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Abstract
The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close
association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface
air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However,
the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend
remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association
is most prominent and statistically significant for the variability at the sub-decadal time scale for
5–6 years. We also show the critical role of the multi-decadal trend in the principal component of
the WACE mode of variability for explaining the overall Eurasian winter temperature trend over
the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments
from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC
variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE.
Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT
variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker
association of this mode to AO and a statistically significant positive trend in our ensemble
simulation, opposite to that found in observation. This contrasting nature reflects excessive
hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss.
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1. Introduction

The second empirical orthogonal function (EOF)
mode of Eurasian winter (December–February) sur-
face air temperature (SAT) variability, known as
WarmArctic-Cold Eurasia (WACE) pattern, is closely
related to Ural blocking or Siberian high (Mori et al
2014, 2019, Tyrlis et al 2019, Luo et al 2021). This
WACE pattern of variability closely associates with
the variations in Barents-Kara Sea (BKS) sea ice con-
centration (SIC) during the satellite era (Overland
et al 2011, 2013, Cohen et al 2014, Horton et al
2015, Kug et al 2015). These associations have shown
an upward trend after 2000 with a more persistent
blocking regime (see figure 1(c)) with higher intensity
(Li et al 2023).

Observational studies have suggested a possible
role of the BKS SIC in the WACE pattern of vari-
ability and further in the cold Eurasian winter con-
ditions (Petoukhov and Semenov 2010, Cohen et al
2013, Tang et al 2013, Mori et al 2014, Overland et al
2015, Kretschmer et al 2016, Kim and Son 2020, Xie
et al 2020, Rudeva and Simmonds 2021, Wu et al
2022, Zhong and Wu 2022). However, the WACE
pattern-related Ural blocking itself is shown to influ-
ence the BKS SIC variations on sub-seasonal to inter-
annual time scale (Gong and Luo 2017, Blackport
et al 2019, Peings 2019, Tyrlis et al 2019, Screen
and Blackport 2019b, Tyrlis et al 2020, Blackport
and Screen 2021, Komatsu et al 2022). Even a colder
Eurasian temperature can bring Warm Arctic condi-
tions by enhancing the Siberian high (Wu and Ding
2023). The frequent occurrence of the WACE pattern
is also shown to be favoured by the warm phase of
the Atlantic Multidecadal Variations (Luo et al 2017a,
Jin et al 2020) and a negative phase of Pacific Decadal
Oscillation (Luo et al 2022). Hence, it remains to be
seen if any portion of the observed WACE mode of
variations is essentially forced or modulated by the
observed Arctic or BKS SIC variations.

Regarding the multi-decadal trend, the observa-
tional studies suggest that the BKS SIC loss-related
warming in the Arctic reduces the tropospheric
potential vorticity gradient over Eurasia, making the
WACE related Ural blocking more persistent (Yao
et al 2017, Luo et al 2017b, 2018, 2019b). A dynamic
and thermodynamic coupled view has also been pro-
posed to explain the role of the warming Arctic in
bringing cold Eurasian condition (Xie et al 2022).
However, results from the previous climate model
experiments have yet to establish a clear role of the
recent Arctic sea ice loss on the observed Eurasian
cooling. They are indicated to bemainly due to atmo-
spheric internal variability (McCusker et al 2016,
Sun et al 2016, Ogawa et al 2018, Wang and Chen
2022). Previous theory suggests that the nature of an
internal mode of variability or circulation regime in

the extratropics can be influenced by the external for-
cing (Palmer 1999). Hence, a comprehensive multi-
model experimental causal analysis of the model’s
ability to precisely simulate the observed trend in the
WACE mode of variability and the potential role of
observed Arctic Sea ice loss behind such a trend is
still to be explored and essential. Because through
this trend in the observed WACE mode of variabil-
ity, Arctic sea ice loss is suggested to relate to Eurasian
cooling, apart from the contributions of the internal
mode of variability (Mori et al 2014).

