

Chronology of Upper Paleolithic human activities recorded in a stalagmite at Points Cave (Aiguèze, Gard, France)

Maïlys Richard, Edwige Pons-Branchu, Hélène Valladas, Michael Toffolo, Stéphan Dubernet, Arnaud Dapoigny, Jean-pascal Dumoulin, Pierre-antoine Beauvais, Julien Monney

▶ To cite this version:

Maïlys Richard, Edwige Pons-Branchu, Hélène Valladas, Michael Toffolo, Stéphan Dubernet, et al.. Chronology of Upper Paleolithic human activities recorded in a stalagmite at Points Cave (Aiguèze, Gard, France). Geoarchaeology: An International Journal, inPress, 39 (5), pp.470-484. 10.1002/gea.22001. hal-04498557

HAL Id: hal-04498557 https://hal.science/hal-04498557v1

Submitted on 11 Mar 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Chronology of Upper Palaeolithic human activities recorded in a stalagmite at Points Cave
2	(Aiguèze, Gard, France)
3	
4	Maïlys Richard ^{1, 2} *, Edwige Pons-Branchu ¹ , Hélène Valladas ¹ , Michael B. Toffolo ^{2,3} , Stéphan
5	Dubernet ² , Arnaud Dapoigny ¹ , Jean-Pascal Dumoulin ⁴ , Pierre-Antoine Beauvais ⁵ , Julien
6	Monney ⁶
7	
8	¹ Laboratoire des Sciences du Climat et de l'Environnement, GEOTRAC-LSCE/IPSL, UMR 8212,
9	CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
10	² Archéosciences Bordeaux, UMR 6034 CNRS, Université Bordeaux Montaigne, Maison de
11	l'Archéologie, Pessac, France.
12	³ Department of Early Prehistory and Quaternary Ecology, University of Tübingen,
13	Tübingen, Germany
14	³ Geochronology and Geology Program, Centro Nacional de Investigación sobre la Evolución
15	Humana (CENIEH), Paseo Sierra de Atapuerca 3, Burgos, Spain.
16	⁴ Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université
17	Paris-Saclay, Gif-sur-Yvette, France.
18	⁵ Laboratoire TRACES, UMR 5608, Université Toulouse Jean Jaurès, Maison de la Recherche, 5,
19	allées Antonio Machado, Toulouse, France.
20	⁶ Laboratoire EDYTEM, Université Savoie Mont Blanc, Bd de la mer Caspienne, Le Bourget du
21	Lac, France.
22	
23	*Corresponding author: mailys.richard@u-bordeaux-montaigne.fr

24 Abstract

In this article, we propose an approach to reconstruct the timing of human activity at Points 25 26 Cave, an Upper Palaeolithic rock art site located in the middle of the Ardèche River gorge (Rhône valley, France), based on the dating and characterisation of a stalagmite containing soot. 27 Points Cave ("Grotte aux Points" in French), also called the "little sister of Chauvet 28 29 Cave", is famous for its parietal art including a series of dots made of palm prints. A large number of stalagmites formed in the cave during the last 500 ka. However, quarrying of the cave 30 31 floors during historic times led to the partial destruction of the sedimentary deposits, and many 32 of the stalagmites were found lying on the floor. In particular, one of them (STM-18-04) showed the presence of at least four dark layers in cross-section, which appeared as possible remnants of 33 fire-related activities in the cave. 34

Despite being present at the same site, no other specific link between STM-18-04 and the 35 rock art has been documented. This stalagmite, however, allows us to identify phases of human 36 37 presence, located at the cave entrance. In order to do so, we performed a series of analyses to determine its period of growth and the nature of the dark layers it contains. Scanning electron 38 microscopy and Raman micro-spectroscopy confirmed that the dark layers include soot, and U-39 40 series dating indicated that the fire events occurred respectively around 14,200-14,100 and 12,500 years ago, in agreement with the radiocarbon ages of charcoal specimens recovered from 41 42 the excavation areas nearby. We thus highlighted phases of human activity at the site during the 43 Upper Magdalenian and/or beginning of the Epipalaeolithic. By comparing our results with the 44 regional palaeoclimatic record, the soot layers trapped in the stalagmite appear to be synchronous 45 with two cold periods, likely the Older Dryas, and the Younger Dryas.

46

47 Keywords: Stalagmite; Soot; Upper Magdalenian; Chronology; U-series; Radiocarbon;
48 Vibrational spectroscopy; Scanning electron microscopy.

49

50 1. Introduction

Establishing the chronology of human and animal activities in Palaeolithic rock art sites in 51 52 relation to natural phenomena (climate change, geological and environmental events) is a key issue in rock art research. Following the discovery of Chauvet Cave in 1994 and the publication 53 54 of the radiocarbon ages obtained on the paintings (starting from ca. 36,000 years cal. BP, Clottes 55 et al., 1995), there has been a major effort to unravel the chronology of events that took place in the Palaeolithic rock art sites of south-eastern France (Valladas, et al., 2001, 2017; Genty et al., 56 2004; Ambert et al., 2005; Cuzange, et al., 2007; Azéma et al., 2012; Sadier et al., 2012; Quiles, 57 et al., 2013; Monney et al., 2014; Guibert et al., 2015; Quiles, et al., 2016; Monney & Jaillet, 58 59 2019). There is increased interest in understanding the climatic and environmental conditions at 60 the time of human presence at the entrance and/or in the deepest parts of rock art caves during the Upper Palaeolithic, a period that broadly ranges from ca. 50 to 12 ka. In this regard, the 61 analysis and dating of speleothems has proved an essential source of information, especially in 62 63 the Ardèche River Gorge (Bourdin, et al., 2011; Genty et al., 2004).

Uranium-series (²³⁰Th/U) dating is extensively used to date calcium carbonate deposits,
in particular cave speleothems (Ivanovich and Harmon, 1992; Richards and Dorale, 2003). In
stalagmites, U-series dating can be combined with palaeoclimatic and palaeoenvironmental
analyses, including stable isotopes and trace elements. In addition to geochemical information,
speleothems may also contain remnants of anthropic activities such as traces of fire, or use of
manganese oxides (e.g., Genty, et al., 1997; Vandevelde, et al., 2017; Pons-Branchu et al., 2022).

However, applications are successful on well preserved samples, i.e., closed systems, and are
limited in the case that U is remobilised due to diagenetic processes (dissolution,
recrystallisation), which may distort the ages obtained. This is particularly restrictive when
dating thin speleothems ("crusts") covering rock art (e.g., Aubert et al., 2014; Hoffmann et al.,
2016; Pike et al., 2012), thus highlighting the importance of having a clear stratigraphic control,
independent dating methods (e.g., radiocarbon) and archaeological context (Pons-Branchu et al.,
2014a; 2022).

Here, we combined U-series and radiocarbon (¹⁴C) dating on calcite samples and material characterisation of dark particles trapped in a stalagmite collected on the floor of Points cave (STM-18-04), a rock art site located in the Ardèche River Gorge in France (Figure 1). Our study aimed at connecting chronological data obtained in STM-18-04 with the remnants of fire activities trapped in this stalagmite. These data were compared with the ¹⁴C ages obtained on charcoals collected from the stratigraphic context to reconstruct the timing of human activities at the entrance of the cave.

84

85 2. Materials and Methods

86 2.1. Site description and sampling

Points Cave is a Palaeolithic rock art cave located in the central part of the Ardèche River Gorge
(Aiguèze, Gard, France, Figure 1a). Since 2011, it has been subject to interdisciplinary research
as part of the "Datation Grottes Ornées" ("Cave Art Dating") project, coordinated by one of us
(Monney, 2018a). The cave is a 110 m-long corridor (Figure 1c). It was successively occupied
by cave bears during Marine Isotopic Stage 3 (MIS 3, ca. 57-29 ka, Lisiecki and Raymo, 2005)
and modern humans, at least, since the Gravettian (since ca. 32,000 cal BP).

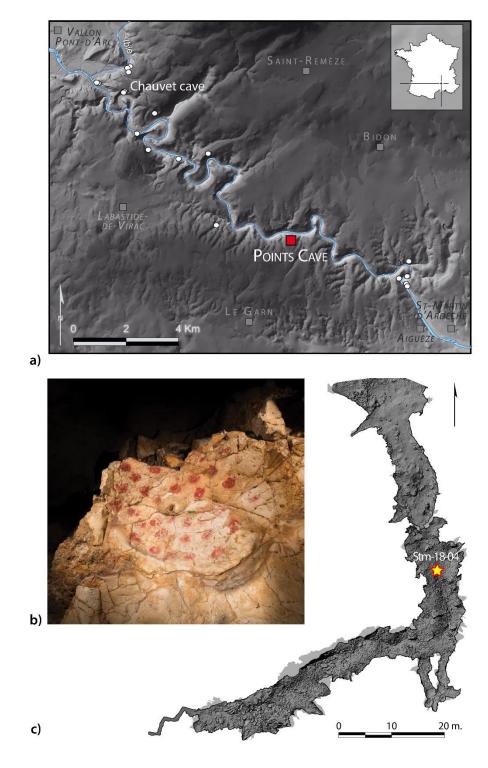
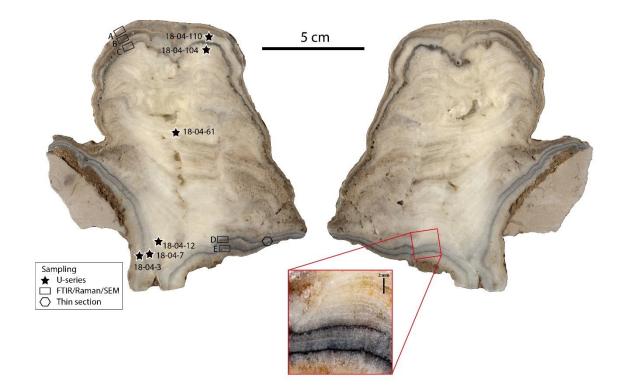


Figure 1. Location of Points Cave in the Ardèche Gorge (a), an example of palm prints produced
by pressing pigment-covered palms onto the rock (b) and map of the cave with location of
stalagmite STM-18-04 (c).

