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Abstract: We numerically investigate azimuthal modulation instability in an optical fiber 

supporting orbital angular momentum modes only, i.e. a vortex fiber, by means of the scalar 

multimode unidirectional pulse propagation equation. We demonstrate that the nonlinear stage of 

azimuthal modulation instability taking place in such a ring-core fiber, with anomalous rotation 

group-velocity dispersion, can be simply described by analytical breather solutions of the 

corresponding nonlinear Schrödinger equation. Azimuthal soliton dynamics and nonlinear 

compression are also unveiled as well as specific spatial rotating features as a function of the 

topological charge involved. Our results open a new route for studying transverse nonlinear waves 

in optical fibers and for manipulating orbital angular momentum states.  
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1 Introduction 

Optical self-trapped beams induced by self-focusing instabilities have been studied since the late 

1960s [1-4]. Typically, the self-focusing of a high-power laser beam in nonlinear dielectric medium 

has been shown to induce the azimuthal-symmetry breaking of a cylindrical Gaussian beam, thus 

giving rise to multiple filaments in space. Such a transverse instability corresponds to growth of 

perturbations which depend on the azimuthal angle in cylindrical coordinates. Periodic beam 

breakup as well as recurrence phenomena have also been unveiled in a saturable nonlinear medium 

[5]. More recently, the azimuthal symmetry-breaking instability of ring-profile vortex beams has 



been intensively investigated in several Kerr-like and quadratic media [6-14]. Nonlinear 

propagation of optical vortices still remains of high interest and challenging for optimizing the 

creation, manipulation and detection of structured light. Indeed, the class of self-trapped ring-like 

beams first introduced with a spiral phase structure [15], and later extended to necklace beams 

carrying or not orbital angular momentum (OAM) [16], has gained a lot of attention during the last 

two decades, since representing two-dimensional spatial solitons with numerous potential 

applications to photonics. Nowadays, one has to tackle even more complex light objects including 

the study of OAM-carrying beams and space-time wave packets which involve the simultaneous 

coupling of many degrees of freedom through the properties of the medium [17-20]. 

Combining  OAM-carrying beams within fiber technology has represented a major step forward 

in space-division multiplexing for ultra-high capacity communications [21-22]. In particular, 

specific ring-core fibers have been developed to optimize radial light confinement, thus supporting 

the propagation of a large number of OAM modes without detrimental mode couplings for efficient 

data transmission. While in free-space systems and bulk media, an infinite and dense number of 

transversal modes can propagate, only a discrete and finite number of modes is supported by a 

given optical fiber. The modal distribution of multimode optical fibers then provides a 

discretization of fiber properties and related propagating space-time wave packets [19-20,23-24]. 

In this work, we theoretically and numerically investigate the particular case of nonlinear 

focusing wave propagation in an optical fiber supporting orbital angular momentum modes, i.e., a 

vortex fiber. We show that such a ring-core fiber exhibits anomalous discretized OAM-modal 

dispersion, thus favoring the spontaneous emergence of azimuthal modulation instability. The latter 

can be simply analyzed by the one-dimensional focusing nonlinear Schrödinger equation (NLSE) 

and related exact analytical breather solutions. We also demonstrate that azimuthal soliton 

dynamics may occur as well as spatial rotating features as a function of the topological charge 

involved.  

 

2 Theory and numerical modeling 

2.1 OAM modes properties in a vortex fiber 

Several modal bases in cylindrical coordinates can describe the light propagation in optical fibers. 



Fiber guided modes can be implemented with conventional linearly polarized (LP) modes, and they 

can be formed from linear combinations of vector eigenmodes of the fiber. LP mode basis results 

from a scalar approach of the wave equation, and designated usually as LP𝑙𝑙𝑙𝑙 modes , where indices 

𝑙𝑙 and 𝑚𝑚 are the azimuthal and radial indices. Only the 𝑙𝑙 = 0 modes are circularly symmetric. The 

remaining modes exhibit rotational symmetry, where the field distribution is symmetric under 

rotations of 2𝜋𝜋/𝑙𝑙. Optical fibers can also support OAM (higher-order) modes with helical phase 

front by correctly superposing orthogonal LP modes or vector modes, i.e. the even and odd modes 

for each LP𝑙𝑙𝑙𝑙 or HE𝑙𝑙+1,𝑚𝑚 and EH𝑙𝑙−1,𝑚𝑚 modes with ±𝜋𝜋/2 phase shift in the linear combination. The 

resulting OAM modes are denoted as OAM𝑙𝑙,𝑚𝑚 where 𝑙𝑙 and 𝑚𝑚 subscripts denote the azimuthal and 

radial indices, respectively. In the vector case, additional superscript is used to indicate the 

direction of the circular polarization. Here, 𝑙𝑙 is the topological number related to the phase front of 

the OAM mode, 𝑚𝑚 describes the number of nulls radially (rings) in the intensity profile of the 

OAM mode. As a simple example we can write: OAM𝑙𝑙=±1,𝑚𝑚=1 = (LP11𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ± 𝑖𝑖LP11𝑜𝑜𝑜𝑜𝑜𝑜)/√2.  

