 70 cities of the world (Lei et al., 2021). The 
vast majority of this loss is due to clouds and aerosol filtering. Based on 
Fig. 12, we note here that the amount of available data from satellite 
missions is anti-correlated with XCO2 precision within each image, with 
high coverage but lower precision in Summer, and low coverage but 
higher precision in Winter (in the northern Hemisphere). This result 
suggests that flux uncertainties at longer timescales will be affected by 
the lack of data during cloudy months, partially compensated by less 
variable winds during cold months (higher precision per image). 

A recent study by Ciais et al. (2020) estimated the contribution of 
human respiration. They concluded that for cities producing plumes of 
CO2 detectable from space, human respiration represents a source to the 
atmosphere of 0.32 Gt CO2 per year, compared to 10 Gt CO2 per year of 
fossil fuel CO2 emissions. Therefore, we neglected this term in our 
calculation. For real-data analyses over dense megacities such as New 
York City or Karachi, we expect human respiration to increase our un
certainty estimates by a few percent. 

5.4. Perspectives for the use of complex transport models 

Some inversion approaches rely on Eulerian or Lagrangian transport 
models (that are much more complex than Gaussian models) to quantify 
urban emissions (Lei et al., 2021; Wu et al., 2018; Ye et al., 2020). These 
models account for the variations of topography, emissions and wind, 
while our inversion methods assume that emissions and transport are 
stationary and, to some extent, homogeneous. Therefore, in principle, 
inversion approaches relying on Eulerian or Lagrangian models could 
provide more accurate emission estimates than our methods by relying 
on a better modelling of emission and transport conditions. 

However, first, we have seen in Section 3.10 that the analysis areas 
we study correspond to a transport time of less than two hours in the vast 
majority of cases. This is a first limitation to the advantage of over
coming the assumption that emissions and winds are stationary when 
using complex transport models. Second, the ability to simulate the 
emission and transport variability does not ensure the ability to catch 
the actual variations of the emission and transport behind a given XCO2 
image with the Eulerian and Lagrangian model. The traditional inverse 
modelling techniques lack of flexibility when using these transport 
models, and can be highly impacted by the large transport modelling 
errors associated with the comparison between an XCO2 image at a 
given time and the corresponding model simulation of the CO2 field at 
this time (Feng et al., 2016; Lian et al., 2018). In particular, these 
techniques often assume that the simulations of the plume location and 
shape are accurate, and that the model errors can be summarized by a 
noise without temporal and spatial correlations (Broquet et al., 2018). 
The traditional pixel-wise comparisons between XCO2 simulations and 
images can lead to problematic double penalties (Vanderbecken et al., 
2023) which can raise much larger concerns than the assumptions of 
stationarity. 

Recent analysis of plume transects by OCO-2 (Lei et al., 2021; Ye 
et al., 2020) have compared the integral of the signal of the plume 
detected and extracted from the OCO-2 observations to the integral of 
the signal from the neighbor sources simulated by the model, which 
mitigates the issue. However, such an approach requires the application 
of some of the most critical pre-processing steps of our methods, with the 
impact of one of the main source of errors in the emission estimations 
identified in this study: the estimate of the background field. This limits 
the capability to exploit the advantages of using Eulerian or Lagrangian 
transport models. Furthermore, the Eulerian and Lagrangian transport 
models are driven by the same type of meteorological fields as those 
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used for the flux computations in our light estimation methods. There
fore, comparisons between amplitudes of modeled and observed plume 
patterns when these modeled and observed patterns have not the same 
location may not necessarily be more robust than the direct computation 
of fluxes from the observed patterns with these meteorological wind 
fields. Finally, (Feng et al., 2016; Lian et al., 2018) have shown that the 
local XCO2 fields from strong sources are generally poorly modeled by 
such transport models under low wind conditions (and hence, generally, 
when the spatial variability of the wind direction is high), i.e. when the 
assumptions underlying our estimation methods are challenged and 
when these methods yield high errors on the emission estimates. 

Hence, the uncertainties in the background and the wind spatial 
variations, which have been identified in this this study as the main 
sources of errors for our estimation methods, impact to a similar extent 
the current inversion methods relying on complex transport models. 
This can explain why the few studies which have compared the different 
types of inversion methods (such as Lei et al. (2021)) did not show 
significant differences between them. In such a context, the low 
computational cost of our estimation methods reveals to be a critical 
advantage over the methods using complex models. However, lighter 
and more flexible inverse modelling methods relying on Eulerian or 
Lagrangian transport models (e.g. based on machine learning tech
niques) will likely emerge, and are already studied (Dumont et al. 2023). 
Such methods could exploit the advantages and realism of the transport 
models without using a specific model simulation as a strong constraint 
for the analysis of a specific image. This could redraw the comparisons to 
the light estimation methods analyzed here. 

5.5. Further development and generalization 

As shown in previous studies, the estimation of CO2 emissions over 
urban areas remains complex and impacted by large uncertainties 
(IQR≈75%, standard deviation ≈70%). The uncertainties found in our 
study are slightly higher than those found by Kuhlmann et al. (2020) 
over Berlin (40–53%) and higher than Nassar et al. (2017) using OCO-2 
data (single tracks) near a power plant. In the case of power plants 
studied by Nassar et al. (2017), the local enhancements are one order of 
magnitude larger than Paris’ (i.e., a few ppm) and the plumes are 
thinner, which can explain the better results. Kuhlmann et al. (2020) 
show simulations in which the distinction between the plume from 
Berlin from its background appears to be slightly clearer than that be
tween the plume from Paris and its background in our simulations. Their 
typical plume enhancement is 1 ppm. This could explain why they 
derive uncertainties in their emission estimates that are smaller than 
ours. However, both studies highlight the challenge of getting accurate 
urban emissions estimates. 

The IQR of the total error appears to be too large (>70%) to evaluate 
urban emission from a single image, despite the low bias in error dis
tribution (<10%). A large number of images is thus necessary to obtain 
sufficient precision to monitor policy-relevant trends (typically around 
2–3% of the emissions per year for most megacities worldwide). We 
found only 7 SAMs over Paris with >1500 usable pixels between 2019 
and 2021 (a period corresponding to approximately 20 months of data). 
Therefore, OCO-3 SAMs will provide a unique dataset to quantify the 
value of XCO2 measurements. Still, only a handful of cities with high 
emission trends might be selected to demonstrate emissions monitoring 
potential from space. 

However, we emphasize that the two pre-processing steps respon
sible for a large fraction of the total errors (i.e., wind and background 
calculation) could benefit from novel image processing techniques. This 
will benefit computationally-light methods and model-based inversions 
(Wu et al., 2018; Ye et al., 2020), especially when the simulations do not 
integrate biogenic flux contribution. 

Our analysis of the various light emission estimation techniques and 
our optimization of their configurations is based on experiments over a 
single city. In principle, the specific emission and transport conditions 

corresponding to our Paris case could guide some of our conclusions, 
particularly when analyzing the optimal values of certain parameters in 
the pre-processing steps, e.g. the specific distances for the analysis area, 
the threshold on wind variability used to select images. Most of the 
conclusions regarding the techniques (concerning plume detection, 
background or effective wind estimation, the reasoning for the analysis 
area) and many of the typical values derived here should be independent 
of the city targeted by the emission estimation. However, major ex
ceptions may apply to cities with complex regional topography (e.g. in 
deep valleys) and to coastal cities. Finally, the typical error levels ob
tained here should highly depend on the amplitude and spread of the 
city emissions. A next step of the analysis of the light urban CO2 emission 
estimation methods, or their applicability and of their accuracy 
depending on the observation systems should thus be associated with 
their application to a wide set of cities. 