The rock art, which was discovered in 1993 (Brunel et al., 2008, 2018), is concentrated in 97 an area located in the total darkness zone around 75 m from the entrance. It includes 72 red 98 99 drawings and paintings, including five animal figures (three ibexes, one horse, one bison), five indeterminate tracings, two bilobed signs, one open-angle sign and 59 palm prints produced by 100 pressing pigment-covered palms onto the rock (Figure 1b, Monney, 2018b). The rock art shows a 101 102 high colorimetric homogeneity (Lafon-Pham et al., 2022) and is attributed to a single painting 103 phase (Monney, 2018b). Its closest iconographic equivalent is to be found in the entrance sectors 104 of Chauvet Cave, where we also find bilobed signs and palm prints clusters accompanied by 105 small line drawings of animals (Baffier and Feruglio, 1998; Chauvet et al., 1995; Gély, 2005). Material uncovered in SU (Stratigraphic Unit) 1 during archaeological excavations at 106 Points Cave entrance comprises flint, charcoal, faunal remains and colouring material. The 107 108 preliminary typo-technological analysis of the lithic material revealed the presence of a Noailles 109 burin, microgravettes, probable fragments of unifacial points, covering retouch, etc. (Boccaccio, 110 2018), indicating that humans visited the cave, at least during the Gravettian (ca. 32,000-26,000 cal BP) and Solutrean (ca. 26,000-21,000 cal BP) and possibly up until the 111 Epipalaeolithic (ca. 14,000-12,000 cal BP). During historic times, the floors and sedimentary 112 113 deposits of Points Cave were affected by extensive quarrying activities that led to the breakage and/or unearthing of speleothems. Archaeological surveys identified 21 stalagmites and 114 115 one stalactite scattered on the floors and/or embedded in cave sediments (Figure 2). 116 We focused our study on one of the stalagmites, PTS-STM-18-04, whose cross-section 117 revealed a series of dark layers interbedded with calcite (Figure 3). This stalagmite was found in 118 the penumbra zone, 38 m away from the entrance. Following F. Rouzaud (1978), the penumbra 119 zone is described as an area with indirect natural lighting where it is possible to move around


120 without the aid of artificial lighting (grease lamp, torch, etc.). Unlike other speleothems attesting 121 to ancient flood periods inside Points Cave up to the beginning of MIS7, ca. 241 ka (Genuite et al., 2022), STM-18-04 did not show any erosion marks indicative of transport processes, nor 122 traces of burial processes (no red sandy sediments on its outer surface). On the contrary, 123 124 although found lying on the floor and disconnected from its dripping area, STM-18-04 was 125 found intact. Moreover, remains of the sediment on which it had precipitated were still trapped under its base. Similar sediments were observed under the remnants of a broken, albeit in situ, 126 stalagmitic floor located about 3 m away from STM-18-04, suggesting that the stalagmite may 127 128 have been initially in the continuity of the flowstone and that it would have precipitated close to its finding place (Figure 2). 129

130

In cross-section, STM-18-04 showed a series of dark layers (Figure 3). Two of them, separated by a few millimetres, are located at the base of the stalagmite. A third layer is located less than a centimetre below the top of the stalagmite. A detailed examination of the latter showed that it resulted from the concatenation of at least two different dark horizons. The other dark traces, visible for example at the top of STM-18-04, are too diffuse to attest the presence of any other layer.

139

Figure 3. The STM-18-04 speleothem and location of the sampling for U-series, vibrational
spectroscopy and optical microscopy. U-series samples were taken from the base to the top of the
speleothem: the number after 18-04 refers to the sample depth (in mm).

143

144 These dark layers were observed using stereomicroscopy and characterised using Raman

- 145 micro-spectroscopy, scanning electron microscopy (SEM), and thin section petrography
- 146 (Figure 3). Six samples were also collected for U-series analyses to reconstruct the timing of

formation of the concretion, including the fire events (Figure 3). The crystalline phase of the
samples was determined using Fourier transform infrared (FTIR) spectroscopy. Radiocarbon
analyses were also performed on calcite and on charcoals from the immediate archaeological
context (stratified deposits).

151

152 **2.2. Chronology**

153 Uranium-series dating and modelling

U-series dating is based on the radioactive decay of ²³⁴U in ²³⁰Th within the ²³⁸U decay chain. 154 155 Uranium being soluble in water, it is incorporated to the calcite during the precipitation of the crystal. Thorium being insoluble, it is assumed that the ²³⁰Th content measured today is the 156 product of the parent, ²³⁴U. However, contamination of exogenous Th is common and needs to 157 be checked in order to assess the reliability of the age results. To do so, ²³²Th, which does not 158 belong to the ²³⁸U decay chain, but has the same chemical behaviour than ²³⁰Th, is measured, and 159 the ²³⁰Th/²³²Th used to assess the level of contamination and to correct the ages (see for example 160 Hellstrom, 2006). The measurement of U and Th isotopes using mass spectrometry allows 161 calculating ages for samples up to ca. 600 ka. Six samples were extracted from STM-18-04 using 162 163 a dentist drill at the EDYTEM laboratory (Le-Bourget-du-Lac, France) (Figure 3). U-series analyses were conducted at the Laboratory of Science of Climate and Environment (LSCE, Gif-164 165 sur-Yvette, France) using the chemical procedure for separation and purification of uranium and 166 thorium isotopes described in Pons-Branchu et al. (2014b). Samples (100-200 mg) were spiked with a ²³⁶U-²²⁹Th solution and the U and Th fractions were extracted using U-TEVA resin 167 168 (Eichrom[®]). Uranium and Thorium fractions were then recombined for measurements on a 169 Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS Thermo Neptune

Plus), fitted with a jet interface and an Aridus II desolvating system. ²³⁸U, ²³⁵U, ²³⁶U, and ²²⁹Th
were measured on Faraday cups, and ²³⁰Th and ²³⁴U on ion counting following Pons-Branchu et
al. (2014b). The ages obtained were modelled using stratigraphic and coevality constraints
(STRUT, Roy-Barman and Pons-Branchu, 2016). An age-depth model was then computed from
corrected U-series ages and depth measurements using MOD-AGE (Hercman and Pawlak,
2012).

176

177 Radiocarbon analysis of calcite

178 Aliquots (ca. 10 mg) of the samples collected for U-series analyses were used for radiocarbon (¹⁴C) dating at Laboratoire de Mesure du Carbone 14 (LMC14, Gif-sur-Yvette, France). CaCO₃ 179 samples were cleaned according to the procedure of Dumoulin et al. (2017). The samples were 180 181 then hydrolyzed in CO₂ with pure ortho-phosphoric acid (H₃PO₄) and converted to graphite prior to being measured following the standard protocols at the ARTEMIS AMS facility, LMC14 182 laboratory (Moreau et al., 2013; Moreau et al., 2020). The ¹⁴C measurements were corrected for 183 isotopic fractionation according to the ¹³C values measured at the Artemis facility, following 184 international recommendations (Mook and van der Plicht, 1999). 185

186

187 Radiocarbon analysis on charcoals

For comparative purposes, ¹⁴C dating was also performed on five charcoals taken from the upper part of the stratigraphic sequences of the archaeological excavations previously carried out at the cave entrance. One of these charcoals (Charb-1223) comes from the natural stratigraphy visible in the background in Figure 2. It was collected at the interface between the stalagmitic floor and SU 1, in a stratigraphic position very similar to that of the two black horizons at the base of

STM-18-04. Two of the charcoal samples (Charb-1521 and 1525) were prepared in the "Centre 193 de Datation par le Radiocarbone" (CDRC) in Lyon (France) and sent in gas form to the 194 Laboratoire de Mesure du Carbone 14 (LMC14) in Saclay. The chemical pretreatment and the 195 combustion to produce the CO₂ of the three other charcoals (Charb-1140, 1223 and 1548) were 196 done at the LMC14 according to the protocol described in Dumoulin et al. (2017). All the 197 samples were converted to graphite and were measured at the ARTEMIS facilities. The ¹⁴C ages 198 199 were then calibrated using Oxcal 4.4 (Bronk-Ramsey, 2001) and the IntCal20 calibration curve 200 (Reimer et al. 2020). Note that there was not enough material to perform analyses directly on the 201 black horizons.