Apart from the WACE mode of variability, the
first or the primary mode of observed Eurasian SAT
variability is found to be closely related to Arctic
Oscillation (AO), expressed as the first EOF mode
of Northern Hemisphere (NH) (20◦ N–90◦ N, 0◦–
360◦ E) mean sea level pressure (SLP) variabil-
ity (figures S1(a)–(c)), (Mori et al 2014). However,
the simulated nature of this mode of variability
and its association with AO remains unexplored,
though important given its vital role in determ-
ining the long-term trend of observed Eurasian
winter temperature (figure 2). Hence, to investig-
ate the above-mentioned open questions, we ana-
lyse two sets of Atmospheric Model Intercomparison
Project (AMIP)-type large ensemble of multi-model
simulations with (ALL experiment) and without
(SICclim experiment) observed Arctic SIC variations
for the period 1979–2014 (see materials and meth-
ods) and compare with ERA5 reanalysis as a proxy for
observations.

2. Data andmethods

The observed winter season (December–January–
February) monthly mean data for SAT, SLP and
500 hPa Geopotential height from 1980 (meaning
December 1979 and January–February 1980) to 2022
is taken from ERA5 reanalysis (Hersbach et al 2017,
2020). SAT in ERA5 and the models denotes the air
temperature at 2 m or reference height, depending on
the available model output. The observed SIC data
for the same period (1980–2022) is taken from the
U.K. Met Office Hadley Centre SIC and SST ver-
sion 1 (HadISST1) (Rayner et al 2003). Following
Tyrlis et al 2020, the Ural Blocking Frequency (UBF)
is calculated from the ERA5 daily data of potential
temperature (θ) on 2PVU (potential vorticity unit,
1.0 × 10−6 m2 s−1 K kg−1) surface, which indic-
ates the dynamical tropopause in the extra-tropics
(Hoskins et al 1985). The blocking algorithm identi-
fies wave-breaking areas, reversing the climatological
meridional gradient of θ at the 2PVU surface (Tyrlis
et al 2015, 2019). The UBF is defined as the number
of Blocking episodes over 40◦ E–100◦ E at 61◦ N dur-
ing winter (Tyrlis et al 2020). The Siberian High (SH)
index is the seasonal mean of area-averaged monthly
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500 hPa geopotential height over 60◦ N–85◦ N and
30◦ E–120◦ E (black box region in figure 1(b)). The
area represents the location where the 500 hPa geopo-
tential height closely associates with the WACE pat-
tern of variability (grey contours in figure 1(b)) and
follows the region shown in a previous study as the
footprint of SH at 500 hPa (Sun et al 2021).

Two sets of coordinated AMIP-type experiments
(ALL and SICclim) from 1979 to 2014 were per-
formed within the EU project Blue-Action from eight
different atmospheric models (Liang et al 2020).
The experiment named with ALL is forced with the
observed estimate of daily sea surface temperature
(SST) and SIC from the U.K. Met Office Hadley
Centre SIC and SST version 2.2.0.0 (Titchner and
Rayner 2014) while the other experiment named
SICclim uses the same forcing except that the Arctic
SIC is replaced by its daily climatology, which is
repeated every year. In each experiment, the radiat-
ive forcing is taken from CMIP6 coordinated input
data (Eyring et al 2016, Haarsma et al 2016). To have
a consistent SST-SIC field, an SST and SIC adjustment
method is applied following (Hurrell et al 2008) in
mostmodels (see table S1). For each of the eightmod-
els considered, various numbers of ensemble mem-
bers ranging from 10 to 30 are produced, leading to a
total of 145members forALL and SICclim. Following
the previous research based on the same experiments
(Liang et al 2020, 2021, Suo et al 2022), we treat
the multi-model ensemble as a single-model large
ensemble by giving the same weight to each member
of each model.

For ERA5, the EOF1 and EOF2 of the SAT over
Eurasia (20◦–90◦ N, 0◦–180◦ E) and SIC over the
Northern Polar circle (60◦–90◦ N, 0◦–360◦ E) are cal-
culated using the anomaly covariance matrix (North
et al 1982). The EOF patterns remain consistent
with rotation. Following (North et al 1982), a test of
the sampling error in the eigen values is performed
to confirm the absence of degeneracy between the
Eurasian SAT EOF2 and EOF3 patterns. To represent
the EOF patterns in the units of SAT (in Kelvin) or
SIC (in %), the normalised EOF patterns are multi-
plied by the square root of their corresponding eigen-
values. The principal component (PC) time series are
represented in normalised magnitude. In ALL and
SICclim, each model’s EOF1 and EOF2 SAT patterns
are determined by performing the same analysis after
concatenating the ensemble members for each model
separately. The corresponding PC time series is then
unpacked back to represent the PC time series for
each ensemble member. Finally, the average appear-
ance of EOF patterns in the models is shown by
performing the multi-model means (MMM) of the
EOF patterns. In ERA5-2014/2022, the portion of the
entire data that is associated with a particular EOF
pattern is constructed by multiplying the normalised
EOF pattern with its PC time series.