In a weakly-guiding multimode fiber, we commonly make use of LP mode basis due to the 

similar propagation constants of vector eigenmodes and degeneracy. In general, LP mode 

supporting fiber can exhibit radial higher-order modes, where each mode field distribution is 

different. By contrast, OAM mode supporting fibers used for optical communications are designed 

to carry only radial first-order mode, by means of a depressed-inner region inside the core, which 

forms a core with ring shape. Such an index contrast also allows to manage the separation degree 

between vector modes and detrimental mode couplings during propagation [25]. In the following, 

we make use of such a fiber profile, more specifically the one developed in Ref. [26], with an air 

core and an annular index profile. Such a fiber has been experimentally validated to guide a large 

number  of OAM modes, up to  𝑙𝑙 = 9, with initial excitation from free-space coupling of OAM 

beams. In our study, we first neglect the vector nature of guided modes for better clarity, 

nevertheless it does somewhat impact our findings as discussed later in the article. Indeed, we 

specially used a ring-core fiber to decouple the azimuthal from the radial dependence of guided 

modes, since only the radial first-order mode can be guided and all remaining OAM modes that 

depend on 𝑙𝑙 exhibit very similar intensity patterns. In this regard, Fig. 1 depicts the refractive index 

fiber of the fiber chosen (subplot (a)), the corresponding effective refractive indices of scalar OAM 

guided modes (subplot (b)), as well as some examples of intensity and phase distributions of these 

modes (subplots (c-g)). Modal calculations were performed by means of the numerical method 



developed in Ref. [27]. We note that the fiber ring core made of GeO2-doped silica matches the 

donut shaped OAM fields by means of the high-index contrast provided by the centered air hole in 

the fiber. The width of the doped ring core was set to limit the guidance only to modes with 𝑚𝑚 = 

1 (i.e., having a single ring in their intensity profile) at the wavelength of 1.03 µm. The fiber 

supports a large number of OAM mode (0 ≤ |𝑙𝑙| ≤ 16), such modes have an effective index that 

resides between the refractive index of the cladding and the maximum refractive index of the fiber. 

OAM modes with higher topological charge propagate faster than those with lower topological 

charge. Their intensity ring shape is very similar whatever the topological charge, as confirmed by 

their constant effective mode area (see Fig. 1g). In Fig. 1(h), we plotted rotation group-velocity 

dispersion (R-GVD) that OAM wave-packets may experience in our fiber, calculated from the 

(discrete) second derivative of the propagation constants with respect to 𝑙𝑙. We clearly note a nearly-

constant anomalous dispersion (negative R-GVD) with topological charge, except for the latest 

guided modes (|𝑙𝑙| > 15). 

 

 
Figure 1. (a) Refractive index profile of the ring-core fiber under study given at 1.03 µm 

wavelength. (b) Corresponding calculated effective indices of OAM guided modes (dashed 

line indicates pure silica index). (c-f) Intensity and phase distribution of some OAM guided 

modes, namely 𝑙𝑙 = 0, 4, 8, and 12, respectively. (g-h) Calculated effective mode area and 

rotation group-velocity dispersion as a function of the topological charge 𝑙𝑙. 



2.2 Nonlinear propagation modeling   

In the following we make use of a 3D+1 numerical approach of nonlinear wave propagation in 

OAM-carrying multimode fibers based on the multimode unidirectional pulse propagation 

equation (MM-UPPE) derived in Refs. [19,27], which describes the evolution of the complex 

electric field in the scalar approximation. In the context of fiber propagation, using a complex 

representation of the electric field 𝜉𝜉 (expressed so that |𝜉𝜉|2 = 𝐼𝐼(𝑟𝑟,𝜃𝜃, 𝑡𝑡), 𝐼𝐼 being the pulse intensity), 

MM-UPPE writes as follows: 

𝜕𝜕𝑧𝑧𝜉𝜉̅(𝑙𝑙,𝑚𝑚,𝜔𝜔) =  𝑖𝑖𝐾𝐾𝑧𝑧𝜉𝜉̅ +
𝑖𝑖𝑛𝑛eff0𝑛𝑛2𝜔𝜔

2

𝑐𝑐2𝐾𝐾𝑧𝑧
|𝜉𝜉|2𝜉𝜉������         (1) 

where 𝜉𝜉̅(𝑙𝑙,𝑚𝑚,𝜔𝜔) refers to the electric field in the modal basis, 𝐾𝐾𝑧𝑧(𝑙𝑙,𝑚𝑚,𝜔𝜔) is the propagation 

constant of the OAM mode (𝑙𝑙,𝑚𝑚) at the frequency 𝜔𝜔,  𝑛𝑛eff0 is the effective refractive index of the 

fundamental mode at 𝜔𝜔0, 𝑛𝑛2 is the nonlinear refractive index of the fiber glass (here for silica glass, 

we used 𝑛𝑛2 = 3.2 10-20 m2/W). In contrast to Ref. [19], we here neglect the Raman contribution 

into the nonlinear response, only the Kerr effect will be investigated. The impact of usual fiber 

losses (less than 10 dB/km) is not studied since being negligible over the considered propagation 

distance. All the numerical results shown below are obtained by solving the propagation equation 

(Eq. 1) without any additional approximation, and more particularly by means of a split-step modal 

algorithm as described in Ref. [27]. The present numerical model has been already tested 

successfully with experimental works on ultrashort pulse nonlinear propagation in MMFs [24]. 