202

203 Stereomicroscopy and thin section petrography

All speleothem fragments (A, B, C, D, and E, Figure 3) were analysed using a Leica

stereomicroscope at different magnifications (up to 10x) to identify regions of interest for

scanning electron microscopy and Raman micro-spectroscopy. One fragment of the speleothem

was mounted on a glass slide and polished to a thickness of $30 \,\mu m$ to obtain a thin section. The

thin section was analysed using a Leica DM2500 P polarising microscope at different

209 magnifications (25x, 50x, 100x, 200x, 400x).

210

211 Scanning electron microscopy (SEM)

212 Fragment D (Figure 3) was selected for SEM to determine the nature of the black particles

embedded in the dark layer. The sample was analysed using a JEOL JSM-IT500HR

InTouchScope[™] at 5 kV and various working distances using a backscattered electron detector

for electronic mean density images and a secondary electron detector for topographic images.

217	Fourier transform infrared spectroscopy (FTIR)
218	Fragments of speleothems ($n=6$) were analysed using FTIR to determine their composition
219	(Figure 3). In addition, two of the fragments were dissolved in 1M HCl to analyse their insoluble
220	fraction. Samples were powdered in an agate mortar and pestle and about 5 mg of each were
221	mixed with 40 mg of KBr and pressed into 7-mm pellets using a hand press. Infrared spectra
222	were collected in transmission mode in 32 scans within the 4000-400 cm ⁻¹ spectral range using a
223	Bruker Alpha spectrometer operated via OPUS 7.2. Spectra were analysed using OMNIC 9.6 and
224	Macros Basic 8.0, and phase identification was based on standard literature (Farmer, 1974; van
225	der Marel and Beutelspacher, 1976) and on the infrared spectra library of the Kimmel Center for
226	Archaeological Science (https://centers.weizmann.ac.il/kimmel-arch/infrared-spectra-library).
227	The degree of atomic order of calcium carbonate crystals was determined following the methods
228	of Regev et al. (2010) and Poduska et al. (2011).
229	
230	Raman micro-spectroscopy (µRaman)
231	Fragments of speleothems (n=3, #B, D, and E, see Figure 3) were analysed using Raman
232	spectroscopy with a Renishaw micro-spectrometer type RM2000 coupled to a LEICA type
233	DMLM microscope equipped with a x50 large numerical aperture objective and a 633 nm laser.
234	Under 1-2 μ m laser spot radius and the chosen optical set, the spatial resolution can be estimated
235	to be around 3 μ m along the Z depth optical axis and 2x2 μ m ² at the XY perpendicular matter
236	surface. All the spectra were acquired with a grating blazed at 1200 gr/mm and a 50 μ m
237	spectrometer entrance slit, ensuring a high spectral resolution. The acquisitions are a fixed

combination between a laser power attenuation and time per point, systematically adapted so that

the most intense spectral component neither exceeds the detector saturation (approximately
120,000 cts) nor damages the matter under the laser spot. Each spectrum is obtained by a
summation of several consecutive acquisitions. Experimental data were processed with WIRE
v1.3 Renishaw software for polynomial function background removal and curve fitting
deconvolution of Raman spectral components.

The archaeological samples were compared with modern reference material includingcharcoal, burnt carbon fibre, and pencil graphite.

246

247 **3. Results**

248 **3.1. Characterisation**

FTIR shows that all the speleothem fragments are composed of calcite, as indicated by the 249 absorption bands at 1420 (v_3), 875 (v_2), and 713 cm⁻¹ (v_4) (Figure 4). Despite being the product 250 251 of a long geological process, calcite crystals show a poor degree of atomic order, similar to the experimental ash and archaeological lime plaster reported by Regev et al. (2010), based on the 252 intensity of the v_2 and v_4 absorptions normalised to the intensity of the v_3 absorption (Table 1). 253 This phenomenon has already been observed in speleothems and is caused by large lattice strain 254 255 in calcite crystals (Xu et al., 2015). These structural defects may be caused by porosity, 256 inclusions, crystallite size, or morphology, which vary considerably in cave settings. Inclusions were indeed identified in thin section (Figure 5). The insoluble fractions include mainly clay 257 258 minerals of the kaolinite and smectite groups (absorptions at 3697, 3622, 1037, and 521 cm⁻¹) and quartz (1080, 797, 779, 695, and 468 cm⁻¹), whereas organics related to soot were not 259 260 observed, presumably because of their low concentration (Figure 4).

261

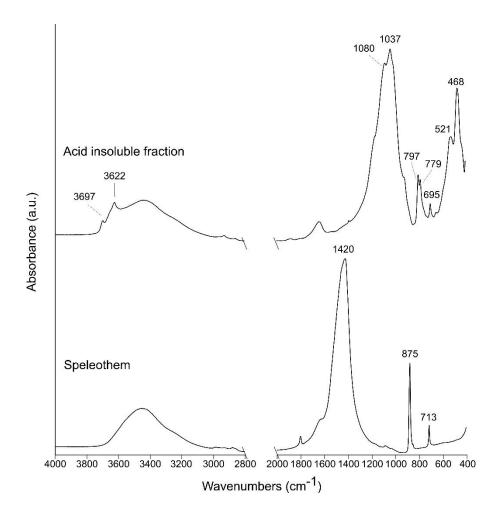


Figure 4. Representative FTIR spectra from sample D.

Sample number	v2	v4	
STM18-04A	424	110	
STM18-04B	469	120	
STM18-04B+C	435	106	
STM18-04C	438	98	
STM18-04D	452	108	
STM18-04E	456	117	

Tab. 1. Intensity of the v2 and v4 infrared absorptions of calcite normalised to the intensity of the

v3 absorption.

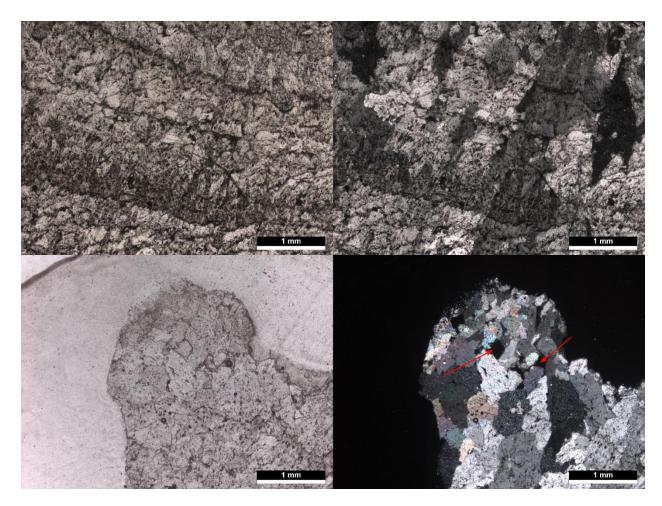


Figure 5. Photomicrographs of one of the speleothem fragments (thin section in Figure 3). Top row shows calcite layers in plane polarized light (left) and cross polarized light (right). The black spots are inclusions. Bottom row shows the outer portion of the fragment in plane polarized light (left) and cross polarized light (right). Red arrows indicate porosity.

267

Dark particles identified by stereomicroscopy (Figure 6) were analysed using SEM and µRaman to determine their structure and composition. Fragment D exhibits a large black particle embedded within the dark layer, which is characterised by a regular structure typical of wood anatomy, as observed in SEM (Figure 6.d). µRaman revealed that this dark particle, like many others measuring a few microns across, shows two groups of peaks: the first ranges from 1000 to 1800 cm⁻¹, the second between 2200 and 3400 cm⁻¹ with an intensity ratio of 1/4 to 1/5 compared
to the previous group of peaks (Figure 7, Table 2). The trapped black compound has the same
Raman spectral components as burned pine charcoal rather than other carbon compounds
(Figure 7). The positions and height ratios of the maxima around 1350 cm⁻¹ called D band and
around 1600 cm⁻¹ called G band can be used as thermometric indicators (Theurer et al., 2021;
Deldicque et al. 2023). The spectral curve-fitting of the STM18-04 main black inclusion is
reported in SOM Table S1 for further developments.

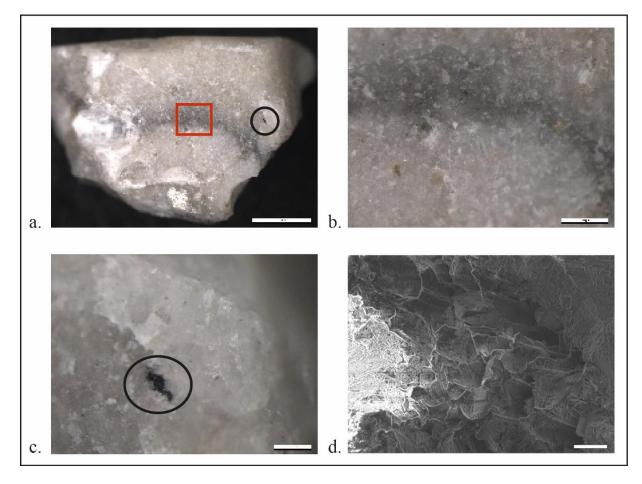


Figure 6. Stereomicroscopy (a, b, c) and SEM (d) images of fragment D. Scales are 2 mm (a),
800 µm (b), 200 µm (c) and 10 µm (d). The SEM image shows the black particle highlighted
with circles in a and c. The red rectangle shows the location of image 2.