To detect periodicity peaks, a power spectrum
analysis is performed on the observed WACE mode,
BKS SIC, SH and UBF Index time series. No smooth-
ing is applied to the time series that are detrended
and tapered in the time domain before calculating
the spectrum. In addition, a theoretical Markov spec-
trum and its 95% (upper) spectrum are constructed
using the lag-1 autocorrelation in the time series to
identify the peaks in the spectrum that are statistic-
ally significant. The power spectrum is built for each
ensemble member for the model experiments. Then
an ensemble mean of those spectrums is construc-
ted to show the persistent peaks in periodicities in the
WACE mode time series.

The Theil–Sen nonparametric trend estimation
method determines any linear trend of SAT fields
in ERA5 (Sen 1968). The results are consistent and
do not change using the least square method. The
Mann–Kendall (M–K) non-parametric test (Mann
1945, Gilbert 1987) is performed on the Theil–Sen
linear trend estimate to determine if the trend dif-
fers significantly from zero at the 5% level. For the
linear trends in PCs, a value above 0.04 yr−1 turns
significant at p <0.05 according to the M–K test. For
the ensemble mean field, the statistical significance is
determined using a one-sample, two-sided Student’s
t-test, comparing the ensemble mean value with zero
at a 5% significance level.

3. Results

3.1. The observed trend and sub-decadal variability
of the BKS SIC and theWACE pattern
The first mode of observed Arctic SIC variations over
the winter months (December to February) during
the satellite period (1980–2022) shows a dominant
variability over the BKS region (figures 1(a) and (c)).
This region of the Arctic also shows one of the highest
long-term trends in sea ice decline over this period
(Simmonds and Li 2021, Thoman et al 2022). The
observed WACE or the second EOF pattern of the
Eurasian winter SAT variations also show promin-
ent variations and a persistent upward trend, both
closely associated with the BKS SIC variations (cor-
relation = 0.82, p-value = 0.013) (figures 1(b) and
(d)). This observed WACE mode of variability is also
related to the observed SH index (correlation= 0.87,
p-value = 0.002), confirming the close association of
this mode with the key observed atmospheric circu-
lation feature over Eurasia (figure 1(b)).

Here, we find that the observed BKS SIC exhibit
prominent sub-decadal variations with a statistically
significant spectral peak at around 5.5–6 years’ time
scale (figure 1(d)). A recent study reported a sim-
ilar finding from an even longer record of the SIC
data (Luo et al 2023). We also find the same statist-
ically significant spectral peak in the observed WACE
time series, SH index and UBF index (figure 1(d)).
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Figure 1. For the period 1980–2022, (a) EOF1 of observed winter (December–February) Arctic SIC variability (60◦ N–90◦ N,
0◦–360◦ E) in percentage from HadISST1, (b) from ERA5 reanalysis, the EOF2 of the observed winter Eurasian (20◦ N–90◦ N,
0–180◦ E) SAT variability in Kelvin (in shading), known as Warm Arctic Cold Eurasia pattern. Black (grey) contours show the
associated sea level pressure (500 hPa geopotential height) anomaly. The top right of the figures mentions the explained variance.
(c) Associated time series of the PC1 of Arctic SIC variability in (a) (in light blue), the sign reversed area averaged winter
Barents-Kara Sea (BKS) SIC anomaly (in blue, 65◦ N–85◦ N, 20◦ E–90◦ E, blue bold contour area in (a)), PC2 of the Eurasian
SAT variability in (b) (in red), area-averaged winter Siberian high (SH) index (in black, 60◦ N–85◦ N, 10◦ E–110◦ E, black bold
contour area in (b) and winter Ural Blocking Frequency (UBF) based on (Tyrlis et al 2020) averaged over 40◦ E–100◦ E at 61◦ N.
Each time series are normalised. (d) In the same colours, the power spectrum of the same five-time series is shown in (c) with the
95% (upper) confidence bounds of the associated Markov spectrum (in the same-coloured dashed lines).