6. Conclusion 

In this study, we characterized the uncertainties in the emissions 
estimates from a large urban area based on the application of 
computationally-light inversion methods -Integrated Mass Enhance
ment, Cross-Sectional, Source Pixel, and Gaussian Plume inversions- to 
XCO2 satellite images. This assessment is based on pseudo-data experi
ments focused on Paris, with high-resolution XCO2 images simulated 
with the WRF-Chem model. We decomposed the error of the emission 
estimation methods by gradually introducing the different sources of 
uncertainties to evaluate the importance of each pre-processing step in 
the total error and to select the most accurate techniques and configu
rations for each step. The error components were derived when using a 
full sampling of the area at 1-km spatial resolution and when using 
realistic observation samplings corresponding to OCO-2 and SAMs from 
OCO-3 in order to determine the influence of the sampling strategy on 
the results. 

Using appropriate methods for estimating the key parameters for 
these estimation methods (plume area, background concentrations and 
effective wind speed, etc.), the Integrated Mass Enhancement, Cross- 
Sectional methods and two of the tested variants of the Gaussian 
plume model inversion give low bias (<10%) but high IQR (≈75%) 
errors on emission estimates when using the full sampling at 1km2 

resolution. The Source Pixel method gives highly biased results in the 
tested configuration (38% bias and 89% uncertainty). Indeed, none of 
the methods used here to estimate the effective wind was a good esti
mator of the effective wind for the analysis zone used by the Source Pixel 
method. Using transport models to support the derivation of the effec
tive wind (Varon et al., 2019) may overcome this issue but would cancel 
the advantage of using such a low computational emission estimation 
method. 

When using their best configurations, the Integrated Mass 
Enhancement, Cross-Sectional, and Gaussian Plume inversions provide 
similar errors, and the main sources of uncertainties for all methods 
appear to be, first, the calculation of the background concentration 
underlying the targeted plume and secondly, the computation of the 
effective wind driving this plume. We highlighted a sensitivity of the 
error distribution to wind meteorological conditions (namely, to the 
spatial variability in the wind direction) and to the spatial variability in 
the background XCO2 field. The main sources of errors when using the 
computationally-light emission estimation methods are thus shown to 
be shared by the current inversion methods relying on Eurlerian or 
Lagrangian transport models, so that the typical level of uncertainties 
diagnosed here for the estimates of the emissions from Paris should 
apply to the current plume inversions techniques in a general way. The 
analysis of the results with realistic observation samplings correspond
ing to OCO-3 SAMs showed a slight increase of the error IQR (≈ +20%) 
due to the coarser sampling. 
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Appendix A. Complement on the methododology 

A.1. Section 3.1: definition of the plume area

Fig. S1. Illustration of the test-based and wind-based plume definition methods on December 1st 2019 at 10 am. The black line indicates the contour of the plume 
defined with the corresponding method. The red line on the left panel indicates the restricted zone.  

A.1.1. Test-based methods 
A preliminary estimate of the background (denoted XCO2bckgp), is derived based on the analysis of the whole image for such a test. We test different 

options for this derivation: computing the mean (bckgp_mean) or the median (bckgp_med) of the concentration in the image, fitting a subset of this 
concentration field (from which the part downwind of the city as been removed) with a plane (with a bilinear function; bckgp_2df) or extracting the 
average concentration over an upwind zone defined based on the location of Paris and by the mean wind in the PBL over this location (bckgp_upw). 
This background estimate is subtracted from the data. For each pixel of the image, we define a neighborhood as a square of size N km, we apply a 
smoothing function over this neighborhood and we use the resulting value for the pixel for the statistical test. We test the hypothesis that this resulting 
value can correspond to the sum of an enhancement of concentration above the background in the smoothed plume and of the average of the 
observation noise over the neighborhood, whose standard deviation is σmeas. In practice, we test the hypothesis that this resulting value can be a sample 
of a normal statistical distribution whose mean is superior or equal to zero, and whose standard deviation corresponds to σmeas/

̅̅
(

√
npx) (with npx being 

he number of pixel in the neighborhood). Here we neglect the uncertainty in the smoothed XCO2 field associated to the background. We define the 
pixels for which the probability to belong to the plume is high as those passing the test with a 99% confidence: 

z(x, y) =
δXCO2sm,N(x, y)

σmeas
/ ̅̅̅̅̅̅npx
√ > 2.33 (2)  

where δXCO2sm,N corresponds to the smoothed field of XCO2 − XCO2bckgp. Different smoothing functions are tested: the mean or the median, of the 
application of a Gaussian or wiener filter within the neighborhood. We also test different values for N ranging from 10 km to 30 km with a 10 km step. 
σmeas/

̅̅
(

√
npx) is the noise on the mean concentration over the neighborhood. The normalization based on this noise is consistent with the smoothing 

based on the average of the data over the neighborhood. The statistical noise on the resulting value for the pixel that is investigated with other 
smoothing methods is different. We nonetheless use such a normalization in all cases. The analysis of results in section B.3 indicate whether this can 
raise significant errors in the plume definition. For the tests where we do not put noise on the observations, the test becomes: z(x, y) =
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δXCO2sm,N(x, y) > 0. 
Pixels that are not labeled but that are enclosed within a cluster corresponding to the city plume are integrated into this plume area. The points that 

are at >45◦ downwind of the city using the direction of the mean wind in the PBL are labeled as not being part of the plume (see Fig. S1). When no 
plume is detected in the image, no emission calculation is made. Each combination of one method for the computation of the preliminary background, 
of one smoothing length N, and of one smoothing function corresponds to an individual plume definition configuration. 

A.1.2. Wind-based methods 
The plume is defined as the points that are at <22.5◦ downwind of the city using the direction of the mean wind in the PBL (see Fig. S1). 

A.2. Section 3.3: Background estimation 

The six methods can be listed as:  

• ‘bckgl_mean’: computation of the average of the concentrations in the plume (when using the GPs, IME and CS inversion methods) or source area 
(when using the SP inversion method) edge;  

• ‘bckgl_upw’: computation of the average XCO2 values in an area upwind the plume defined based on the location of Paris and by the mean wind in 
the PBL, not computed for the SP method as it would be the equivalent to the ‘bckgl_mean’ method in this particular case;  

• ‘bckgl_2df’: derivation of the plan which best fits the concentrations in the plume or source area edge;  
• ‘bckgl_cs’: a method that can be seen as an extension of Ye et al. (2017) for a 2d image. It relies on a preliminary computation of the plume 

centerline and on a preliminary definition of plume cross-sections orthogonal to this centerline (see sections 3.4 and 3.5) and is thus not used with 
the SP method. The background field is derived as the combination of background estimates on each cross section. These estimates are derived as 
the linear functions of the positions along the cross sections which best fit the XCO2 concentrations in the plume edges;  

• ‘bckgl_bih’: a method using a technique of image restoration by inpainting the values within the plume or source area limits with biharmonic 
equations (see https://scikit-image.org/docs/stable/api/skimage.restoration.html, last access March 21rt 2022). The smoothed XCO2 field 
(δXCO2sm,N) outside the plume or upwind of the source area is used to calculate the coefficient of the biharmonic equations.  