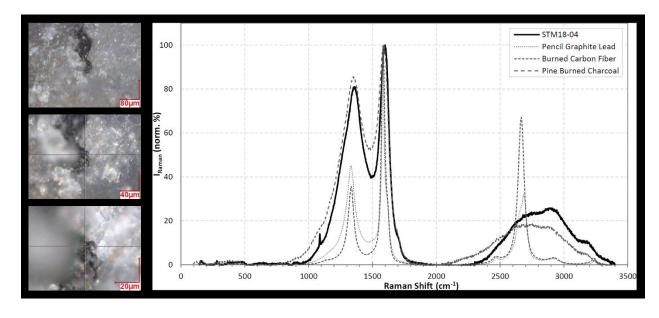


Figure 7. Photomicrographs at increasing magnification (left) and Raman spectra of fragment D (solid line) compared to several reference standards (pencil graphite, burnt carbon fibre and charcoal).

	1000-1800cm ⁻¹ group		2200-34	00cm ⁻¹ group
Shift (cm ⁻¹)	Shape	Notation	Shift (cm ⁻¹)	Shape
1078 cm ⁻¹	shoulder	D4	2710 cm ⁻¹	very large band
1212 cm ⁻¹	shoulder	D4'	2950 cm ⁻¹	large band
1355 cm ⁻¹	large intense band	D1	3178 cm ⁻¹	large band
1504 cm ⁻¹	added curve-fit form	D3		
1596 cm ⁻¹	large intense band	G		
1705 cm ⁻¹	shoulder	D ₁₇₀₀		

Tab. 2 Raman shift bands shown by the trapped dark particles in STM18-04 fragment D, with an

occasional weak calcite peak residue at 1088 cm-1 (Fig.7). Notation from Deldicque et al.

(2023).

298 **3.2.** Chronology

As there was not enough material, we did not attempt to date the black soot layers directly from the stalagmite, instead concentrating on dating the calcite above and below these layers.

301 Six U-series ages (2σ) were obtained on STM-18-04: they range from $15,139 \pm 108$ (18-04-03)

to $13,170 \pm 158$ years (18-04-61) (uncorrected ages) (Table 3). Similar values of ²³⁸U content

were obtained for the samples (~224-293 ppb), except for one sample (18-04-104) for which it

304 was significantly lower (~148 ppb). Measured $\delta^{234}U$ ($\delta^{234}U_M$) values ranged from 22.7 ± 1.5 ‰ 305 (18-04-104) to 57.2 ± 1.6 ‰ (18-04-03).

306 There is a stratigraphic inversion at the top of the speleothem: the younger age was obtained for sample 18-04-61, taken more than 40 mm under 18-04-104 (14,101 \pm 140 years) 307 and 18-04-110 (14,790 \pm 100 years). This can be explained by low ²³⁰Th/²³²Th ratios, 15.8 and 308 10.6 respectively, for the two uppermost samples, which attest that exogeneous thorium 309 contamination is significant. Indeed, the lower the ²³⁰Th/²³²Th value, the highest is the 310 contamination with detrital Th, i.e. which is not the product of ²³⁴U. Ages were thus corrected, 311 assuming an initial 230 Th/ 232 Th activity ratio of 1.5 ± 50%: corrected ages range from 14,437 ± 312 456 years for the base to $12,859 \pm 1056$ years for the top (Table 3). A second correction method, 313 314 based on stratigraphic constraints, the STRUTages algorithm (Roy-Barman and Pons-Branchu, 2016), was used. Corrected values using this model did not significantly differ from those 315 316 corrected using "*a priori*" values, with values ranging from $14,337 \pm 218$ (base) to $12,390 \pm 544$ 317 years (top), but the STRUTages algorithm reduces the error range (Table 3). We used the 318 STRUT ages for interpretation and discussion of the stalagmite.

		Lab #	18-04 #	²³⁸ U (ppb)	²³² Th	$\delta^{234}U_M$	(²³⁰ Th/ ²³⁸ U)	(²³⁰ Th/ ²³² Th)	Age (years)	$\delta^{234} U_{initial}$	Cor. age [†]	STRUT age [‡]	
					(ppb)	(‰)				(‰)	(years)	(years)	
	•	8559	3	223.54 ± 1.79	3.18 ± 0.03	57.2 ± 1.6	0.1370 ± 0.0007	30.0 ± 0.2	$15,\!139\pm108$	59.6 ± 1.6	$14,\!437\pm\!456$	14,337 ± 218	
		8561	7	249.61 ± 2.00	0.94 ± 0.01	55.4 ± 1.1	0.1303 ± 0.0005	108.1 ± 0.4	14,376 ± 75	57.6 ± 1.2	$14,\!190\pm168$	14,161 ± 77	
		8562	12	292.78 ± 2.35	0.33 ± 0.01	54.3 ± 1.2	0.1284 ± 0.0004	358.6 ± 0.2	$14,\!165\pm67$	56.6 ± 1.2	$14,\!109\pm95$	$14,094 \pm 51$	
		8635	61	283.49 ± 2.27	0.27 ± 0.01	40.4 ± 2.0	0.1183 ± 0.0011	374.4 ± 3.5	$13,\!170\pm158$	41.9 ± 2.0	13,121 ± 183	13,111 ± 108	
		8563	104	147.61 ± 1.18	3.63 ± 0.03	22.7 ± 1.5	0.1239 ± 0.0010	15.8 ± 0.1	$14,\!101\pm140$	23.6 ± 1.6	$12,\!857\pm757$	12,661 ± 396	
		8564	110	238.18 ± 1.91	9.23 ± 0.07	34.4 ± 1.5	0.1311 ± 0.0006	10.6 ± 0.1	$14{,}790\pm100$	35.7 ± 1.6	$12,\!859\pm1056$	$12,390 \pm 544$	
319 320											-	see Fig. 2) and is t g the following dec	
321	(consta	ants: λ ₂	₃₈ = 1.55125	$\cdot 10^{10}$ (Jaf	fey et al.	, 1971), λ ₂₃₄ =	= 2.82206 · 1	0^6 , and λ_{230}	= 9.1705	5-10 ⁶ (Cheng	et al., 2013).	
322	δ^{234} U _M =	= ((²³⁴	U/ ²³⁸ U)measured/(²³⁴ U	/ ²³⁸ U)equili	ibrium - 1)	× 1000. δ^{234} U	J _{initial} was c	alculated ba	sed on ²³⁰	⁰ Th age (T):	δ^{234} U _{initial} = δ^{234} U _N	м×
323							$e^{\lambda 23}$	4 × T.					
324				† /	ges were	correcte	d using a ²³⁰ T	h/ ²³² Th init	tial value of	$1.5 \pm 50^{\circ}$	%.		
325	[‡] STRUT	ages	were c	orrected usir	ng stratigra	aphical c	constraints, as	suming 309	% of variabi	lity, resul	ting in a (²³⁰	Th/ ²³² Th) ₀ of 1.31	$8 \pm$
326					0	.213 (Ro	y-Barman an	d Pons-Bra	nchu, 2016)).			
327													

Lab Code	STM-18-04#	рМС	Age BP	Age cal BP	DCP (%)	- (%)	+ (%)
61118	03	18.86 ± 0.10	13,400 ± 45	16,298-15,975	11.9	0.9	1.6
61119	07	18.58 ± 0.11	$13{,}520\pm45$	16,495-16,145	14.4	0.6	0.6
61120	12	18.87 ± 0.11	$13,\!395\pm45$	16,293-15,967	13.6	0.4	1.2
61121	61	21.25 ± 0.10	$12,\!440 \pm 40$	14,921-14,309	14.2	1.3	2.2
61122	104	23.42 ± 0.10	11,660 ± 35	13,530-13,455	12.5	6.2	1.3
61123	110	24.46 ± 0.11	$11,315 \pm 35$	13,300-13,155	11.0	6.5	1.6

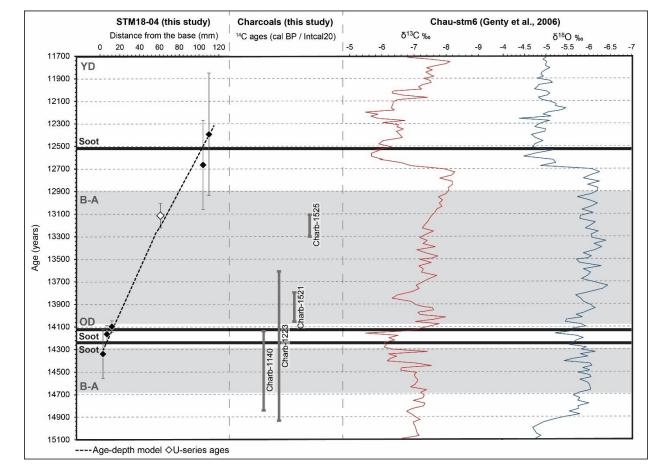
Tab. 4. ¹⁴C results on calcite samples (as pMC: percent of Modern Carbon) and DCP (%). Ages were calibrated using Oxcal 4.4

329

(Bronk-Ramsey, 2001) and the IntCal20 curve (Reimer et al., 2020).