In the limiting case of monochromatic wave propagation (i.e., continuous-wave pump 𝜔𝜔 = 𝜔𝜔0) 

in our vortex fiber, where only one radial mode is supported (i.e., 𝑚𝑚 = 1) and the considered field 

whose OAM spectrum is centered around 𝑙𝑙 = 𝑙𝑙0, one can simplify Eq. (1) to derive suitable 

analytical tools and solutions. We expand the resulting 𝐾𝐾𝑧𝑧(𝑙𝑙,𝑚𝑚 = 1,𝜔𝜔 = 𝜔𝜔0) in a Taylor series 

around 𝑙𝑙0 (at 𝜔𝜔0) in the linear term of Eq. (1), as 𝐾𝐾𝑧𝑧(𝑙𝑙) = 𝐾𝐾0 + 𝐾𝐾1(𝑙𝑙 − 𝑙𝑙0) + 𝐾𝐾2(𝑙𝑙 − 𝑙𝑙0)2/2, where 

𝐾𝐾𝑝𝑝 = {𝜕𝜕𝑝𝑝𝐾𝐾𝑧𝑧/𝜕𝜕𝑙𝑙𝑝𝑝}𝑙𝑙=𝑙𝑙0. Physically speaking, the term 𝐾𝐾1 (resp. 𝐾𝐾2) corresponds to the rotation 

group velocity (resp. rotation group velocity dispersion) of the beam. In addition, we can simply 

refer to the first-order approximation of the frequency-dependent nonlinearity in Eq. (1), so that 

𝑛𝑛eff0𝑛𝑛2𝜔𝜔
2/(𝑐𝑐2𝐾𝐾𝑧𝑧) ≈ 𝑛𝑛2𝜔𝜔0/c. Moreover, without loss of generality, one can use a local frame 

propagating (resp. rotating) at the phase velocity 𝑣𝑣𝜑𝜑 (at the rotation group velocity 𝐾𝐾1) of the mode 

𝑙𝑙 = 𝑙𝑙0. This can be made by the following change of variables: 𝑡𝑡 → 𝑡𝑡 − 𝑧𝑧/𝑣𝑣𝜑𝜑, 𝜃𝜃 → 𝜃𝜃 − 𝐾𝐾1𝑧𝑧, 𝑧𝑧 →



𝑧𝑧. Finally, as the radial part of the electric field 𝐹𝐹(𝑟𝑟) can be considered in very good approximation 

as independent of the topological charge, one can introduce the separation of variables by assuming 

the following form: 𝜉𝜉(𝑟𝑟,𝜃𝜃, 𝑧𝑧) = 𝐹𝐹(𝑟𝑟)𝐴𝐴(𝜃𝜃, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑙𝑙0𝜃𝜃. We can then normalize 𝐴𝐴 such that |𝐴𝐴|2 

represents the angularly-resolved optical power through |𝐴𝐴|2 = 𝑃𝑃0 = ∫ 𝑟𝑟 |𝜉𝜉|2𝑑𝑑𝑑𝑑/∫ 𝑟𝑟 |𝐹𝐹(𝑟𝑟)|2𝑑𝑑𝑑𝑑. 

After these simplifications in Eq. (1), we obtain the following nonlinear Schrödinger (NLS) 

equation that describes the evolution of azimuthal envelope profile along the fiber: 

𝜕𝜕𝑧𝑧𝐴𝐴(𝜃𝜃, 𝑧𝑧) =  𝑖𝑖 K2
2
𝜕𝜕𝜃𝜃2𝐴𝐴 + 𝑖𝑖𝑛𝑛2𝜔𝜔0

c𝐴𝐴eff_θ
|𝐴𝐴|2𝐴𝐴        (2) 

where 𝐴𝐴eff_θ = [∫ 𝑟𝑟 |𝐹𝐹(𝑟𝑟)|2𝑑𝑑𝑑𝑑]2/∫ 𝑟𝑟 |𝐹𝐹(𝑟𝑟)|4𝑑𝑑𝑑𝑑. One can also define the usual fiber nonlinear 

parameter as 𝛾𝛾 = 𝑛𝑛2𝜔𝜔0
c𝐴𝐴eff_θ

 (here 𝛾𝛾 = 8.3 W-1 km-1). On the whole, we simply recover a standard 

focusing NLS equation, thus allowing to investigate modulation instability, breather and solitons 

solutions along azimuthal coordinate 𝜃𝜃 instead of time coordinate for instance. 