• ‘bckgl_gau’: adaptation of the method used in Kuhlmann et al. (2020). It is also based on the smoothed XCO2 values. It interpolates the smoothed 
XCO2 values from outside the plume with a 2D Gaussian kernel to get the background values in the plume area. The size of the kernel used here 
differ from that used in Kuhlmann et al. (2020). We choose to use a relatively small kernel size (4 pixels) to conserve as much as possible the local 
structure of the background. However this required the use of an iterative process to cover the whole plume area since the plume size is often larger 
than the kernel size in our study case (even when the kernel size is 10 pixels large as in Kuhlmann et al. (2020)), while Kuhlmann et al. (2020) did 
not face such a problem. 

A.3. Section 3.6: Effective wind evaluation 

A.3.1. Calculation of the effective wind of reference 
The effective wind is defined as the vertically integrated wind driving the XCO2 field: its vertical integration must be ponderated by the vertical 

distribution of CO2 as follows: 

W→eff (x, y) =

∑

z
W→(x, y, z)*uanth.

CO2
(x, y, z)*ΔPdry(x, y, z)

∑
uanth.

CO2
(x, y, z)*ΔPdry(x, y, z)

(3)  

where W→(x, y, z) is the wind field, uanth.
CO2

(z, x, y) is the CO2 dry air mole fraction signal associated to the anthropogenic emissions from Paris core urban 
area and Pdry(z,x,y) is the dry air pressure. Eq. 3 is used to derive the actual effective wind field. However, since the spatial (vertical and horizontal) 
distribution of uanth.

CO2 
is not known for the analysis of the images, an approximate estimate of the effective wind must be derived based on the dis

tribution of W→. The impact of the uncertainty in the knowledge of this wind field is ignored in this study and we use, for the analysis of the images, a 
perfect knowledge of the full W→field from WRF-Chem (in tests corresponding to situations for which inversion methods rely on the full wind field from 
meteorological analysis) or of its surface value: W→10m(x, y) = (U10m V10m)

T (in tests corresponding to situations for which inversions rely on wind data 
from surface stations). 

A.3.2. Description of the effective wind methods 
Three different methods of vertical integration or sampling are tested to compute the effective wind. The methods derive it as a 2D field (Weff (x, y)) 

before aggregating it as a single value (Wav
eff ). First, at each location (x,y), they rely on:  

• the average, weighted by the dry air mass, of W→ in the PBL, method which assumes that the plume can rapidly mix downwind to the city.  
• the use of the surface wind (10 m above the surface) multiplied by a scaling coefficient, following Varon et al. (2020). Here we fix the scaling 

coefficient to 1.8 which is the average ratio between surface wind and the actual effective wind field in the analysis zone ‘20 km–40 km’. The use of 
such a precise knowledge of this average ratio is an optimistic aspect of the corresponding test but the variations in space and time of this ratio 
challenges the use of the surface wind.  

• The third method (denoted tangent wind in the following) take advantage of the 2D extension of the image and derive a “local” effective wind for 
each cross-section defined in section 3.5. First, it computes the local tangent to the plume centerline at the intersection with each cross-section. 
Then it computes the atmospheric level in WRF where the direction of the mean wind in the cross-section is the closest to the direction of this 
local tangent. The wind field in the cross-section at the computed level is used as the effective wind in the corresponding cross-section. 
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Finally, the methods average the effective wind horizontally in the analysis zone (resp. cross-section for the CS method and “source area” for the SP 
method), weighting the average by the smoothed XCO2 values (δXCO2sm,N). The smooth XCO2 field is the one calculated at the plume definition step 
when the plume has been defined with a test-based method. Otherwise, for the wind-based method or when the plume is known, the smoothing is 
made with the uniform method at a 20 km scale. The notation W→a.z. (resp W→c.s., W

→
s.p.) is used in the following. 

A.4. Section 3.7: Inversion methods 

All our computation of the emissions apply to the field of enhancement of the total CO2 mass in the vertical columns column (in g/m2) associated to 
the signature of the city emission in the XCO2 field: 

ΔΩ(x, y) =
MCO2

Mdryair
*ΔXCO2*10− 6*

Pdryair(surface)
g

(4)  

where g is the Earth’s gravity and Pdryair(surface) is the dry air surface pressure, calculated as Pdryair(surface) =
∑

zqdry(x, y, z)*ΔP(x, y, z)+
Ptop* < qdry(x, y, zimax)>x,y, where the relative humidity qdry and the pressure P are assumed to be perfectly known and are taken from the WRF-Chem 
simulations. The emission obtained with the method is denoted Fsat in the following. 

A.4.1. IME 
The IME method (Frankenberg et al., 2016; Varon et al., 2020) calculates the total mass present in the analysis zone and divide it by the estimate of 

the time of residence of the CO2 molecules in this zone. This residence time is calculated as the ratio between the length of the plume centerline in the 
analysis zone L, and the speed of the effective wind (averaged in the plume analysis zone): 

Fsat =
total CO2 mass in plume

CO2 residence time in plume
=

⃒
⃒
⃒
⃒W
→

a.z.

⃒
⃒
⃒
⃒

LIME
*
∫

(x,y)∈plume
ΔΩ(x, y)dxdy (5) 

The definition of the plume length taken here differs from Varon et al. (2020). 

A.4.2. SP method 
The SP method (Buchwitz et al., 2017; Varon et al., 2018) follows the same idea as the IME method, except that it focuses on the enhancement of 

CO2 due to the emissions just above the city. This method was mainly design for point sources, contained in one pixel of the satellite images, whereas 
its application to a city requires the use of a “source area” with a rough definition. We arbitrary fix the “source area” as a square of 40 km wide, roughly 
encompassing Paris core urban area. The time of residence in the source area is evaluated as the ratio between half the width of this square and the 
effective wind averaged over the “source area”. 

Fsat =
total CO2 mass in mega − pixel

CO2 residence time in mega − pixel
=

< ΔΩ>mega− pixel*L2
SP

0.5*LSP
/
⃒
⃒
⃒
⃒W
→

s.p.

⃒
⃒
⃒
⃒

= 2*∣W→s.p.∣* < ΔΩ>control zone*LSP (6)  

A.4.3. CS method 
The CS method (Krings et al., 2011; Kuhlmann et al., 2020; Varon et al., 2019, 2020) directly computes the flux of CO2 through the cross-sections of 

the plume. This flux is given by the product of the mass and the component of the effective wind speed perpendicular to the cross-section: 

Fsat(ics) = W→c.s.⋅ n→cross− section(ics)*
∫

x,y∈cross− section(ics)

ΔΩ(x, y)ds(x, y) (7)  

where s is the abscissa of the projection of the pixel on the curvilign abscissa of the normal to the plume centerline at the center of the cross-section and 
n→transect the unit vector perpendicular to the cross-section. In theory the effective wind should be perpendicular to the cross-section, but errors in 
effective wind estimation and the uncertainty in the plume centerline detection make them often only nearly orthogonal. 

Each cross-section gives a different estimation of the flux. The retained emission calculation for a given plume is the median of the flux given by the 
cross-sections in chosen the plume analysis zone. We thus retain only one estimation per plume for the method except in the first part of section 4.1 and 
Appendix B.1.1 where all cross-sections are studied individually in order to tune some of the method parameters (cross-section size, plume centerline 
method and plume analysis zone). 
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Fig. S2. Illustration of the simulated mass enhancements with the different Gaussian plume inversions on 1/12/2019 at 10a.m with the XCO2 column and wind 
perfectly known. The black line on the upper left panel indicates the sampling zone. 