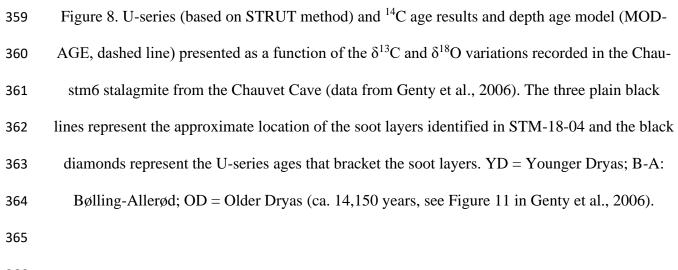
330

Lab Code	Sample Code	Square meter	Stratigraphic Unit	X	У	Z	Age (BP)	Age (cal BP)
GifA13468/SacA37389	PTS-Charb-1140	G24	1	28	632	-153	$12,\!360\pm50$	14,840-14,139
GifA15486/SacA44412	PTS-Charb-1223	E37	1	-188.2	1994.45	-309.3	$12,\!160\pm190$	14,930-13,608
Lyon-19181/SacA-65113	PTS-Charb-1521	K25	2015-1	445	716	-158.5	$12,\!040\pm60$	14,053-13,795
Lyon-19182/SacA-65114	PTS-Charb-1525	J25	А	385	731	-182	$11,\!300\pm50$	13,300-13,105
Lyon-17823/SacA60975	PTS-Charb-1548	G22	1 (f.br.)	22	474	-142	$12,\!850\pm60$	15,574-15,164


Tab. 5. ¹⁴C results on charcoal samples from archaeological excavations at the entrance of the cave. Ages were calibrated using Oxcal

332

4.4 (Bronk-Ramsey, 2001) and the IntCal20 curve (Reimer et al., 2020).


333	These ages fall within MIS2 (29-14 ka, Lisiecki and Raymo, 2005) and are coeval with
334	the Bølling-Allerød, 14.6-12.9 ka, and the Younger Dryas, 12.9-11.7 ka (Rasmussen et al., 2014)
335	(Figure 8). More specifically, samples were taken immediately above and below the dark layers
336	(respectively 18-04-03 and 07; 18-04-07 and 12; 18-04-104 and 110) to bracket the age of the
337	fire events, and thus human presence in the cave. Modelled STRUT ages and their sampling
338	depth within the stalagmite were combined to obtain an age-depth model using MOD-AGE
339	(Hercman and Pawlak, 2012). Using the normal distribution of the U-series ages and depth
340	measurements, modelled ages and depth within the stalagmite were obtained from Monte Carlo
341	simulation (Figure 8). According to our data, the age of the oldest fire event, located at the
342	bottom of the stalagmite, is between $14,337 \pm 218$ and $14,161 \pm 77$ years, and the second event
343	between 14,161 \pm 77 and 14,094 \pm 51 years. The third and the fourth events, at the top of the
344	speleothem, are dated to between $12,661 \pm 396$ and $12,390 \pm 544$ years.
345	The ¹⁴ C ages on calcite allowed us to estimate the dead carbon proportion (DCP,
346	Table 4). They confirm the stability of the dead carbon input over time and the good stratigraphic
347	coherence of the sequence. The DCP was calculated using U-Th ages as "true age", 14 C
348	measurements, and atmospheric ¹⁴ C values from the IntCal20 calibration curve (Reimer et al.
349	2020) following Genty et al. (2001). DCP display low variation (from 11.9 +1.6 -0.9 % to 14.2
350	+2.2 -1.3 %). These values fall within the typical range of DCP values published for caves with
351	thin soil (Genty et al., 2001; Griffiths et al., 2012; Noronha et al., 2014).
352	
	Four of the charcoals from nearby archaeological excavations yielded results between ca. 13,105
353	Four of the charcoals from nearby archaeological excavations yielded results between ca. 13,105 and 14,930 cal BP (Table 5). At 2σ , these results overlap with the period of growth of STM-18-
353 354	
	and 14,930 cal BP (Table 5). At 2σ , these results overlap with the period of growth of STM-18-

would be consistent, at least for Charb-1223, whose stratigraphic position is similar to that of the

two dark horizons at the base of STM-18-04.

358

367 4. Discussion

By combining characterisation tools with dating techniques, we were able to characterise and to
reconstruct the timing of human presence during the Tardiglacial era and the Termination I.
The hypothesis of an anthropogenic origin for the fire events recorded within STM-18-04
is corroborated by the radiocarbon results obtained on the charcoals collected nearby in
association with lithic remains in archaeological layers at the cave entrance. The calibrated ages

of at least three of these charcoals overlap the timespan of the first two fire events as bracketed

by the calcite dating. Assuming that the fire events were related to anthropic activities, human

375 presence at the cave entrance is thus attested during at least two phases, the first one between

376 ca. $14,337 \pm 218$ and $14,094 \pm 51$ years, and the second one between $12,661 \pm 396$ and $12,390 \pm 544$ wears

377 544 years.

The first phase identified falls within the Bølling-Allerød (ca. 14.6-12.9 ka, Rasmussen et al.,

379 2014), and the second one within the Younger Dryas (ca. 12.9-11.7 ka, Rasmussen et al., 2014). 380 These periods of human activity at Points Cave are contemporary with the radiometric results obtained at several archaeological sequences in the Ardèche Gorge. While data are well 381 documented at the regional scale for the Bølling-Allerød, contexts attributed to the Late 382 383 Tardiglacial are often poorly preserved and/or dated. For example, the site of the Colombier II rock shelter shows evidence of human occupations dated between the Older Dryas and Allerød 384 385 linked with fireplaces and remains of lithic or bone industry, attributed to the Upper 386 Magdalenian and the Azilian (Onoratini, 1992; Joris, 2002; Bazile, 2014; Beauvais, 2022). The 387 continuous sequence of this site shows similarities with other contemporary contexts such as 388 Saut-du-Loup (Gilles, 1976), which demonstrate recurrent occupations during the Bølling-389 Allerød. In the Ardèche Gorge, several other sites lacking radiometric results also yielded lithic

remains attributed to the same technocomplexes, in particular the Baume d'Oulen (Beauvais etal., 2020) as well as Baou-de-la-Sello and Huchard caves (Combier, 1967).

The results obtained at Points Cave thus fit well into the regional context of use of the central part of the Ardèche River Gorge by human communities at the end of the Upper Palaeolithic and/or beginnings of the Epipalaeolithic, possibly in connection with specialised hunting activities (Lateur et al., 2019).

396 Our age results can be compared with those obtained on other speleothems for which 397 palaeoclimatic data are available. For instance, palaeoclimatic analyses of some of the Chauvet 398 Cave stalagmites (Genty et al., 2004), located upstream in the Ardèche gorges, enable reconstructing the climatic conditions at the time of the human occupation of Points Cave, since 399 400 they precipitated during the same period. In particular, it is possible to match the ages obtained from STM-18-04 with Chau-stm6, dated between ca. 11,498-32,872 years (Genty et al., 2006) 401 (Figure 8). δ^{13} C and δ^{18} O analyses of this stalagmite give some insights into the regional 402 paleoclimatic record during the last deglaciation. In speleothems, an increase in both δ^{13} C and 403 δ^{18} O values is interpreted as a cold event: the reduction of vegetation and soil activity due to a 404 decrease in temperature leads to an increase in δ^{13} C during cold periods; in turn, an increase in 405 δ^{18} O values reflects a decrease in temperature. The palaeoclimatic record of Chau-stm6 shows 406 three peaks in less negative values of δ^{13} C and δ^{18} O: at ca. 14,150 years, 12,590 years, and 407 408 12,200 years (Figure 8), indicating climate degradation for these intervals. A paleoclimatic 409 record at Salamandre cave (Cèze Valley, a few kilometers away from Points Cave) confirms that the Younger Dryas in the region is marked by the degradation of soil activity (Drugat et al., 410 411 2019). Interestingly, our U-series ages, which bracket the fire events between $14,337 \pm 218$ and 412 $14,094 \pm 51$ years and $12,661 \pm 396$ and $12,390 \pm 544$ years, match with two of these three

events of cold climate, ca. 14,150 years and 12,590 years. Moreover, the cold event observed at a
maximum amplitude ca. 14,150 years, recorded within the Bølling-Allerød, is synchronous with
the Older Dryas, ca. 14.1 ka (Hughen, et al., 2000) (see discussion in Genty et al., 2006; Genty,
2012). We can thus conclude that the humans who produced the fires at Points Cave likely
visited the cave during cold events (but sufficiently humid to allow speleothem growth), possibly
the Older Dryas, and during the Younger Dryas.