 

2.3 Azimuthal modulation instability and theoretical solutions 

By using the above spatial NLS equation (Eq. 2) with anomalous R-GVD from our vortex fiber 

(i.e. focusing regime), one can easily derive the criterion for modulation instability (MI) found 

from linearized equations for small perturbations of the envelope profile of an OAM mode (i.e., 

linear stability analysis [28]). The corresponding azimuthal MI gain exists only for a limited 

number of azimuthal indices (i.e., topological charges) of modulation, namely for |𝑙𝑙| < 𝑙𝑙C, and is 

given by 𝑔𝑔(𝑙𝑙) = |K2(𝑙𝑙 − 𝑙𝑙0)|�𝑙𝑙C2 − (𝑙𝑙 − 𝑙𝑙0)2, where 𝑙𝑙C2 = 4𝛾𝛾𝑃𝑃0/|K2|.  The gain spectrum is 

symmetric with respect to 𝑙𝑙 = 𝑙𝑙0, and it reaches its maximum at 𝑙𝑙max = 𝑙𝑙0 ± 𝑙𝑙C/√2. Given that 

growing perturbations that can experience a net power gain are solely characterized by discrete 

azimuthal indices (integer numbers for 𝑙𝑙 values),  it becomes evident that Akhmediev breather 

(AB) solutions provides the exact formulation of this azimuthal MI process in both induced and 

spontaneous regimes. The Akhmediev breather describes the full nonlinear evolution with z of a 

wave with initial constant amplitude on which is superimposed a small periodic perturbation taking 

here the form of a 𝜃𝜃-dependent modulation. This breather solution exhibits a single growth-return 

cycle featured by localization in the z direction. The AB solution to Eq. (2) can be written explicitly 

in the following form [29-30]: 



𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃, 𝑧𝑧) =  �𝑃𝑃0
(1−4𝑎𝑎) cosh[𝑏𝑏𝑏𝑏]+𝑖𝑖𝑖𝑖 sinh[𝑏𝑏𝑏𝑏]+√2𝑎𝑎 cos[(𝑙𝑙mod−𝑙𝑙0)𝜃𝜃]

√2𝑎𝑎 cos[(𝑙𝑙mod−𝑙𝑙0)𝜃𝜃]−cosh[𝑏𝑏𝑏𝑏]        (3) 

The above equation represents the family of first-order AB solutions with a single independent 

parameter, namely the perturbation azimuthal index 𝑙𝑙mod. The solution is valid over the range of 

modulation frequencies that experience MI gain. The coefficients 𝑎𝑎 and 𝑏𝑏 are defined as follows: 

2𝑎𝑎 = 1 − [(𝑙𝑙mod − 𝑙𝑙0)/𝑙𝑙C]2 and 𝑏𝑏 = [8𝑎𝑎(1 − 2𝑎𝑎)]1/2. The coefficient 𝑎𝑎 depends on input 

parameters and varies in the interval 0 < 𝑎𝑎 < 1/2, while the parameter 𝑏𝑏 > 0 is directly linked to 

the MI growth. The maximum MI gain condition corresponds to 𝑏𝑏 = 𝑔𝑔/(2𝛾𝛾𝑃𝑃0) = 1, and it occurs 

when 𝑎𝑎 = 1/4, i.e.  𝑙𝑙mod = 𝑙𝑙max. The solution in Eq. (3) describes an evolving periodic train of 

spots onto a ring-profile vortex beam with azimuthal period 𝜃𝜃mod = 2𝜋𝜋/(𝑙𝑙mod − 𝑙𝑙0). The 

individual spots have maximum amplitude and minimum width at z = 0. 

 

In this focusing regime where nonlinearity and dispersion counterbalance each other, it is 

obvious that standard NLS soliton solutions can be analyzed, as well as many other unstable 

solutions of Eq. (2) beyond the Akhmediev breather. We do not provide an exhaustive list of all 

potential solutions that can be investigated in our scalar approach of vortex fibers, we refer the 

reader to some optical studies of these complex nonlinear wave solutions performed in the 

temporal domain [31-34]. An easy transposition can be applied as described above from time to 

space coordinate. Here, we simply recall the fundamental soliton solution as 𝐴𝐴𝑠𝑠(𝜃𝜃, 𝑧𝑧) =

�𝑃𝑃𝑠𝑠sech (𝜃𝜃/∆𝜃𝜃), where the soliton width is ∆𝜃𝜃 = (|K2|/𝛾𝛾𝑃𝑃𝑠𝑠)1/2. Note that higher-order solitons 

can be studied in a simple way by considering that the peak power necessary to excite the 𝑁𝑁th-

order soliton  is 𝑁𝑁2 times that required for the fundamental soliton [28]. 