A.4.4. Inversions using Gaussian plume models 
The general formulation of the Gaussian models we use to simulate the plume from Paris and which applies to extended sources follow that of 

Krings et al. (2011): 

ΔΩgp(x, y) =
F

̅̅̅̅̅
2π

√
*
⃒
⃒
⃒
⃒W
→

a.z.

⃒
⃒
⃒
⃒*σy(x)

e
−

y2

2*σy (x)2 (8)  

where the x and y-axis follow the directions along and across the effective wind, and where the origin of the coordinate system is the city center. The 

term σy(s) allows to account for the horizontal extension of the source. We take σy(x) = a*
(

x +
( RParis

4a
)1/0.894

)0.894 
as Krings et al. (2011), where a is the 

Pasquill stability parameter. 
The inversions consist in fitting the Gaussian plume models to the total column mass enhancement ΔΩ derived from the XCO2 images, the emission 

from the city Fsat being one of the parameters optimized for this fit. 
We tested three variants of this approach with different Gaussian models and/or different set of parameters optimized by the inversion:  

• the “simple Gaussian plume model” with inversions where the city radius is fixed at 20 km, the Pasquill parameter is computed following Pasquill 
(1961) and the wind direction is fixed as the direction of the effective wind estimated in section 3.6. The emission estimate is obtained by 
minimizing the sum of the square differences between the observed (δΩsat(x,y)) and modeled mass enhancement (ΔΩgp(x,y)) over the whole 
domain. This minimization with respect to a single parameters, whose impact on the modeled mass enhancement is linear, is straightforward and 
computed analytically.  

• the “intermediate Gaussian plume model” with inversions where the city radius, the pasquill parameter and the wind direction are not fixed and 
optimized together with the emission estimate. The cost function to minimize is still the sum of the square difference between the observed 
(δΩsat(x,y)) and modeled mass enhancement (ΔΩgp(x,y)) but with a, θ and r being optimized along Fsat . The minimization is done using a classical 
minimization function of python’s scipy package (see https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/reference/generated/scipy.optimize. 
minimize.html, last access on on March 21st 2022).  

• the “complex Gaussian plume model” whose central axis follows the plume centerline derived following section 3.4 with inversions where the wind 
direction is fixed but not the city radius and pasquill parameter, which are optimized together with the emission estimate. The non-regular grid 
defined in section 3.5 is used for the optimization of the parameters. The CO2 mass enhancement corresponding to each portion of each cross- 
section is derived as the average of the CO2 mass enhancements of the pixels in the portion. Eq. 8 is applied in the space defined by our irreg
ular grid by replacing the (x,y) coordinates by the (s,n) coordinates in its formulation. The cost function to minimize is the sum of the square 
difference between the observed (δΩsat (s,n)) and modeled mass enhancement (ΔΩgp (s,n)) fover the irregular grid with a and r being optimized 
along Fsat. The minimization is done using the same minimization function as with the intermediate Gaussian plume model. 

For the intermediate and complex gaussian plume model, the initial value of Fsat (denoted Finit
sat ) given to the solver is a random number taken in a 

beta distribution (with α=1.35, β=2.5 ad a scaling factor of 5) multiplied by the true emission of the core urban area. The choice of such distribution 
was made to have a sufficient spread without getting negative values. The distribution of the a priori values given to the solver has thus a bias of ≈60% 
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of the true emissions and an IQR of ≈165%. The initial values of the other parameters are fix to the one taken for the simple Gaussian plume model. 

The parameters are also scaled as follow: X =

(

Fsat − Finit
sat

Finit
sat

a
120

θ− θ
(

W→a.z.

)

π/4
r− RParis
RParis/2

)T 

and are restricted as follow during the optimization: 

Fsat ∈ [ − Fsat ;+∞], a ∈ [0; 240], θ ∈

[

θ
(

W→a.z.

)

− π/4 ; θ
(

W→a.z.

)

+ π/4
]

and r ∈ [0.5*RParis; 1.5*RParis]. 

Fig. S2 shows an example of the simulations of the mass enhancements given by the three variants for the Gaussian models on the ‘20 km–60 km’ 
analysis zone and their inversions 1/12/2019 and their comparison to the actual plume from Paris. 

Appendix B. Analysis of the different error distributions 

B.1. Analysis of the dependencies of the results to meteorological parameters when the plume, background and effective wind are known: selection of the test 
cases 

This section details the results presented in section 4.1. We study the performance of the inversion methods with different parameters and their 
dependency to the meteorological conditions by looking at the error distributions ε0 (sections B.1.1 and B.1.2) and εn

0 (section B.1.3). The methods set 
aside in the main text are more deeply detailed and compared to document the choices made. The tests are performed with a perfectly known plume, 
background and effective wind. 

B.1.1. Focus on the result of the decomposition of the CS method per cross-section 
Fig. S3 shows the statistics of errors ε0 corresponding to estimates from individual cross-sections, as a function of the distance from the city center 

to the cross-sections (the distance along the central axis to the nodes). The results are separated in four bins, corresponding to the quartiles of the 
spatial variability of the wind direction. We see that, in all panels, the IQR of ε0 increases with the distance between the cross-section and the city 
center. The method becomes less precise over remote parts of the plume which correspond to a longer period of transport and thus to larger levels of 
atmospheric diffusion. However, the abrupt increase of the error IQR at 60 km from the city may be an artifact: at this distance of the city, some of the 
cross-sections are cropped by the image borders depending of the direction of the plume. The precision also decreases with the wind direction 
variability.

Fig. S3. Distribution (median in plain line, 1st and 3rd quartiles in dotted line, 15.9–84.1% quantiles range in colour) of the error ε0 for estimates of the emissions 
per cross-section as a function of the distance between the cross section and the city center when applying the CS method. Each figure shows a binning of the result for 
a quartile of standard deviation of the spatial variability of the wind direction. Results are obtained with (blue, green) and without (orange, red) using the rescaling 
with the part of the core urban are upwind of the cross-section (as described in section 3.8), with a linear (blue, orange) or 5th order polynomial (green, red) fit for 
the centerline. 

The Fig. S3 shows results with the rescaling of the emission estimates to account for the restriction of their emission zone described as the default 
emission zone in section 3.8 or when using the total instantaneous emission of the city to rescale the emissions. The results show that the restriction of 
the emission zone to the fraction of the city upwind of the track (default emission zone) decreases the bias for the the cross-sections at <20 km of the 
city center (i.e. above the core urban area) from values down to − 40% to values between − 2 and + 2%. Using the emission zone gives accurate results 
above the city without impacting the results for the cross-sections outside of the city limits. Thus, the default emission zone is used as the reference case 
in this study: therefore, in the following “not rescaled results” indicates that only the “default” emission zone is applied and “rescaled results” indicates 
that the tested emission zone described in the middle of section 3.8 is applied. 