419

420 **5.** Conclusions

421 The study of the stalagmite STM-18-04 showed that proxies such as speleothems are a significant source of information when reconstructing human occupation phases at a cave site. 422 423 The combination of microscopy and spectroscopy analyses (optical microscopy, SEM, µRaman, 424 and FTIR spectroscopy) proved to be a valuable toolset to reveal the presence of soot, which can 425 be attributed to fire events within the cave during human occupation. At Points Cave, the analyse 426 of STM-18-04 thus gave new insights into the human activities that took place at the entrance of the cave during the Upper Palaeolithic. Thanks to the characterisation of the soot layers and the 427 dating of its calcite matrix, we showed that the cave was visited several times during the Upper 428 429 Magdalenian and/or beginning of the Epipalaeolithic, respectively between around 14,200-14,100 and 12,500 years, in agreement with ¹⁴C dating of charcoals recovered during the 430 431 excavations. The comparison of our data with published regional palaeoclimatic records (Drugat 432 et al., 2019; Genty et al., 2006) made it possible to assign these fire events, and thus human 433 presence, to cold phases, likely the Older and Younger Dryas. 434 Ultimately, all of this contributes to refining the overall timing, palaeoclimatic context,

and recurrence times of human activities at Points Cave, during the Upper Palaeolithic. However,

the relationship between the entrance of the cave, where the fire activities took place, and thecave art, located in the depths of the cave, still needs to be investigated.

438

439 Acknowledgments

This work was supported by the DRAC Occitanie (French Ministry of Culture) and by the 440 441 French National Research Agency (ANR-18-CE27-0004 ApART). We would like to thank Robin Furestier, Charlène Girard, and Léo Lacheray (FARPA) for managing the funding, and the 442 443 municipality of Saint-Martin-d'Ardèche (site owner) for allowing us to carry out research in the 444 cave. Our thanks also go to Patricia Guillermin, Philippe Barth, Françoise Prud'Homme, and Sonia Stocchetti (Aven d'Orgnac - Cité de la Préhistoire) for providing accommodation and 445 technical support. A special thank you to Isabelle Couchoud for providing material resources 446 during sampling at EDYTEM laboratory. Michael Toffolo was supported by a grant from IdEx 447 Bordeaux (ANR-10-IDEX-03-02). We thank Yannick Lefrais for assistance during SEM 448 449 analysis at Archéosciences Bordeaux, Carlos Sáiz (CENIEH) for preparing the thin section of the speleothem, the PANOPLY platform (Plateforme Analytique Géosciences Paris Saclay) for the 450 use of the MC-ICPMS and the Centre de Datation par le Radiocarbone (CDRC) in Lyon 451 452 (France).

453

454 **References**

455 Ambert P., Guendon J.-L., Galant P., Quinif Y., Gruneisen A., Colomer A., Dainat D., Beaumes

- 456 B., Requirand C., 2005. Attribution des gravures paléolithiques de la grotte d'Aldène
- 457 (Cesseras, Hérault) à l'Aurignacien par la datation des remplissages géologiques. C. R.

458 Palevol, n°4, pp. 275-284.

459	Aubert, M., Brumm, A., Ramli, M., Sutikna, T., Saptomo, E. W., Hakim, B., Morwood M. J.,
460	van den Bergh G. D., Dosseto, A., 2014. Pleistocene cave art from Sulawesi, Indonesia,
461	Nature, 514(7521), 223-227.
462	Azéma M., Gély B., Bourrillon R., Galant P., 2012. L'art paléolithique de la Baume Latrone
463	(France, Gard) : Nouveaux éléments de datation. INORA, n°64, pp. 6-12.
464	Baffier D., Feruglio V., 1998. Premières observations sur deux nappes de ponctuations de la
465	Grotte Chauvet (Vallon-Pont-d'Arc, Ardèche, France). INORA, n°21, pp. 1-2.
466	Bazile F., 2014. Le bassin méditerranéen du Rhône : Un carrefour de traditions culturelles au
467	Tardiglaciaire. Vauvert, Centre de recherches et de documentation du Gard (Études
468	quaternaires languedociennes, Mémoire, 2), 160 p.
469	Beauvais PA., 2022. Les subdivisions du tardiglaciaire rhodanien à l'épreuve de l'analyse
470	relationnelle des industries lithiques, Thèse de Doctorat, Université Toulouse Jean-Jaurès,
471	407 p.
472	Beauvais PA., Guillermin P., Teyssandier N., 2020. Nouvelles données sur un ensemble
473	lithique du Magdalénien supérieur des gorges de l'Ardèche : La grotte de la Baume
474	d'Oulen, Labastide-de-Virac, Le Garn (Ardèche, Gard). Société préhistorique française,
475	2020, Séances de la Société préhistorique française, pp. 295-317.
476	Boccaccio, G., 2018. Résultats préliminaires de l'étude de la série lithique de la grotte aux
477	Points: typologie et technologie. Karstologia n°72, 37-44.
478	Bourdin, C., Douville, E., Genty, D., 2011. Alkaline-earth metal and rare-earth element
479	incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet
480	cave, Southeastern France. Chemical Geology 290, 1-11.

481	Bronk Ramsey, C., 2001. Development of the radiocarbon calibration program OxCal	Ι.
482	Radiocarbon, 43(2A), 355–363.	

- Brunel, E., Chailloux, D., Chauvet, J., Dugas, A., Hillaire, C., Raimbault, M., Renda, M., Terres,
- 484 S., 2008. La grotte aux Points (commune d'Aiguèze, Gard). Ardèche Archéologie 28, 23485 28.
- Brunel, E., Chauvet, J.M., Hillaire, C., 2018. La grotte aux Points d'Aiguèze: récits de
 découverte d'une ornementation pariétale. Karstologia, 13-14.
- 488 Chauvet J.-M., Brunel Deschamps E., Hillaire C., 1995. *La Grotte Chauvet à Vallon-Pont-d'Arc*.
 489 Paris, Seuil.
- 490 Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J.,
- Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E., 2013.
- 492 Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-life values, and U–Th isotopic
- 493 measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and
 494 Planetary Science Letters 371-372, 82-91.
- 495 Clottes J., Chauvet J.-M., Brunel-Deschamps É., Hillaire Ch., Daugas J.-P., Arnold M., Cachier
- 496 H., Évin J., Fortin Ph., Oberlin Ch., Tisnerat N. Valladas H., 1995. Les Peintures
- 497 paléolithiques de la Grotte Chauvet-Pont d'Arc (Ardèche, France) : datations directes et
- 498 indirectes par la méthode du radiocarbone. C.R. de l'Académie des Sciences de Paris,
- 499 n°320, série IIa, pp. 1133-1140.
- 500 Combier J., 1967. Le Paléolithique de l'Ardèche dans son cadre paléoclimatique, Bordeaux,
- 501 Imprimerie Delmas (Publications de l'Institut de Préhistoire de l'université de Bordeaux,
- 502 Mémoire, 4), 462 p.

503	Cuzange, MT., Delqu-Kolic, E., slar, T., Grootes, P.M., Higham, T., Kaltnecker, E., Nadeau,
504	MJ., erlin, C., Paterne, M., va, J., Bron, C., Valladas, H., tes, J., Geneste, JM., 2007.
505	Radiocarbon Intercomparison Program for Chauvet cave, Radiocarbon 49, 339-347.
506	Drugat, L., Pons-Branchu, E., Douville, E., Foliot, L., Bordier, L., Roy-Barman, M., 2019. Rare
507	earth and alkali elements in stalagmites, as markers of Mediterranean environmental
508	changes during Termination I, Chemical Geology 525, 414-423.
509	Deldicque D., Rouzaud JN., Vandevelde S., Medina-Alcaide M.A., Ferrier C., Perrenoud C.,
510	Pozzi JP., Cabanis M., 2023, Effects of oxidative weathering on Raman spectra of
511	charcoal and bone chars: consequences in archaeology and paleothermometry. Comptes
512	Rendus. Géoscience, 355 (G1), 1-22.
513	Dumoulin, J.P., Comby-Zerbino, C., Delqué-Količ, E., Moreau, C., Caffy, I., Hain, S., Perron,
514	M., Thellier, B., Setti, V., Berthier, B., Beck, L., 2017. Status Report on Sample
515	Preparation Protocols Developed at the LMC14 Laboratory, Saclay, France: From Sample
516	Collection to 14C AMS Measurement, Radiocarbon 59, 713-726.
517	Farmer, V.C., 1974. The Infrared Spectra of Minerals. Mineralogical Society, London.
518	Gély B., 2005. La Grotte Chauvet à Vallon-Pont-d'Arc (Ardèche) : Le contexte régional
519	paléolithique. In : Geneste JM.(dir.) Recherches pluridisciplinaires dans la Grotte
520	Chauvet – Journées SPF, Lyon, 11-12 octobre 2003. Bulletin de la Société Préhistorique
521	Française, n°102(1), pp. 17-33.
522	Genty, D., Dauphin, Y., Deflandre, G., Quinif, Y., 1997. Exemples de particules d'origine
523	anthropique piégées dans les lamines de croissance de stalagmites - Intérêt pour la
524	reconstitution des environnements humains anciens, Quaternaire 8, 149-157.