 

3 Results 

3.1 Azimuthal modulation instability 

We first investigate numerically the spontaneous (noise-driven) regime of azimuthal MI by means 

of the full MM-UPPE modeling (see Eq. 1). We only assume a monochromatic wave propagation 

(i.e., continuous-wave pump 𝜔𝜔 = 𝜔𝜔0) in our vortex fiber, and we consider the fundamental OAM 

mode of the fiber as the input pump mode (𝑙𝑙0 = 0), with input power 𝑃𝑃0 = 100 kW, together with 

a broadband white noise background. Figure 2(a-c) shows a typical single realization of our 



simulation for a 15.5 mm propagation distance. A localized structure is observed to spontaneously 

emerge along the azimuthal coordinate in Fig. 2a with its corresponding power profile depicted in 

Fig. 2b, this phenomenon is obtained after a strong development of the MI spectrum as shown in 

Fig. 2c.  

 

Figure 2. Spontaneous development of azimuthal modulation instability for distinct input 

powers. (a) Output normalized fluence distribution in space (single realization) after a 

propagation distance of 15.5 mm. Fundamental mode (𝑙𝑙 = 0) of the fiber is injected with input 

power 𝑃𝑃0 = 100 kW. (b) Corresponding azimuthal power profile. (c) Corresponding power 

spectrum. (d) Spectral evolution (log. scale) as a function of propagation distance (averaged 

over 40 realizations). (e) Azimuthal MI gain calculated numerically over first 7 mm of 

propagation (see white dashed line in subplot (d)) compared to analytical theory from linear 

stability analysis (LSA). Dashed blue line is indicated for visualizing usual MI gain curve, 

here only one azimuthal index is amplified. (f-j) Similar results obtained for input power 𝑃𝑃0 = 

300 kW and 5-mm propagation distance. Azimuthal MI gain is here analyzed after 2 mm of 

propagation. 

 



The evolution of the power spectrum as a function of propagation is reported in Fig. 2d, our 

simulation results were averaged over 40 realizations. We then compared the simulated MI gain in 

the first steps of propagation (linear stage of MI) with theoretical MI gain obtained from Eq. 2. An 

excellent agreement can be noticed in Fig. 2e, where only one azimuthal index (𝑙𝑙 = 1) satisfies the 

MI criterion.  

As another example in Fig. 2(f-j), we analyze the results obtained for similar input conditions 

but using a higher power 𝑃𝑃0 = 300 kW. In that case, two localized structures are emerging in the 

transverse coordinates, in particular on the finite background of the fundamental mode (see Fig. 

2f). Corresponding power profiles in direct and Fourier spaces are depicted in Fig. 2(g-h). We 

easily note that the number of localized structures is related to the azimuthal index  (𝑙𝑙 = 2) which 

dominates the fully developed MI spectrum and drives the subsequent cascaded harmonics. This is 

corroborated by the spectral evolution averaged over 40 simulations shown in Fig. 2(i-j), where the 

MI gain after 2 mm of propagation is well predicted by the linear stability analysis. As expected 

the higher input power increases the MI bandwidth, three one azimuthal indices (𝑙𝑙 = 1,2,3) 

experience significant gain, 𝑙𝑙 = 2 being the maximally amplified topological charge with a gain 

value beyond 20 dB/mm. The above results confirm that azimuthal MI may spontaneously occur 

for OAM modes of a vortex fiber over very short propagation distances for high input powers. 

Moreover, the linear stage of MI dynamics can be well predicted by a linear stability analysis of 

the approximated model provided by Eq. (2). The azimuthal index that experienced maximum MI 

gain drives the number of modulations and subsequent localized structures emerging along the 

azimuthal coordinate in direct space. We also checked that we recover similar MI dynamics by 

considering an higher OAM mode (𝑙𝑙0 ≠ 0) of the fiber as the input CW mode. The only difference 

is the rotation around the propagation axis of the emerging localized structured. The direction of 

rotation and its period along the propagation simply depends of the index and sign of input 

topological charge [19]. 

  

3.2 Akhmediev breathers and their interactions  

In a second set of simulations, we study the seeded regime of azimuthal MI by means of the full 

MM-UPPE modeling. We again assume a CW pumping in the fundamental OAM mode (𝑙𝑙0 = 0) 

of the fiber, with input power 𝑃𝑃0 = 300 kW, but now we superimpose a low-power CW seed in 



higher-order OAM modes |𝑙𝑙| = 3. In this configuration, we excite an Akhmediev breather (𝑎𝑎 = 

0.03) with an approximate sinusoidal perturbation along the azimuthal coordinate. Corresponding 

numerical results are shown in Fig. 3(a-f). A growth-decay cycle is clearly observed with 10-mm-

long propagation distance in both direct and Fourier spaces (see Fig. 3(a-b)).  

 

Figure 3. Non-ideal excitation of Akhmediev breathers (𝑎𝑎 = 0.03 and 𝑎𝑎 = 0.45) in the regime 

of seeded azimuthal modulation instability. (a-b) Evolution of spatial and spectral power 

profiles along propagation distance for 𝑎𝑎 = 0.03 (seeding at |𝑙𝑙| = 3), respectively. (c-d) 

Corresponding simulated profiles at maximum breather compression (see white dashes lines 

in subplots (a-b)), namely for a distance of 4.8 mm, compared with AB theory from Eq. (3). 