When the wind direction variability is below 1◦, the sensitivity of ε0 to the centerline calculation method is low. When this variability exceed 1◦, 
and thus when the plume deviates significantly from a straight dispersion, results become sensitive to the computation of the centerline. For a wind 
direction variability comprised between 1,0 and 2,9◦, better results (a smaller bias) are obtained when using a centerline based on a 5th order 
polynomial fit between 40 km and 60 km from the city center. However, the centerline based on a linear fit yields a smaller bias for a spatial variability 
of the wind direction larger than 2.9◦ at such distances. Rather than catching the main path of the plume, the 5th order polynomial fit could tend to 
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overfit some of its meandering over short distances from the city (because this is where the XCO2 signal is the highest), while the linear fit keep on 
catching its mean direction. We choose to keep the method which give less bias for the favorable wind conditions (three first panels) and thus to focus 
on results given with the centerline fitted with a 5th order polynom in the following. 

B.1.2. Analysis of ε0 

B.1.2.1. Sensitivity to the meteorological conditions. In general, all inversion methods give accurate results (low bias and low IQR) when the meteo
rological conditions favor the ventilation of the emitted CO2 in a well developed and straight plume, i.e. with a high wind speed and a low variability of 
the wind direction (illustration is given by Figs. S3 and S4). However, when the CO2 emissions accumulate over Paris or is evacuated within a very 
complex plume, situations characterized by large plume and high XCO2 values, the results bear large errors. Those situations can be driven by low 
effective wind speeds or high variations in space (horizontally and vertically) and in time (over the few hours before the observation time) of the wind 
direction. Furthermore, the representativity of the instantaneous emissions diminish with the effective wind speed. The spatial variability of the wind 
direction is measured via the circular variance of the 3D wind field in the PBL at the observation time and the wind speed temporal variability is 
measured as the difference between the effective wind speed at the observation time minus the effective wind speed one hour before the observation 
time. The spatial variability of the wind direction, the effective wind speed, the strength of the XCO2 signal, the size of the plume and the effective 
wind speed temporal variability are all correlated (correlation superior to 0.6 except with the XCO2 signal strength where it is around 0.2). 

Fig. S4 illustrates the distribution of ε0 as a function of wind parameters for the selected estimation methods. An abrupt increase of the IQR and of 
the absolute bias of ε0 can be seen for high spatial variability of the wind direction. Consequently, we decided not to apply the emission computation in 
the following of the study to cases corresponding to approximately the 15% highest values of the spatial variability of the wind direction (black 
vertical lines on Fig. 6). The threshold value is fixed to 7◦.

Fig. S4. Error distribution function of wind angle standard deviation in PBL before filtering (left panel) and function of the evolution of the effective wind speed in 
the previous hour after filtering (right panel). Results are shown for the different inversion methods using the ‘20 km–60 km’ analysis zone for the Gaussian plume 
models and ‘city-40 km’ for IME and CS method. Black line on the right panel shows the threshold used for filtering the data. 

After applying such a selection of the cases to be studied and for which to apply the emission computations, the accuracy of the results is strongly 
increased. The IQR of ε0 decreases by 2–4% depending on the inversion method and the plume analysis zone. The biases of ε0 are smaller than 2% (see 
Fig. S6), except for the SP method (6%). 

However, such a selection does not cancel the high dependencies to the meteorological conditions (signal strength, effective wind speed, spatial 
variability of the wind direction, temporal variability of the wind speed). As an example, Fig. S4 illustrates the dependency to the temporal variability 
of the wind speed. The effective wind speed used by the emission calculation method is derived at the observation time without accounting for its 
temporal variations despite the plume is generally representative of several hours of emission and transport. Therefore, if the wind speed decreases in 
time, we tend to underestimate the wind speed that is representative of the overall plume, which leads to a positive bias in the distribution of ε0. This 
effect increases with the distance of the analysis zone to the city center. 
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Fig. S5. Error distribution ε0 in function of the tested parameters.  

B.1.2.2. Influence of the centerline definition. The two centerline methods tested are, due to their definition, similar for the simple and intermediate 
Gaussian plume models and SP method. 

The influence of the centerline definition on the GP3 and IME methods is the same as the one described for the CS method (see section B.1.1). When 
looking at the evolution of the error distribution ε0 in function of the spatial distribution of the wind variability, the bias is smaller when using the 5th 
order polynomial centerline for cases corresponding to the third quartile of the wind direction variability than when using the linear centerline. 

B.1.2.3. Influence of the analysis zone. The influence of the analysis zone definition was not studied for the SP method. For the IME and CS methods, 
the IQR of the distribution ε0 increases with the distance of the analysis zone to the city center. Further of the city is the plume analysis zone, larger is 
the IQR of the distribution of ε0. This is coherent with the results seen on Fig. S5 for the CS method. This effect seems to be present in a lesser way for 
the Gaussian plume inversions but with an evolution too small to be certain. 

The results are different depending on the kind of method (mass-balance or Gaussian plume based) used for the emission calculation. For the IME 
methods, as seen on section B.1.1, the loss of mass occurring at the end of the plume (cropped by the image border) which begin at 60 km from the city 
results in a slight underestimation of the emissions when using analysis zones encompassing the part of the plume further than 60 km away of the city 
(‘city-∞’ and ‘20 km-∞’) compared to the other analysis zones. 

The Gaussian plume models are based on a fitting of the concentrations per pixel and thus are not influenced by the mass loss due to the cropping of 
the plume. However, the concentrations simulated by the Gaussian plume model above the city and downwind of the city center are obtained using the 
sum of the emissions on the whole targeted area. This is not the case in more realistic conditions as the source is not punctual (or linear) but has a 2D 
extension. This results in an overestimation of the the concentrations above the city and downwind of the city center by the Gaussian plume model and 
thus an underestimation of the emissions (bias inferior to − 5%) during the inversions when using a analysis zone encompassing the part of the plume 
above the city. 

B.1.2.4. Influence of the emission zone. For all the methods, the results are not affected by the application of the rescaling with the emission zones 
defined in section 3.8: 98% of the emission estimates show a difference of <5%. 

B.1.2.5. Influence of the cross-section width. The results are slightly affected by the length used for the cross-sections. The distributions ε0 show 
differences for biases and IQRs of <2%, for any combination of inversion methods, centerline definition and analysis zone. 

B.1.2.6. Comparison of the Gaussin plume models. The simplest method yields very large biases (between − 10 and − 50%) which can be attributed to 
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the high modelling errors associated to a model for which all parameters but the emissions are fixed without considering the observed plume. The 
stability parameter and the source radius fixed in this methods are generally far from those derived a priori (mean absolute difference of 7 km for the 
radius, and 70 for the stability parameter, which usually takes discrete values between 68 and 213). 

The results obtained with the intermediate and complex Gaussian plume inversions are very similar. No differences can be seen at this stage 
between the two methods. 

B.1.2.7. Summary of the options selection. We decided in the following to restrict to the results obtained with the 5th order polynomial centerline with 
the ‘city-40 km’, ‘city-60 km’, ‘20 km–40 km’ and ‘20 km–60 km’ analysis zone for the IME and CS methods and ‘20 km–40 km’ and ‘20 km–60 km’ for 
the GP inversions. The GP1 inversion is discarded as well as all the days for which the spatial variability of the wind direction in the PBL is superior to 
7◦. The distribution ε0 in the selected configurations in shown on Fig. S6. 

B.1.3. Analysis of εn
0

Fig. S6. Error distributions ε0 and εn
0 for the different analysis zones retained and inversion methods.  