This affirms the WACE time series representing the
most prominent variations in the Ural Blocking or
SH index. Because, for all time series, the variations in
this timescale hold most of the variance in the power
spectrum analysis. Hence, now the question arises
whether such sub-decadal variations in the WACE
pattern could occur without the BKS SIC variations
or if they essentially require feedback of the BKS SIC
variations onto the WACE.

3.2. The role ofWACE in shaping the observed
Eurasian winter temperature trend
Apart from the prominent sub-decadal scale variabil-
ity, theWACE time series has a statistically significant
positive trend (figure 1(c)). The observed Eurasian
cooling is suggested to be contributed by this trend
in the WACE mode in association with the BKS SIC
loss (Mori et al 2014). The Eurasian cooling trend has

weakened in the recent year after 2014 (figure S2).
This leads to a perception that the Arctic-Eurasia link
during winter has waned in recent years (Blackport
and Screen 2020). However, the trend in the WACE
mode and BKS SIC association persists (figure 1(c)).
Moreover, the portion of SAT trend contributed by
theWACE-related SAT anomalies (for details, see data
and methods) shows a stronger contribution to the
central Eurasian temperature trend for 1980–2022
compared to 1980–2014 (figures 2(c) and (d)). This
apparent paradox could be resolved if we examine the
changes in PC1 of Eurasian SAT variability.

Our findings suggest that the recent reduction in
the Eurasian cooling is a consequence of the change of
phase in PC1 from negative to positive after 2014, by
the change of phase in AO (compare black and blue
curves in figure S1(c)). The PC1 trends in observa-
tions are not statistically significant either until 2014
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Figure 2. From ERA5 reanalysis, the DJF SAT trend for the period (a) 1980–2014 and (b) 1980–2022 of the portions of the SAT
data, which is associated with EOF1/PC1 of the Eurasian (0◦–90◦ N, 0◦–180◦ E) SAT. (c)–(d) as in (a)–(b) but for the portion of
the SAT data associated with the EOF2/PC2 or WACE pattern of Eurasian SAT. The residual trend in the full SAT data over the
box region is shown in figures (c) and (d) for the period (e) 1980–2014 and (f) 1980–2022 after the portion of the trend induced
by PC1 SAT is removed. Stippled areas in (e) and (f) are showing regions where the residual SAT trend is statistically significant at
5% level. All units are in K/decade.

or 2022 and mainly come from AO-related atmo-
spheric internal variability. Until 2014, due to AO
negative phase, PC1 related SAT trend led to a cool-
ing (figure 2(a)), reinforcing the WACE-related cool-
ing over Eurasia (figure 2(c)). However, after 2014,
the phase of AO has become positive, and the PC1
or AO-related SAT trend led to warming instead of
cooling influence over central Eurasia (figure 2(b))
and competes with the cooling trend from the WACE
mode (figure 2(d)). The net effect lessens the Eurasian
cooling signal (figures S2(a) and (b)). This shows the
crucial role of the phase of the AO-related internal
variability in determining the strength of the Eurasian
winter temperature trend.

Nevertheless, it should be noted that despite the
reversal in the AO-related variability-induced trend
from cooling to warming after 2014, the Eurasian
winter temperature trend does not reverse (figures
S2(a) and (b)). This shows a crucial role of the
trend in the WACE mode of variability (figures 1(c)
and 2(d)). Without this trend, we would not have
been able to explain the observed central Eurasian

temperature trend, especially in recent years under a
positive phase of AO. If we remove the AO-related
PC1 SAT trend from the entire SAT field, we find
an enhanced residual Eurasian cooling trend in the
SAT data over the last years (figures 2(e) and (f)).
Moreover, the cooling in the residual data is statist-
ically significant for a much larger area compared to
the full data due to the removal of the AO-related
SAT variations from the data (compare figures 2(e)
and S2(a)). This residual Eurasian cooling can only
be explained by the trend induced by the WACE
(figures 2(c) and (d)). Hence, understanding the
cause of the trend in the PC of the WACE mode of
variability remains vital.