Input spectrum is indicated with black crosses in subplot (d). (e-f) Output normalized fluence 

and phase distributions in space at maximal compression, respectively. (g-l) Similar results 

obtained for 𝑎𝑎 = 0.45 (seeding at |𝑙𝑙| = 1). Profiles at maximum breather compression are 

analyzed here at a distance of 3 mm. 



 

At maximum amplification of the periodic perturbation (after a distance of 4.8 mm), power 

profiles in both spaces (Fig. 3(c-d)) are described in good agreement by the corresponding AB 

theoretical solution given by Eq. (3). The corresponding fluence and phase distributions in (𝑥𝑥,𝑦𝑦) 

space (i.e., the fiber cross section) is depicted in Fig. 3(e-f). The constant phase along the azimuthal 

modulated profile agrees with the AB theory when 𝑎𝑎 < 0.125. One can note that at the end of 

breather decay, we do not exactly recover the CW background due to non-ideal input excitation 

[30]. By pumping a higher azimuthal OAM mode instead of the fundamental one, one would 

observe the rotation of the breather in (𝑥𝑥,𝑦𝑦) space with propagation (i.e., non-zero rotation group 

velocity). 

As another example in Fig. 3(g-l), we analyze the results obtained for similar input conditions 

but using a low-power seed at  |𝑙𝑙| = 1. In that case, the governing parameter of excited Akhmediev 

breather is 𝑎𝑎 = 0.45, close to the Peregrine breather limit (𝑎𝑎 = 0.5), thus explaining the stronger 

localization phenomenon in space of the single beam spot and its amplification factor close to 9 in 

terms of peak power with respect to the initial background [35]. It is worth noting that the strong 

spatial nonlinear focusing into a single spot over a small CW background (see Fig. 3(i,k)) is 

associated with dramatic spectral broadening over all OAM mode components of the fiber shown 

in Fig. 3j. Note that the AB theory does not take into account the limited number of OAM guided 

modes in the fiber under study, nevertheless the spectral truncation occurring in our simulation 

does not prevent the complete growth of the breather. Moreover, the profile at maximal 

compression in Fig. 3(i) exhibits two zero-intensity points, the real field experiences a sign 

inversion between the central peak and the continuous wave background as predicted by the 

theoretical solution. This corresponds to a π phase shift between the two azimuthal parts of the 

beam as it can be seen in panel Fig. 3(l) representing the phase distribution (see light blue color for 

the CW background, and red color for the central spot). Another important phenomenon has to be 

pointed out in Fig. 3(g-h), namely the observation of higher-order modulation instability [36]. This 

instability arises from the nonlinear superposition of elementary instabilities (i.e., multiple 

breathers) associated with initial (non-ideal) single breather excitation, since harmonics of the 

initial perturbation also fall into the MI criterion. A second breather linked to |𝑙𝑙| = 2 typically 

emerges at longer propagation distance (during the decay of the first breather), here its maximum 

amplification occurs at 4.55 mm. The evolution cannot be considered as an independent 



superposition of breathers, thus affecting here the dynamics observed in (𝜃𝜃, 𝑧𝑧) space. Note that the 

full pattern can be described analytically by using the Darboux transformation [36]. 

The nonlinear superpositions of breathers may be synchronized in (𝜃𝜃, 𝑧𝑧) space so that their 

intensity peaks collide at the same spatial location, giving rise to a higher-order breather solution 

characterized by an extreme peak intensity. Figure 4 shows the numerical results corresponding to 

the collision of two ABs, when assuming again a CW pumping in the fundamental OAM mode 

(𝑙𝑙 = 0) of the fiber, with input power 𝑃𝑃0 = 300 kW, and the seeding of the higher-order OAM 

modes 𝑙𝑙 = +3 and 𝑙𝑙 = −2. The AB parameters under study are 𝑎𝑎1 = 0.03 and 𝑎𝑎2 = 0.29. Specific 

initial conditions by controlling the phase and seeding amplitude of the breathers are required for 

their efficient collision [32]. With opposite sign of the seeding topological charges, breathers 

experience inclined trajectory in (𝜃𝜃, 𝑧𝑧) space (distinct mean group velocity of AB compared to the 

previous symmetric perturbation studied in Fig. 3). The control of this group velocity difference 

between ABs favors their collision on a short propagation distance. Moreover, the intrinsic 

discretization of modal parameters makes here that any seeded MI dynamics will correspond to 

commensurate frequencies of ABs. The resulting wave is then periodic as shown in Fig. 4(a,c). 

Here, we see clearly that breather collision produces a high peak that is more than 9 times the initial 

average power after a distance of 2.9 mm, and associated with an extreme spectral broadening. An 

extremely localized spot is recovered in (𝑥𝑥,𝑦𝑦) space (see Fig. 4(e)) with a secondary spot with 

same spatial phase (see Fig. 4(f)). The full wave profile is fully described by a second-order AB 

solution as reported in Fig. 4(c-d). We refer the reader to Refs. [29,32] for the complex analytical 

form of this solution. 