The error distribution εn
0 is unbiased (absolute median value inferior to 2%) and with a relatively small IQR (between 17% and 27%, see Fig. S6), 

except for the CS method (between 25 and 35%). 
For a given image, taking a larger analysis zone generally increases the number of points used for the emission calculation and thus lessen the 

impact of the measurement noise on the estimation. Therefore, Fig. S6 shows that larger is the plume analysis zone, lower is the IQR of the εn
0. When 

considering the combination of ε0 and εn
0 the “optimal” analysis zone appear to be a compromise between the size of the zone and its distance to the 

city center. 
The amplitude of εn

0 is mainly driven by the wind speed (larger wind speed yielding larger εn
0), since the wind speed directly defines the amplitude 

of the plume and thus the signal to noise ratio (defined as the mean signal XCO2 for Paris core urban area divided by the difference between the values 
of the first and last deciles of the background -including noise- signal) exploited by the emission computation. This positive sensitivity of the amplitude 
of εn

0 to the wind speed balances the negative sensitivity of the amplitude of ε0 to the mean effective wind speed (see section B.1.2). However, the 
combination of ε0 and εn

0 keeps on having a much larger amplitude for cases with a spatial variability of the wind direction above the threshold 
identified in 4.1 compared to cases for which the spatial variabilit of the wind direction is below this threshold. This implicitly implies a tendency to 
retain large wind speeds when applying the threshold, due to the correlation of the two (see section B.1.2). Therefore, the selection applied on the 
cases based on this threshold remains relevant when accounting for εn

0. 

B.2. Evaluation of the wind estimation 

In this section, the performance of the wind methods described on section 3.6 are analyzed based on the dependencies of the error distribution εw
0 

(section B.2.1) and εw
n (section B.2.2) to those methods and their parameters. The methods are compared and the some configurations set aside. 

B.2.1. Analysis of εw
0 

Fig. S7 shows the error distribution εw
0 for the different wind estimation methods. The distribution of the error is only slightly influenced by the 

inversion method for a given analysis zone. 
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Fig. S7. Distribution of εw
0 for the different wind estimation methods function of the inversion methods and the analysis zone.  

εw
0 bears much larger biases (respectively − 43% to +8% and + 37% to 7%) when using the surface and mean wind estimation methods but a 

narrower IQR (respectively 14% to 26% and 10% to 19% with the exception when using the SP method at 29%) than when using the tangent wind 
estimation method (with which the bias is smaller than 5% but the IQR is larger than 31%). The small IQR of the first two methods indicates a good 
correlation between the effective wind and the estimated wind. 

The amplitude of εw
0 when using the surface wind (middle panel) and the mean wind in the PBL (left panel) to estimate the effective wind depends 

on the analysis zone, both in term of IQR and bias. When the analysis zone is far from the source, the corresponding section of the CO2 plume is well 
mixed in the PBL and the mean wind method gives an estimation with low bias and IQR. The distribution of εw

0 when using the tangent wind estimation 
method (right panel) is not really influenced by the general definition of the analysis zone. We thus choose to select the method of wind estimation as a 
function of the analysis zone: the tangent wind is used with the ‘city-40 km’ and ‘city-60 km’ analysis zones and the mean wind in PBL with the 
‘20 km–40 km’ and ‘20 km–60 km’ analysis zone. This choice applies in the following of this section and of this study. 

The IQR of εw
0 is influenced by the wind direction variability when using the mean wind estimation method and even more the surface wind 

estimation method (not shown). As the spatial variability of the wind direction increases, the plume complexity increases and thus the difficulty to find 
a wind that is representative of the plume increases. 

B.2.2. Analysis of εw
n

Fig. S8. Error distributions εw
0 and εw

n for the different analysis zones and wind methods retained in function of the inversion method.  

εw
n is similar to the error distribution εw

0 in term of sensibility to the inversion method, analysis zone and spatial variability of the wind direction. 
The selection of the wind method in function of the analysis zone described in section B.2.1 is thus used in the following. Fig. S8 shows the error 
distribution in function of the analysis zone and inversion methods for the wind methods retained. For the analysis zone encompassing the city (i.e. 
when using the tangent wind method) when using the Integratd Mass Enhancemet method, the IQR of the distribution εw

n is slightly smaller than the 
IQR of εw

0 , which may indicate a slight overfiting of the centerline close to the city center, overfitting which disappear when the noise is added. 
However the relation between the wind estimation method and the centerline is complex and the hypothesis is thus difficult to assess. 
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B.3. Evaluation of the plume definition methods with perfectly known background: analysis of εp
n 

In this section, the performance of the plume definition methods and emission zone definitions are analyzed via the error distribution εp
n. This 

section verify their performances in the absence of background and let us make a small narrowing of the options at the end.

Fig. S9. Distribution of εp
n in function of the inversion methods and analysis zone for the selected plume definition methods. The error shows the results whith 

no rescaling. 

The two kinds of methods, the ones based on a statistical test on the smoothed XCO2 data and the one based on the wind direction, show acceptable 
results when well parameterized, with bias of the error distribution εp

n inferior to 10% and IQR inferior to 35% (see Fig. S9). The IQR is again higher 
when using the CS method. 

In Fig. S10 the skill of the plume definition is quantified in terms of the fraction of the number of pixels of the real plume that as been detected on (i) 
the number of pixels in the real plume (denoted detection precision) and (ii) the number of pixels in the detected plume (denoted detection level).

Fig. S10. Detection level (lower panel) and precision (upper panel) in function of the plume definition methods. The label None on the x-axis corresponds to the 
wind-based method. 

The statistical test of the first kind of plume definition method is made for the same kind of distribution as the one of the observation uncertainty. 
Those methods therefore show good detection precision: all the plume definitions with this kind of method have a detection level above 0.9, which 
means that >90% of the pixels that have been labeled as part of the plume really belong to the plume for every parametrization. As the smoothing size 
increases, more non -plume pixels are contaminated by plume pixels during the smoothing and therefore the detection precision decreases. With the 
wind-based method, the detection precision is smaller (median of 0.8) as it does not rely on the XCO2 field. 

The test-based methods leave aside the plume pixels with a small signal. Therefore the detection levels are small and decrease with the smoothing 
size. Even with a 30 km smoothing size, 75% of the plume definitions show detection levels below 0.6, which means that 40% of the plume has not 
been detected. The wind-based method shows better detection level than the test-based methods, with 84% of the plume definition with detection 
level above 0.8. 

For the test-based methods, the plume definition and detection level show no sensitivity to the smoothing method. Therefore we focus hereafter on 
the results obtained with the Uniform smoothing method. 

Fig. S9 shows the error distribution εp
n for the different plume definition methods. A low detection level indicates a high level of plume pixels non 

detected and thus leads to a negative bias of the error distribution εp
n for CS and IME methods (bias inferior to − 22% with the 10 km smoothing size). 