3.3. Simulated modes of winter Eurasian
temperature variability
In both theALL and the SICclim experiments, we cal-
culate the EOF of the SAT over Eurasia (0◦–180◦ E
and 20◦ N–90◦ N) using all members concatenated
separately for each model. The MMM EOF1 and
EOF2 patterns, obtained by averaging the respective

5



Environ. Res. Lett. 19 (2024) 024018 R Ghosh et al

EOF patterns across the models, resemble those of
ERA5 (pattern correlation ∼0.9 for each mode in
MMM with a range of 0.8–0.9 among the differ-
ent models; figures 3(a), (e) and (b), (f) vs figures
S3(a) and (b)). The associated atmospheric circula-
tion, derived from the regression of the SLP fields
on the respective normalised PCs, also resembles the
observed structure. The monopolar central Eurasian
(∼60◦ N, 90◦ E) warming pattern of EOF1 is associ-
ated with a low SLP centred around BKS (figure 3(a)).
The variation of this SLP low is explained mainly
by the Northern lobe of the AO (Mori et al 2014).
The EOF2 or WACE pattern shows its warm centre
over the BKS and cold centre over central–eastern
Eurasia (40◦–60◦ N, figures 3(b), (f), 1(b) and S3(b)).
The WACE pattern is associated with a high SLP
centred around northern Eurasia/Siberia and related
to Siberian high/Ural blocking (Mori et al 2014, Luo
et al 2016, Gong and Luo 2017, Tyrlis et al 2019).

The WACE pattern is primarily driven by
the Ural blocking/Siberian high-related variability
(figure 1(c)). It exists in SICclim (figures 3(f) and
S3) but with a different characteristic than ALL. The
extensive similarity in theWACEpatterns forALL and
SICclim confirms that the WACE pattern is mainly
driven internally to the atmosphere, ensuring previ-
ous studies (Mori et al 2014, Sorokina et al 2016,Mori
et al 2019, Peings 2019). Nevertheless, the WACE-
related positive SLP anomaly is systematically intensi-
fied inMMMand shifted northward towards the BKS
inALL compared to SICclim (figures 3(b) vs (f)). This
enhancement of the WACE-related high-pressure
anomaly under Arctic SIC loss in climate mod-
els is consistent with previous studies (Screen and
Blackport 2019a). Moreover, the explained variances
of the EOF2/WACE are slightly lesser in SICclim
(range 12%–15%) than in ALL (range 12%–18%).

In MMM, the WACE SAT anomaly for ALL
(figure 3(b)) and its positive centre over the BKS are
similar to the observations (figure S3(b)), whereas the
warm node is much weaker in SICclim (figure 3(f)).
This suggests a link between the WACE and the BKS
SIC variability-related temperature changes over the
Arctic, which is missing in SICclim. The cold node
of the WACE solely depends on the strength of the
atmospheric circulation anomalies associated with
WACE. For individualmodels, we see a consistent link
between the strength of the simulated high-pressure
anomaly and the magnitude of the central Eurasian
cold anomaly in ALL and SICclim (figure S4).

In the case of the change in the circulation
anomalies from ALL to SICclim associated with the
changes in the EOF2 SAT anomalies, MMM depicts a
colder northern Eurasia under the Arctic SIC forcing
with an associated enhanced high-pressure anom-
aly (figure 4(a)). In the case of individual models,
we continue to find consistent response patterns,
with the models showing a stronger high-pressure

anomaly bringing a larger cooling response over
Eurasia (figures 4(b)–(i)).

The core of the cooling response differs among
the models. Some models project the cooling in the
north-western part of Eurasia, such as CMCC-CM2-
HR4, EC-Earth3, and HadGEM3 (figures 4(a), (c)
and (h)). Whereas there are also models with the core
of the cooling response more towards the central to
the eastern side of Eurasia, e.g. ECHAM6.3, CAM6-
Nor, CESM2-WACCM6 (figures 4(d), (f), (g)). This
difference is closely connected with the difference in
the associated circulation structure, which confines
more towards the west in the north-western Eurasian
cooling-centric models. However, overall, a cooling
associated with high pressure of varied strength can
be seen in themodelWACEs underArctic SIC forcing.

Despite capturing the observed feature of the
WACE pattern and the associated high-pressure
enhancement, the variance explained by SAT EOF2 or
WACE is systematically underestimated in the model
experiments. The MMM of explained variances is
16% (with a range of 12%–18%) in ALL compared to
20% in ERA5. This is in line with the characteristics
of the CMIP6 climate models, which show a system-
atic underestimation of the blockings over the Urals
(Davini and D’Andrea 2020).