 



 

Figure 4. Synchronized collision between two Akhmediev breathers (𝑎𝑎1 = 0.03 and 𝑎𝑎2 = 

0.29) in the regime of seeded azimuthal modulation instability. (a-b) Evolution of spatial and 

spectral power profiles along propagation distance, respectively. (c-d) Corresponding 

simulated profiles at collision point (see white dashes lines in subplots (a-b)), namely for a 

distance of 2.9 mm, compared with analytical second-order AB solution of Eq. (3). Input 

spectrum is indicated with black crosses in subplot (d). (e-f) Output normalized fluence and 

phase distributions in space at collision point, respectively. 

 

3.3 Solitons on zero background and nonlinear focusing 

In a third set of simulations, we examine the existence of common soliton dynamics [28], here in 

(𝜃𝜃, 𝑧𝑧) space by means of the full MM-UPPE modeling. To this end, we verify the propagation from 

nearly exact input conditions corresponding to NLS soliton solutions. For simplicity, we assume a 

spectrally-shaped input wave for |𝑙𝑙| < 10 constructed from the fundamental soliton written in 

section 2.3. Figure 5(a-f) shows the numerical results obtained for the fundamental soliton (𝑁𝑁 =

1), whereas the more complex dynamics of second-order soliton (𝑁𝑁 = 2) is depicted in Fig. 5(g-l). 

In both cases, there is an excellent agreement between numerical simulations and analytical 

solutions, even in the case of the extreme broadening beyond guided OAM modes depicted in Fig. 

5(j). We also recovered typical phase features of NLS soliton solutions shown in Fig. 5(f,l). 



 

Figure 5. Azimuthal soliton dynamics in our vortex fiber. (a-b) Evolution of spatial and 

spectral power profiles along propagation distance for 𝑁𝑁 = 1, respectively. (c-d) 

Corresponding simulated profiles after a distance of 5 mm, compared with analytical 

fundamental soliton solution of Eq. (3). Input spectrum is indicated with black crosses in 

subplot (d). (e-f) Output normalized fluence and phase distributions in space, respectively. (g-

l) Similar results obtained for 𝑁𝑁 = 2. Profiles at maximum soliton compression are analyzed 

here at a distance of 0.13 mm and compared with the corresponding analytical solution [28]. 

 

Besides nonlinear spatial compression in the framework of ideal soliton dynamics, one can 

simply consider the multiple four-wave mixing of an initial dual-OAM beat signal [37]. We 

considered a simple dual-OAM modal pumping (𝑙𝑙 = 0 and 𝑙𝑙 = +1) of the fiber, and with an input 

average power equal to 51 kW. This corresponds to one period of a sinusoidal input wave over the 

azimuthal coordinate. In the focusing regime of NLS equation, this configuration is well 



understood since multiple four-wave mixing processes between the two CW pumps spontaneously 

occur in the Fourier domain without any power threshold [38]. High-quality compressed wave 

packets with a Gaussian shape and nearly constant phase, and without residual pedestals, can be 

obtained at maximal compression distance, as shown in Fig. 6. Empirical relations giving the 

optimal fiber length and average input power as a function of the azimuthal index difference ∆𝑙𝑙 of 

the source and the fiber dispersion were adapted from previous works in the time domain (see Ref. 

[39]). Here we obtained the following simulation parameters: 𝐿𝐿opt = 4𝜋𝜋2/(14𝐾𝐾2∆𝑙𝑙2 ) = 2.7 mm, 

and 𝑃𝑃opt = 16𝐾𝐾2∆𝑙𝑙2/4𝛾𝛾𝜋𝜋2 = 51 kW, respectively. By increasing the index difference between the 

topological charges of the CW pumps involved, one can also generate pedestal-free periodic spots 

along the azimuthal coordinate. It is also worth to note the continuous rotation of the OAM wave 

packet along the azimuthal coordinate due to the initial asymmetric pumping with respect to 𝑙𝑙 = 0. 

The period of rotation is equal to 2𝜋𝜋/|𝐾𝐾𝑧𝑧(𝑙𝑙 = 1) − 𝐾𝐾𝑧𝑧(𝑙𝑙 = 0)| = 12 mm. Note here the small 

rotation period observed in this ring-core fiber compared to standard step-index MMF [19], due to 

the large separation of propagation constants. 

 

 

Figure 6. Azimuthal nonlinear compression from a simple dual-OAM beat signal. (a-b) 

Evolution of spatial and spectral power profiles along propagation distance, respectively. (c-

d) Corresponding simulated profiles at maximal compression distance, namely at 2.7 mm, and 

compared with a Gaussian fit. Input wave profile and spectrum are indicated with black dashed 

line and black crosses in subplots (c) and (d), respectively. (e-f) Output normalized fluence 

and phase distributions in space at maximal compression, respectively.  