The low detection levels affect also the Gaussian inversions, with a positive bias on the error distribution εp
n (bias superior to 15% with the 10 km 

smoothing size). Therefore, the absolute bias of the error distribution decreases with the smoothing size of the test-based methods. Of note is that a 
median detection level of only 0.4 leads to a absolute bias of the error distribution εp

n for CS and IME methods inferior to 10%. 
The application of the emission zone for the IME and CS methods reduces the bias for the small smoothing sizes (bias inferior to 5% for the 20 km 

smoothing size for the IME and CS methods), but without reaching the level of bias of the 30 km smoothing size. For the Gaussian plume inversions, the 
IQR of the error distribution is stable when applying the emission zone for the 10 km smoothing size (range from 40% to 46% with no rescaling and 
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42% to 45% with rescaling) and the 20 km smoothing size (range from 18% to 23% with no rescaling and 19% to 26% with rescaling). For the 30 km 
smoothing size, the cross-section of the plume are bigger than the city radius and thus all the Paris core urban area is within the emission zone in most 
cases. As there is no background, no emissions outside of the Paris core urban area are put in the emission zone. Thus the emission zone is strictly 
equivalent to the Paris core urban area in most cases: 18% to 84% of the cases (71% to 84% when we exclude results obtained with the CS method) 
show a difference inferior to 5% between this two reference emissions (13% to 86% with a 20 km smoothing size, 25% to 86% when excluding CS 
results). The emission zone definition are thus not very relevant to improve the performance of the plume definition methods when analyzing the error 
distribution εp

n. 
The high detection level of the wind direction based method means that a large fraction of the plume is caught. As the false-positive distribution 

should have a mean value of 0, there impact are small on the inversion methods. The error distribution of εp
n has thus a small bias (between − 1% and 

4%) and IQR (between 11% and 41%) when using the plume definition method based on the wind direction. 
The IQR of εp

n, as the IQR of εn
0, is driven by the ratio between the strength of the XCO2 signal and the measurement noise (the “signal-to-noise-ratio” 

of the plume definition). In the case of the test-based plume definition methods, the bias of εp
n is also sensitive to the signal to noise ratio: the detection 

level increases with the signal-to-noise-ratio, which result in a decrease of the bias of εp
n with the signal-to-noise-ratio. 

B.4. Evaluation of the background estimation methods with perfectly known plume 

In this section, the performance of the background estimation methods described on section 3.3 are analyzed based on the dependencies of the 
error distribution εb

0 (section B.4.1) and εb
n (section B.4.2) to those methods and their parameters. The methods are compared and the some config

urations set aside. 

B.4.1. Analysis of εb
0

Fig. S11. Distribution of the background error in function of the background estimation method for the different plume analysis zones.  

The mean error of the calculated background in the analysis zone of interest is calculated for each image and background calculation methods. We 
first study the distribution of this mean error (denoted background error in the following, see Fig. S11) in function of the analysis zone and background 
calculation methods to make a preselection of the background calculation methods. 

For the analysis zone of the SP method, two background estimation methods stands out with a relatively small bias of the background error 
(absolute value of the median inferior to 0.01 ppm): ‘bckgl_mean’ and ‘bckgl_gauss’. For the analysis zones used by the other emission calculation 
methods, the bias and the IQR of the distribution of the background error are low (bias inferior to 0.01 ppm and IQR inferior to 0.09 ppm for all the 
analysis zone) when using ‘bckgl_cs’ and bckgl_gau’ methods. The method based on biharmonic equation (‘bckgl_bih’), albeit having a similar IQR, 
gives a median bias for the background error around 0.025 ppm, which results in a median bias around 25% for the distribution of εb

0. We thus decide 
to focus on the ‘bckgl_mean’ and ‘bckgl_gauss’ methods for the source pixel analysis zone and on the ‘bckgl_cs’ and ‘bckgl_gau’ methods for the other 
plume analysis zones. 
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Fig. S12. Illustration with the ‘bckgl_gau’ method of the evolution of the distribution εb
0 in function of the standard deviation of the XCO2 signal in the image for the 

different inversion methods. 

The error distribution εb
0 shows no sensitivity to the analysis zone (not shown), therefore the following results are presented using the ‘city-40 km’ 

analysis zone for CS and IME methods and ‘20 km–60 km’ for the Gaussian inversions, but the conclusions can be extended to the other plume analysis 
zone. 

The complexity of the background, when too important, can not be modeled by the methods used for the background calculation. Therefore the 
IQR of the distribution εb

0 increases with the standard deviation of the XCO2 field in the image (see Fig. S12) and this standard deviation is a good 
indicator of the expected accuracy of the emission calculation. 

When the plume is occupying >40% of the image, the background methods faces difficulties to resolve the center of the plume. When the plume is 
unknown, the designs of our plume definition method do not allow for the plume detected to reach such size. Thus this effect is not a problem in our 
study but attention should be paid to this point when the city is occupying a bigger part of the image. 

B.4.2. Analysis of εb
n

Fig. S13. Distribution of εb
0 and εb

n in function of the background calculation methods for the different inversion methods.  

When the measurement noise is added, the background calculation methods show similar results than in the previous section. The distribution εb
n is 

thus similar to εb
0 (see Fig. S13). The sensitivity to the standard deviation of the XCO2 field in the image and the plume size are found to be the same. 

B.5. Combined effect of the plume and background methods 

This section only concern the IME and CS methods and GP inversions as the SP method does not need a detection of the plume limits. 
Only the background calculation methods selected in section B.4 and the plume definition methods selected in B.3 are studied. The performance of 

the plume definition and background calculation methods are studied regarding their results in terms of background error, detection level and 
detection precision (section B.5.1) and by analyzing the error distributions εp

b (section B.5.2) and εp
nb (section B.5.3). The range of options is narrowed 

in each subsection. 

B.5.1. First evaluation of the methods performance 
The simulation are made with a unknown plume and background and a 0.7 ppm noise. A first evaluation is made of the combination of the retained 

background calculation methods (see section B.4) and the plume definition methods in terms of background error in the analysis zones (see section 
B.3), detection sensitivity, detection precision and number of plume successfully detected. 
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Fig. S14. Results of the different plume definition and background calculation methods in terms of background error, detection sensitivity, detection precision and 
number of plume successfully detected. The results are grouped by a priori background calculation method. Only the parametrizations of the test-based method using 
a uniform filter are shown. 

The for indicators show no sensitivity to the analysis zone (not shown), thus we focus on the ‘city-60 km’ analysis zone hereafter. Fig. S14 shows an 
illustration of the results for the selected plume analysis zone. We first focus on the tuning of the plume definition method adapted from Kuhlmann 
et al. (2019) (Fig. S14) where the method for the a priori calculation of the background, the smoothing method and smoothing size have to be chosen. 
For a given a priori background calculation and smoothing size, the results given by the different smoothing method are very close: the pearson 
correlation between the smoothing methods for the detection sensitivity and precision are superior to 0.97. The for indicators show low sensitivity to 
the smoothing size: a 20 km smoothing size will give a slightly bigger background, a better detection precision but a lower detection sensitivity. This 
difference is more or less marked depending on the a priori background calculation method used. 

Concerning the method for the a priori background calculation, the one based on a planar fit of the XCO2 data (bckgp_2df) shows a significant IQR 
(between 0.13 and 0.16 ppm) compared to the other methods (between 0.09 and 0.12). This method gives also low detection precision compared to 
the other a priori background calculation methods. The methods based on the median and the mean of the XCO2 data (resp. bckgp_mean and 
bckgp_med) give very similar results (correlation over 0.97 for the detection precision, detection sensitivity and background error). Therefore we 
choose to focus on the methods bckgp_mean and bckgp_upw. The bckgp_mean method has a smaller background error than the bckgp_upw method and 
shows a slightly better detection precision but a smaller detection sensitivity. We thus choose to keep in the following only two version of the plume 
definition method adapted from Kuhlmann et al. (2020): (i) an a priori calculation of the background with the bckgp_upw method associated to a 
20 km smoothing size with the Uniform smoothing method and (ii) an a priori calculation of the background with the bckgp_mean method associated 
to a 20 km smoothing size with the Uniform smoothing method. Both background calculation methods tested (bckgl_cs and bckgl_gau) are kept. 