525	Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., Hamelin, B.,
526	2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil
527	organic matter. Implications for ¹³ C variations in speleothems, Geochimica et
528	Cosmochimica Acta 65, 3443-3457.
529	Genty D., Ghaleb B., Plagnes V., Causse C., Valladas H., Blamart D., Massault M., Geneste J
530	M., Clottes J., 2004. Datations U/Th (TIMS) et 14 C (AMS) des stalagmites de la grotte
531	Chauvet (Ardèche, France) : intérêt pour la chronologie des événements naturels et
532	anthropiques de la grotte. C. R. Palevol, n°3, pp. 629-42.
533	Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., Chkir,
534	N., Hellstrom, J., Wainer, K., Bourges, F., 2006. Timing and dynamics of the last
535	deglaciation from European and North African δ 13C stalagmite profiles—comparison with
536	Chinese and South Hemisphere stalagmites, Quaternary Science Reviews 25, 2118-2142.
537	Genty, D., 2012. Les spéléothèmes de la grotte Chauvet-Pont-d'Arc : apports chronologiques et
538	paléoclimatiques. Synthèse des travaux publiés, Collection EDYTEM. Cahiers de
539	géographie, 79-88.
540	Genuite K., Voinchet P., Delannoy JJ., Bahain JJ., Monney J., Arnaud J., Bruxelles L.,
541	Moncel MH., Philippe A., Pons-Branchu E., Revil A., Richard M., Jaillet S., 2022.
542	Middle and Late Pleistocene evolution of the Ardèche river archaeological landscapes
543	(France). Quaternary Science Review, 297, 107812.
544	Gilles R., 1976. L'abri du Saut-du-Loup. In Combier J., Thévenot P. (éds.), Livret-guide de
545	l'excursion A8 : Bassin du Rhône au Paléolithique et Néolithique. IX ^{ème} congrès UISPP,

13-18 septembre 1976, Nice. p. 206. 546

547	Griffiths, M.L., Fohlmeister, J., Drysdale, R.N., Hua, Q., Johnson, K.R., Hellstrom, J.C., Gagan,
548	M.K., Zhao, J.X., 2012. Hydrological control of the dead carbon fraction in a Holocene
549	tropical speleothem. Quaternary Geochronology 14, 81-93.
550	Guibert P., Brodard A., Quiles A., Geneste J. M., Baffier D., Debard E., Ferrier C., 2015. When
551	were the walls of the Chauvet-Pont d'Arc Cave heated? A chronological approach by
552	thermoluminescence. Quaternary Geochronology, n°29, pp. 36-47.
553	Hellstrom, J., 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical
554	constraint. Quaternary Geochronology 1, 289-295.
555	
556	Hercman, H., Pawlak, J., 2012. MOD-AGE: An age-depth model construction algorithm.
557	Quaternary Geochronology 12, 1-10.
558	Hoffmann, D.L., Pike, A.W.G., García-Diez, M., Pettitt, P. B., Zilhão, J., 2016. Methods for U-
559	series dating of CaCO ₃ crusts associated with Palaeolithic cave art and application to
560	Iberian sites, Quaternary Geochronology 36, 104-119.
561	Hughen, K.A., Southon, J.R., Lehman, S.J., Overpeck, J.T., 2000. Synchronous Radiocarbon and
562	Climate Shifts During the Last Deglaciation, Science 290, 1951-1954.
563	Ivanovich, M., Harmon, R.S., 1992. Uranium-Series Disequilibrium: Applications to Earth,
564	Marine, and Environmental Sciences (2nd edition). Clarendon Press, Oxford, 910 p.
565	Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision
566	Measurement of Half-Lives and Specific Activities of ²³⁵ U and ²³⁸ U. Physical Review C 4,
567	1889-1906.
568	Joris C., 2002. Les industries magdaléniennes de l'Ardèche dans le contexte du Bassin
569	méditerranéen, Montagnac, Ed. M. Mergoil (Préhistoires), 154 p.

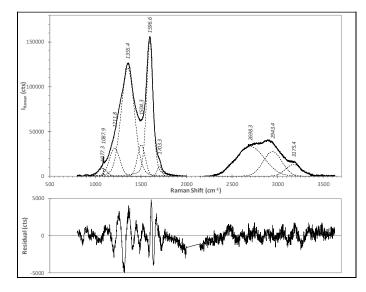
570	Lafon-Pham, D., Konik, S., Monney, J., 2022. On-site spectroradiometric analysis of Palaeolithic
571	cave art: Investigating colour variability in the red rock art of Points cave (France), Journal
572	of Archaeological Science: Reports 42, 103384.
573	Lateur, N., Fourvel, J. B., Jeannet, M., Philippe, M., 2019. Comportements de subsistance
574	paléolithiques et relations entre l'Homme et les Carnivores à la grotte aux Points (Aiguèze,
575	Gard) au travers de l'archéozoologique et taphonomique des restes fauniques. Karstologia,
576	73, 13-24.
577 578	Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.
579	Monney J., Combier J., Kaltnecker E., Lateur N., Moreau C., Stocchetti S., Valladas H., 2014.
580	Nouveaux éléments de discussion chronologiques dans le paysage des Grottes ornées de
581	l'Ardèche : Oulen, Chabot et Tête-du-Lion. In : Paillet P.(dir.) Les arts de la Préhistoire :
582	micro-analyses, mises en contextes et conservation. Actes du colloques MADAPCA, 16-18
583	novembre 2011, Paris. Paléo, n° spécial 2014, p. 271-284.
584	Monney J., Jaillet S 2019. Fréquentations humaines, Ornementation pariétale et processus
585	naturels: Mise en place d'un cadre chronologique pour la grotte aux Points d'Aiguèze.
586	Karstologia, n°73, p. 49-62.
587	Monney, J., 2018a. La Grotte aux Points d'Aiguèze, petite sœur de la grotte Chauvet, et les
588	recherches menées dans le cadre du projet "Datation Grottes Ornées". Karstologia 72, 1-12.
589	Monney, J., 2018b. L'art pariétal paléolithique de la grotte aux Points d'Aiguèze: définition d'un
590	dispositif pariétal singulier et discussion de ses implications, Karstologia, 45-60.
591	Mook, W.G., van der Plicht, J., 1999. Reporting ¹⁴ C Activities and Concentrations, Radiocarbon
592	41, 227-239.

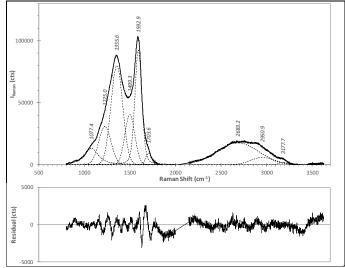
593	Moreau, C., Caffy, I., Comby, C., Delqué-Količ, E., Dumoulin, J.P., Hain, S., Quiles, A., Setti,
594	V., Souprayen, C., Thellier, B., Vincent, J., 2013. Research and Development of the
595	Artemis 14C AMS Facility: Status Report, Radiocarbon 55, 331-337.
596	Moreau, C., Messager, C., Berthier, B., Hain, S., Thellier, B., Dumoulin, JP., Caffy, I., Sieudat,
597	M., Delqué-Količ, E., Mussard, S., Perron, M., Setti, V., Beck, L., 2020. Artemis, the 14C
598	ams facility of the LMC14 national laboratory: a status report on quality control and
599	microsample procedures, Radiocarbon 62, 1755-1770.
600	Noronha, A.L., Johnson, K.R., Hu, C., Ruan, J., Southon, J.R., Ferguson, J.E., 2014. Assessing
601	influences on speleothem dead carbon variability over the Holocene: implications for
602	speleothem-based radiocarbon calibration. Earth and Planetary Science Letters 394, 20–29.
603	Onoratini, G., Combier, J., Ayroles, P., 1992. Datation ¹⁴ C d'une gravure pariétale de bouquetin
604	de l'abri magdalénien du Colombier (Vallon-Pont-d'Arc, Ardèche). Comptes rendus de
605	l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,
606	<i>Sciences de la Terre, 314</i> (4), 405-410.
607	Pike, A. W., Hoffmann, D. L., García-Diez, M., Pettitt, P. B., Alcolea, J., De Balbin, R.,
608	González-Sainz C., de las Heras C., Lasheras J. A., Montes R., Zilhão, J., 2012. U-Series
609	Dating of Paleolithic Art in 11 Caves in Spain, Science 336, 1409-1413.
610	Poduska, K.M., Regev, L., Boaretto, E., Addadi, L., Weiner, S., Kronik, L., Curtarolo, S., 2011.
611	Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating
612	Between Calcites with Different Origins. Advanced Materials 23, 550-554.
613	Pons-Branchu, E., Bourrillon, R., Conkey, M. W., Fontugne, M., Fritz, C., Gárate, D., Quiles A.,
614	Rivero O., Sauvet G., Tosello G., Valladas H., White, R., 2014a. Uranium-series dating of