3.4. Low-frequency sub-decadalWACE variability
under BKS SIC forcing
Apart from the WACE pattern, the multi-model
ensemble mean PC2/WACE time series in ALL cap-
tures the response in the WACE time series forced
by SST, SIC, and external forcing (as opposed to
that driven internally by the atmosphere) and is
highly similar to the sign reversed averaged observed
BKS SIC time series with a correlation 0.93 (p-
value= 0.0008; red and blue curves, figure 3(d)). This
relation remains important when using detrended
time series (correlation 0.86, p-value < 0.0001). This
close association of the BKS SIC variations andWACE
mode is also found in observations (figure 1(c)).
Further, in line with observations, the ensemblemean
WACE time series in ALL has a prominent low-
frequency variation with a long-term positive trend.
In contrast, such variability and trend are absent in
SICclim (compare red curves, figures 3(d) vs (h)).
This suggests a role of observed Arctic sea ice vari-
ations behind a prominent low-frequency variability
and trend in the observed WACE time series. We per-
form power spectral analyses to affirm our inference
regarding the low-frequency variations further.

The ensemble mean of power spectral density
from all the WACE time series (see materials and
methods) in ALL reveals a statistically significant
spectral peak at around 5.5–7.5 years, consistent with
the peak in observed BKS SIC variations (figures 5(a)
and S5). Although, the corresponding spectral peak
is missing in SICclim, which is not forced by the
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Figure 3. The multi-model mean (a) EOF1 and (b) EOF2 patterns in the winter (DJF) SAT (in K) over Eurasia (20◦ N–90◦ N,
0◦–180◦ E) in ALL with daily year-to-year varying observed SST and SIC conditions for the period of 1980–2014. The black
contours are the multi-model mean SLP (in hPa) fields associated with the EOFs, derived by regression of the SLP on the
respective normalised PC time series for each model. (c) The normalised PC1 time series in grey for the 145 ensemble members of
the ALL. The black line is the same but from ERA5 data for 1980–2014. The red line is the ensemble mean of the PC1 time series,
and the brown lines are the 95% confidence intervals of the ensemble mean. (d) As in (c) but for the PC2, i.e. WACE mode. The
other blue curve is the normalised sign reversed time series of the observed area averaged winter SIC anomalies in BKS from
HadSST1 (65◦ N–85◦ N, 20◦ E–90◦ E, blue box in figure 1(a)). (e)–(h) are the same as (a)–(d) but for the SICclim experiment
with daily climatological Arctic SIC forcing instead of year-to-year varying SIC. Top right corners of (a), (b), (e), (f) mention the
multi-model mean of the percentages of the total variance explained by the respective EOFs.
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Figure 4. The difference between ALL and SICclim for the EOF2 SAT pattern, i.e. WACE pattern (in shading), and its associated
SLP pattern (in contours) for (a) multi-model mean (MMM) and in individual models, i.e. (b) CMCC-CM2-HR4 (c) EC-Earth3
(d) ECHAM6.3 (e) LMDZOR6 (f) CAM6-Nor (g) CESM2-WACCM6 (h) HadGEM3 and (i) IAP4. Units are in Kelvin (K) and
hPa. Stippled areas in (a) are the regions where the MMM differences are significantly different from zero at 95% confidence level
relative to the spread of the difference in the 8 models.

Figure 5. Ensemble mean of the power spectrums fromWACE/PC2 time series of 145 ensemble members in (a) ALL (Red) and in
(b) SICclim (Blue), and the dashed lines in the same colours are the 95% (upper) confidence bound of their respective Markov
spectrum.

observed Arctic/BKS SIC variations (figure 5(b)). We
also find a statistically significant spectral peak at
around four years in WACE from ALL and SICclim.
This could result from other forcing factors in addi-
tion to Arctic SIC, e.g. external forcings or SSTs over
the ENSO region or North Atlantic Ocean (Luo et al
2019a, 2023). Overall, the main and only statistically
significant difference in the power spectra between
ALL and SICclim is the∼6 year peak inALL, suggest-
ing that such periodicity in the WACE could not exist
in the absence of the observed BKS SIC variations,
which also shows a significant spectral peak at∼6 year
(figure 1(d)).