The results given by the wind-based method are similar to the test-based methods retained in term of background error: the IQR of the background 
error distribution are around 0.08 ppm and the bias is inferior to 0.005 ppm for all of them. The detection precision and sensitivity are different with a 
much narrower IQR (detection precision: 0.19 for the wind based, between 0.19 and 0.28 for the test-based; detection sensitivity: 0.23 for the wind 
based, between 0.41 and 0.59 for the test-based). As in the case of εp

n, for the wind-based method the median detection precision is slightly smaller 
(0.82 for the wind-based, 0.89 and 0.94 for the test-based) but the median detection sensitivity is far greater (0.94) than when the test-based methods 
are used (0.48 and 0.61). 

B.5.2. Analysis of εp
b 

The simulations are performed with an unknown background, unknown plume and no measurement noise in the configurations selected in section 
B.5.1. The distribution of εp

b shows a high sensitivity to the configuration parameters (plume analysis zone, background calculation and plume 
definition method). 

The IQR of the distribution εp
b increases with the distance of the analysis zone to the city center. Close to the core urban area, the targeted XCO2 

signal do not have time to diffuse and is thus strong and directly downwind of the core urban area. Thus the plume definition methods may perform 
better on analysis zone close to the core urban area and explain this sensitivity not seen in the previous section. The results described in the rest of the 
subsection being independent of the plume analysis zone, we present the results with the ‘city-40.0 km’ analysis zone for the CS and IME methods and 
‘20.0–40.0 km’ analysis zone for the GP inversions. 
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Fig. S15. Distribution of εp
b in function of the emission calculation for the different plume definition methods when using the ‘bckgl_gau’ (left panel) and ‘bckgl_cs’ 

(right panel) background calculation methods. The results are shown when using a uniform smoothing at 20 km for the test-based methods. 

Fig. S15 show the distribution of εp
b, in function of the inversion methods and plume definition methods for the two background calculation 

methods retained. The results outlined in the previous section are confirmed here. The statistical based methods for plume definition tends to have a 
high number of false positive in the detected plume, which results in a lower detection level compared to the one obtained with the wind based 
method. This results in a bigger IQR in the distribution εp

b when using the statistical-based methods rather than the wind-based one for the plume 
definition. The use of the emission zone for the CS method reduce the IQR of the error distribution when using the test based plume definition methods, 
but not sufficiently for this methods to be interesting compared to the wind-based method. 

The slightly bigger IQR of the background error seen in Fig. S14 when using the ‘bckgl_cs’ background calculation method rather than the 
‘bckgl_gau’ one is enhanced in the distribution εp

b. Therefore, the best configuration seems, at this stage, the plume definition method based on the 
wind direction and the background calculation method based on Gaussian function. The application of the rescaling by the emission zone does not 
sufficiently improve the results of the test-based methods to be competitive with the wind-based methods. 

The IQR of the distribution εp
b, as the IQRs of the distributions εp

n, εb
0 and εb

n, is sensitive to the signal-to-noise ratio and thus increases with the 
standard deviation of the XCO2 signal in the image. 

B.5.3. Analysis of εp
nb and narrowing of the range of options for the background calculation and plume definition 

The simulations are performed with an unknown background, unknown plume and 0.7 ppm measurement noise. The results found in the previous 
section in term of performance of the plume definition and background calculation methods are the same here. Therefore we focus on the results given 
by the plume definition method based on the wind direction and the background calculation method ‘bckgl_gau’. A sensitivity to the analysis zone 
similar than for εp

b (see section B.5.2) is visible for εp
nb, except for the CS method. The IQR of the distribution εp

nb -as the distributions εp
n, εb

0 and εb
n- 

decreases with the signal to noise ratio. Furthermore, this IQR slightly increases with the distance of the analysis zone to the city. 
In the following, only the plume definition method based on the wind direction with the ‘bckgl_gau’ background calculation method are kept. 

B.6. Analysis of εw
nbp 

The distribution of εw
nbp shows -as εw

n and εw
0 - a more important IQR when the tangent wind is used (32% to 52% vs 13% to 21% when the mean wind 

is used), which correspond to the analysis zones encompassing the city. The uncertainty in the estimation of the XCO2 signal from the city, due to 
uncertainties in the plume limits and in the calculated background, impacts the estimation of the wind. Thus the IQR of εw

nbp (13% to 52%) is more 
important than the IQR of εw

n (10% to 47%). The bias is of the same order of magnitude (<10%). 
When the signal to noise ratio is high, the weighting coefficient used to calculated the mean wind in the analysis zone are less accurate. Thus the 

IQR of the distribution increases with the signal to noise ratio and the standard deviation of the XCO2 signal in the image. 
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Broquet, G., Bréon, F.-M., Renault, E., Buchwitz, M., Reuter, M., Bovensmann, H., 
Chevallier, F., Wu, L., Ciais, P., 2018. The potential of satellite spectro-imagery for 
monitoring co2 emissions from large cities. Atmos. Meas. Tech. 11, 681–708. 
https://doi.org/10.5194/amt-11-681-2018. ISSN 18678548.  

Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., 
Burrows, J.P., Boesch, H., Parker, R.J., Somkuti, P., Detmers, R.G., Hasekamp, O.P., 
Aben, I., Butz, A., Frankenberg, C., Turner, A.J., 2017. Satellite-derived methane 
hotspot emission estimates using a fast data-driven method. Atmos. Chem. Phys. 17, 
5751–5774. https://doi.org/10.5194/acp-17-5751-2017. ISSN 16807324.  

Chevallier, F., Zheng, B., Broquet, G., Ciais, P., Liu, Z., Davis, S.J., Deng, Z., Wang, Y., 
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2019. Detectability of co2 emission plumes of cities and power plants with the 
copernicus anthropogenic co2 monitoring (co2m) mission. Atmos. Measure. Tech. 
Discuss. 1–35. https://doi.org/10.5194/amt-2019-180. ISSN 1867-8610.  

Kuhlmann, G., Brunner, D., Broquet, G., Meijer, Y., 2020. Quantifying co2 emissions of a 
city with the copernicus anthropogenic co2 monitoring satellite mission. Atmos. 
Measure. Tech. Discuss. 1, 1–33. https://doi.org/10.5194/amt-2020-162. ISSN 
1867-1381.  
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Lian, J., Bréon, F.-M., Broquet, G., Zaccheo, T.S., Dobler, J., Ramonet, M., Staufer, J., 
Santaren, D., Xueref-Remy, I., Ciais, P., 2019. Analysis of temporal and spatial 
variability of atmospheric co2 concentration within Paris from the greenlite™ laser 
imaging experiment. Atmos. Chem. Phys. 19, 13809–13825. https://doi.org/ 
10.5194/acp-19-13809-2019. ISSN 16807324.  
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Lian, J., Lauvaux, T., Utard, H., Bréon, F.M., Broquet, G., Ramonet, M., Laurent, O., 
Albarus, I., Cucchi, K., Ciais, P., 2022. Assessing the effectiveness of an urban co2 
monitoring network over the Paris region through the covid-19 lockdown natural 
experiment. Environ. Sci. Technol. 56, 2153–2162. https://doi.org/10.1021/acs. 
est.1c04973. ISSN 15205851.  
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