- 615 carbonate formations overlying Paleolithic art: interest and limitations, Bulletin de la
 616 Société préhistorique française, 111(2), 211-224.
- 617 Pons-Branchu, E., Douville, E., Roy-Barman, M., Dumont, E., Branchu, P., Thil, F., Frank, N.,
- Bordier, L., Borst, W., 2014b. A geochemical perspective on Parisian urban history based
- on U–Th dating, laminae counting and yttrium and REE concentrations of recent
- 620 carbonates in underground aqueducts. Quaternary Geochronology 24, 44-53.
- 621 Pons-Branchu E., Barbarand J., Caffy I. Dapoigny A., Drugat L., Dumoulin J.P., Medina Alcaide
- 622 M.A., Nouet J., Sanchidrián Torti J.L., Tisnerat-Laborde N., Jiménez de Cisneros, Valladas
- 623 H., 2022. U-series and radiocarbon cross dating of speleothems from Nerja Cave (Spain):
- 624 evidence of open system behavior. Implication for the Spanish rock Art chronology.
- 625 Quaternary Sciences Review 290, 107634.
- 626 Quiles, A., Valladas, H., Bocherens, H., Delqué-Količ, E., Kaltnecker, E., van der Plicht, J.,
- 627 Delannoy, J.-J., Feruglio, V., Fritz, C., Monney, J., Philippe, M., Tosello, G., Clottes, J.,
- 628 Geneste, J.-M., 2016. A high-precision chronological model for the decorated Upper
- 629 Paleolithic cave of Chauvet-Pont d'Arc, Ardèche, France, Proceedings of the National
- 630 Academy of Sciences 113, 4670-4675.
- 631 Quiles, A., Valladas, H., Geneste, J.M., Clottes, J., Baffier, D., Berthier, B., Brock, F., Bronk
- 632 Ramsey, C., Delqué-Količ, E., Dumoulin, J.P., Hajdas, I., Hippe, K., Hodgins, G.W.L.,
- Hogg, A., Jull, A.J.T., Kaltnecker, E., de Martino, M., Oberlin, C., Petchey, F., Steier, P.,
- 634 Synal, H.A., van der Plicht, J., Wild, E.M., Zazzo, A., 2013. Second Radiocarbon
- 635 Intercomparison Program for the Chauvet-Pont d'Arc Cave, Ardèche, France, Radiocarbon
- 63656, 883-850.

637	Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B.,
638	Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoek,
639	W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson, A.M.,
640	Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., Winstrup, M., 2014. A
641	stratigraphic framework for abrupt climatic changes during the Last Glacial period based
642	on three synchronized Greenland ice-core records: refining and extending the INTIMATE
643	event stratigraphy. Quaternary Science Reviews 106, 14-28.
644	Regev, L., Poduska, K.M., Addadi, L., Weiner, S., Boaretto, E., 2010. Distinguishing between
645	calcites formed by different mechanisms using infrared spectrometry: archaeological
646	applications. Journal of Archaeological Science 37, 3022-3029.
647	Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin,
648	M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I.,
649	Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R.,
650	Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M.,
651	Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni,
652	S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J.,
653	Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The IntCal20 Northern
654	Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP), Radiocarbon 62, 725-
655	757.
656	Richards, D.A., Dorale, J.A., 2003. Uranium-series chronology and environmental applications
657	of speleothems, in: Bourdon, B., Henderson, G.M., Lundstrom, C.C., Turner, S.P. (Eds.),
658	Uranium-series geochemistry. Reviews in Mineralogy & Geochemistry, pp. 407-460.

659	Rouzaud, F., 1978. La Paléospéléologie : L'Homme et le milieu souterrain pyrénéen au
660	Paléolithique supérieur. Toulouse : Archives d'Ecologie Préhistorique.
661	Roy-Barman, M., Pons-Branchu, E., 2016. Improved U-Th dating of carbonates with high initial
662	230Th using stratigraphical and coevality constraints. Quaternary Geochronology 32, 29-
663	39.
664	Sadier B., Delannoy JJ., Benedetti L., Bourles D., Jaillet S., Geneste JM., Lebatard AM.,
665	Arnold M., 2012. Further constraints on Chauvet cave artwork elaboration, Proceedings of
666	the National Academy of Sciences, n°109(21), pp. 8002-8006.
667	Theurer T., Muirhead D.K., Jolley D., Mauquoy D., 2021, The applicability of Raman
668	spectroscopy in the assessment of palaeowildfire intensity. Palaeogeography
669	Palaeoclimatology Palaeoecology, 570, 110363.
670	Valladas, H., Clottes, J., Geneste, J.M., Garcia, M.A., Arnold, M., Cachier, H., Tisnerat-Laborde,
671	N., 2001. Palaeolithic paintings: Evolution of prehistoric cave art. Nature 413, 479-479.
672	Valladas H., Quiles A, Delque-Kolic M., Kaltnecker E., Moreau C., Pons Branchu E., Vanrel L,
673	Olive M., Delestres X (2017). Radiocarbon dating of the decorated Cosquer cave (France).
674	Radiocarbon, 59 (2) 621-633.
675	Van der Marel, H.W., Beutelspacher, H., 1976. Atlas of Infrared Spectroscopy of Clay Minerals
676	and their Admixtures. Elsevier Scientific Publishing Company, Amsterdam.
677	Vandevelde, S., Brochier, J.É., Petit, C., Slimak, L., 2017. Establishment of occupation
678	chronicles in Grotte Mandrin using sooted concretions: Rethinking the Middle to Upper
679	Paleolithic transition, Journal of Human Evolution 112, 70-78.
680	Xu, B., Toffolo, M.B., Regev, L., Boaretto, E., Poduska, K.M., 2015. Structural differences in
681	archaeologically relevant calcite. Analytical Methods 7, 9304-9309.


682


	Center		Area		Height				Halfwidth		Shape	
Peak ID	Shift (cm ⁻¹)	Err.	(cts)	(%)	(cts)	Err.	Rel. (%)	Err (%)	(cm ⁻¹)	Err.	%Lorz.	Err.
1	1077.5	*	1003765	6.6	8599	44	5.7	0.5	109.7	0.6	0.00	*
2	1087.6	*	68578	0.5	8694	113	5.7	1.3	6.4	0.1	0.34	*
3	1211.3	0.2	4450359	29.4	31195	140	20.6	0.5	134.0	0.2	0.00	*
4	1356.0	*	22872960	151.2	120916	39	79.9	<0.1	171.0	0.3	0.11	<0.01
5	1503.9	0.1	3762738	24.9	34831	103	23.0	0.3	101.5	0.3	0.00	*
6	1597.0	*	15122838	100.0	151352	61	100.0	<0.1	83.2	0.0	0.32	<0.01
7	1703.0	*	658751	4.4	10880	58	7.2	0.5	56.9	0.3	0.00	*
8	2698.3	2.0	12923965	85.5	33096	181	21.9	0.6	366.9	2.6	0.00	*
9	2943.4	0.9	6994966	46.3	27495	425	18.2	1.5	239.0	3.2	0.00	*
10	3175.0	1.9	2873275	19.0	13097	160	8.7	1.2	206.1	2.6	0.00	*

PBC (Pine Burned Charcoal)

	Center		Area		Height				Width		Shape	
Peak ID	Shift (cm ⁻¹)	Err.	(cts)	Rel. (%)	(cts)	Err.	Rel. (%)	Err (%)	(cm ⁻¹)	Err.	%Lorz.	Err
1	1077.5	*	3077136	32.0	13306	303	14.4	2.3	175.3	1.3	0.83	0.03
2	1087.6											
3	1224.7	1.8	5133637	53.3	30817	789	33.4	2.6	156.5	1.6	0.00	0.06
4	1356.0	*	12854727	133.5	79791	763	86.5	1.0	151.3	2.3	0.00	0.02
5	1498.8	0.7	5496466	57.1	40297	687	43.7	1.7	128.1	3.1	0.00	*
6	1592.6	0.2	9629756	100.0	92280	695	100.0	0.8	89.6	0.2	0.24	0.01
7	1703.0	*	704219	7.3	9193	114	10.0	1.2	72.0	0.8	0.00	*
8	2682.8	3.0	9994655	103.8	17679	105	19.2	0.6	535.9	3.5	0.00	*
9	2951.2	1.4	1818503	18.9	5862	255	6.4	4.4	291.4	6.6	0.00	*
10	3177.5	1.3	197192	2.0	2088	64	2.3	3.1	88.7	3.3	0.00	*

Tab. S1. Curve fitting results for STM18-04 black included matter and PBC burned charcoal reference shown in figure 7. Relative areas and heights by reference to 1592-1597 cm⁻¹ peak id 6. * Fixed shift and/or shape.