Apart from variability, the changes in the long-
term trend of WACE and PC1 SAT under observed

Arctic sea ice variations can be investigated by
comparing their joint probability density functions
(JPDFs) in ALL and SICclim with those in ERA5.
The WACE or PC2 trends JPDF in ALL exhibits the
ensemble mean of a statistically significant positive
value of 0.040 yr−1 under observed SIC forcing, while
the ensemble mean of the PC2 trends in SICclim
is nearly zero (figure 6(a)), i.e. no statistically signi-
ficant trend when driven by the climatological SIC
and observed SST forcing. We find a statistically sig-
nificant WACE trend of 0.046 yr−1 in observations,
crucial in explaining the observed central Eurasian
winter temperature trend (see figure 2 and its explan-
ation in section 3.2). Such WACE trend could only
be found in ALL and not in SICclim (figure 6(a)).
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Figure 6. (a) Scatter plot of the normalised PC1 and PC2/WACE trend of winter (DJF) Eurasian SAT for the 145 multi-model
ensemble members (each marker represents the ensemble members of a particular model) in ALL (dots) together with the joint
probability density function (JPDF) of the PC1 and PC2/WACE SAT trend in ALL (in colour shading) and in SICclim (in blue
contour). The blue and red dots/lines are the respective ensemble means/ensemble standard deviations of the PC trends in
SICclim and ALL. JPDF units are in percent. The grey dashed lines show the 95% confidence limit of the trend for ensemble
members. (b) Scatter plot of the PC1 of winter (DJF) Eurasian SAT and AO trends in ALL for the 145 multi-model ensemble
members with the same colour coding as in (a). A regression line (in black) indicates the relation between the trends in PC1 and
AO. The black star in (a) and (b) is for the trends in the same for ERA5, and the respective black lines show the 95% confidence
intervals.

Hence the experiments suggest that this important
observed trend in WACE mode could only be found
under observed Arctic/BKS SIC forcing.

3.5. Differences in observed and simulated first
mode of Eurasian temperature variability
The modelled PC1 shows a striking difference from
the ERA5 PC1 time series (figures 3(c) and (g)). The
PC1 time series in ALL and, to a lesser extent, in
SICclimhave a consistently positive trend (grey lines),
which we can also see in their ensemble mean (red
lines), while ERA5 shows no statistically significant
PC1 trend (black line in figure 3(c)). The difference in
the observed and simulated trends could be visualised
in the JPDFs (figure 6(a)). The JPDF of the SICclim
PC1 trends (blue contours, figure 6(a)) shows a small
but statistically significant positive ensemble mean of
∼0.020 yr−1 (blue dot, figure 5(a)). The mean PC1
trend is enhanced in ALL under observed Arctic SIC
forcing (shaded contours, figure 6(a)) with a statist-
ically significant ensemble mean trend of 0.043 yr−1

(red dot, figure 6(a)). The observed PC1 trend from
ERA5 is negative and not statistically significant at 5%
(−0.015 yr−1). Not a single ensemble member dis-
plays such a negative PC1 trend. The observed PC1
trend being out of the spread of the model simulated
PC1 trends suggest the differing nature of the trend in
model PC1s from the observation.

The essence of this difference in the trend can
be captured in the relationship between the PC1 and
the AO. In ERA5, due to the close relation between
PC1 and AO, the observed PC1 reflects the trend in
the observed AO, which is not statistically significant

(black star in figure 6(b)). Accordingly, in experiment
ALL, the ensemble mean of the AO trend is close to
zero due to an almost equal spread of the AO trends in
both positive and negative sides arising mainly from
AO-related internal variability. Further, the PC1 and
AO trends also have a moderately close association in
ALL (correlation = 0.5, p-value < 0.0001). However,
unlike AO trends, all PC1s show positive trends and a
statistically significant positive ensemble mean trend
(red dot, figure 6(b)). The distribution of the PC1-
AO correlations in ALL shows that most members
show a relation weaker than that observed (figure S6).
The distribution of the PC1-AO correlations shifts to
a slightly higher value in SICclim compared to ALL,
though the changes are not statistically significantly
different.

4. Conclusions

We have shown that the Siberian high/Ural block-
ing related WACE pattern of variability exhibits a
close association with BKS SIC variations in terms
of the substantial ∼6 years variability and long-
term trends both in the observation and the large
ensemble atmosphericmodel simulations forcedwith
the observed Arctic SIC variations. The statistically
significant ∼6 years cycle and the long-term trends
are no longer found when the models are forced
with climatological mean Arctic SIC. These results
demonstrate that although the WACE is an atmo-
spheric internal mode of variability affecting BKS SIC
variations, it has an influence or feedback from BKS
SIC variations. We have also shown that the observed
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long-term trend in the WACE pattern continues to
persist until winter 2022 and is essential in explain-
ing the Eurasian SAT trend.

Our results mainly focus on the driving role of
BKS SIC variations, as we cannot investigate the ori-
gin of the BKS SIC variability with our simulations.
Previous works established that the atmosphere plays
a major role in driving the observed BKS SIC vari-
ations in shorter time scales of weeks to months
(Sorokina et al 2016, Peings 2019, Tyrlis et al 2020),
together with oceanic processes on longer time scales
(Jungclaus et al 2005, Sato et al 2014, Jung et al 2017,
Yamagami et al 2022, Luo et al 2023). The observed
BKS SIC variations imposed inALL bear the signature
of those influences. Hence the factors which influ-
enced the BKS SIC variability and their association
with Eurasian winter temperature through BKS SIC
hold. Our results only show that BKS SIC variations
have direct feedback on the WACE pattern, especially
on sub-decadal timescales. And further, without BKS
SIC variations and loss (in SICclim), the ∼6 years
cycle and the long-term changes in theWACE pattern
of variability are not found. Hence, the BKS SIC low-
frequency variations and trend are central in bring-
ing the observed low-frequency association and the
long-term trend to theWACE. Furthermore, we show
a pivotal role of the multi-decadal trend in theWACE
mode of variability for shaping the overall Eurasian
winter SAT trend (see figure 2). Hence our results
underscore a critical role of BKS SIC loss for shaping
the observed Eurasian winter SAT trend.

In the simulations, we have shown that the root
of the inconsistency between observations and the
model for Eurasian winter is confined to the lead-
ing mode of Eurasian SAT variability (PC1), which is
related to the AO. The PC1 in the model simulations
showa statistically significant positive trendwhere the
observed PC1 trend is found to be outside the spread
of the model simulated trend. Additional research is
necessary to understand better this disparity between
the observed and model-simulated PC1 trend and
the possible influence of Arctic sea ice loss on this
divergence. Our results suggest that the observation
and model differences in this aspect could be partly
related to a too strong thermodynamics response
reflecting in an overall higher land surface and hemi-
spheric warming in the models and/or underestim-
ation of the trend or the low-frequency compon-
ent in AO-related dynamics in the models (Scaife
and Smith 2018, Smith et al 2020). These inconsist-
encies could stem from the missing sea ice physics
(Marcq and Weiss 2012, Lang et al 2017), missing
Ocean-Sea ice-land-atmosphere coupled interaction
(Smith et al 2017, Screen et al 2018), potential
biases in sea ice-atmosphere interactions, atmo-
spheric physics, Ocean-atmosphere teleconnections,
two-way stratosphere-troposphere coupling.

Having the monopolar warm anomalies over
almost the entire EOF1 domain, the modelled PC1

time series could capture the forced thermodynamic
warming signals. A trend of the averaged NH SAT
would represent such a warming level. We find that
the modelled NH warming is much higher than the
observed, which lies outside the spread of the model-
simulated trends in ALL (figure S7(a)). Similar res-
ults are found in our central Eurasia region of interest
(indicated by the black box in figures 2(c) and (d)),
where the observed trend is outside the spread of the
model simulated trends in both ALL and SICclim
(figure S7(b)). This excessive warming reflects onto
the PC1 positive trend in both experiments and is
enhanced in ALL under observed Arctic SIC forcing
(figure 6(a)).

The close relationship between the observed
PC1 and AO explains why, during the first half of
the 2010’s, with the AO negative phase, the PC1
trend reinforced the WACE cold state over Eurasia.
Thereafter (after 2014), the recently observed reduc-
tion in the Eurasian cooling trend is due to the shift to
the AO positive phase, which has an opposing influ-
ence compared to the persistent WACE trend.

Finally, our finding of the link between the BKS
SIC variations for the ∼6 years cycle in the observed
WACE pattern of variability provides a potential
source of sub-decadal predictability for Eurasian
winter temperature. Further research should be dir-
ected to understand the possible drivers of such vari-
ations in the BKS SIC, the representation of those
driving mechanisms in the coupled climate models
and their changes under global warming.
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