 

4 Discussion 

Our above results confirm that well-known nonlinear wave dynamics described by a 1D+1 spatial 

NLS equation can be easily retrieved in the transverse plane of a vortex ring-core fiber by means 

of OAM modes. Azimuthal MI was investigated in both spontaneous and seeded regimes. Non-

ideal excitations or exact shaping of NLS solutions were also investigated successfully. In some 

cases, simple approximate input waves were specifically used for practical reasons, in terms of 

shaping and superposition of OAM modes, to encourage future experimental works. Different 

kinds of 2D-spatial shaping techniques could be used such as simple vortex plates but also 2D 

spatial light modulators to tailor and manipulate input OAM modes [25-26]. One specific 

requirement to observe the above transverse nonlinear dynamics was the use of high-power 

continuous or quasi-continuous waves (beyond tens of kW), in particular with the silica-based fiber 

under consideration. This power range is slightly above that of recent (time-domain) MI 

experiments in multimode gradient-index fibers [40]. In practice, most of previous MI experiments 

(even in single-mode fibers) made use of nanosecond pulse lasers that deliver high peak power and 

long enough pulses to facilitate the study of MI processes with various optical fibers and parameter 

regimes. Here, one could also consider some compact passively Q-switched solid-state lasers or 

ytterbium fiber lasers in the nanosecond pulse regime that produce peak powers of hundreds of kW 

in the 1-µm waveband. Therefore, particular attention might be paid to the fiber damage threshold. 

For simplicity, we neglected the vector nature of guided OAM modes in the ring-core fiber 

under study (see Fig. 1) to provide the simplest description of nonlinear dynamics. However, such 

a fiber is commonly developed for allowing the propagation of OAM-carrying modes with 

extremely low cross-talks over long distances, since they lift degeneracy sufficiently to enable 

mode coupling free propagation [25,41]. An exact vector modal analysis of the ring-core fiber 

would divide the guided modes into two distinct groups of modes with orthogonal (spatially-

dependent) polarization patterns. Each mode within a group is characterized by a distinct total 

angular momentum 𝑗𝑗𝑙𝑙, as the sum of the spin (𝑠𝑠) and angular (𝑙𝑙) momenta, and involves both 

circular polarization contributions |𝜎𝜎±� (with opposite spin index 𝑠𝑠 = ±1) [42]. The corresponding 

vector modes of both groups can be written as follows [42]: 

 



|Φ±,𝑗𝑗𝑙𝑙� = 𝐹𝐹(𝑟𝑟)𝑒𝑒𝑖𝑖(𝑗𝑗𝑙𝑙−1)𝜃𝜃 �
cos𝛼𝛼𝑗𝑗𝑙𝑙 𝑒𝑒2𝑖𝑖𝜃𝜃 sin𝛼𝛼𝑗𝑗𝑙𝑙
sin𝛼𝛼𝑗𝑗𝑙𝑙 −𝑒𝑒2𝑖𝑖𝜃𝜃 cos𝛼𝛼𝑗𝑗𝑙𝑙

� �|𝜎𝜎+⟩
|𝜎𝜎−⟩

�       (4) 

 

where 𝛼𝛼𝑗𝑗𝑙𝑙 accounts for the relative amplitude contribution of the two circular polarization 

components for modes embedding a total angular momentum 𝑗𝑗𝑙𝑙. As an example, here the 

fundamental vector mode |Φ+,𝑗𝑗𝑙𝑙=0� of the ring-core fiber is characterized by 𝑗𝑗𝑙𝑙=0 and azimuthally 

polarized (i.e., TE mode), it then involves two OAM values: 𝑙𝑙 = 𝑗𝑗𝑙𝑙 − 1 with |𝜎𝜎+⟩, and 𝑙𝑙 = 𝑗𝑗𝑙𝑙 − 1 +

2 with |𝜎𝜎−⟩. We refer the reader to Ref. [42] for a deeper vector modal analysis of such a ring-core 

fiber. The main features can be summarized as follows: (i) vector modes of the same group but 

with opposite 𝑗𝑗𝑙𝑙 index have exactly the same effective refractive index, (ii) all modes almost share 

the same radial power distribution as in the scalar approach, and (iii) both vector and scalar 

approaches give a similar anomalous rotation group-velocity dispersion, thus giving rise to a 

focusing nonlinear propagation regime. As a consequence, similar modulation instability and 

breather-like dynamics were also observed numerically by means of a multimode vector nonlinear 

propagation solver. Besides, it is worth to mention that the polarization of the vector modes 

gradually tends to a pure circular polarization as the  𝑗𝑗𝑙𝑙 value increases, thus reducing the nonlinear 

vector couplings.  

All this corroborate our approximate scalar analysis provided in preceding sections since the 

signatures of scalar nonlinear dynamics might be somehow recovered beyond the intrinsic vector 

couplings. It is always an asset to have a scalar approach for providing some important physical 

insights before the development of future experimental works. Obviously, an accurate vector 

nonlinear modeling approach will be necessary for giving a complete physical picture as the one 

introduced recently in Ref. [42], but it would involve more complex theoretical developments than 

those employed here with the integrable NLS equation.  

 

5 Conclusion 

In summary, we studied the existence of transverse nonlinear dynamics in an optical fiber 

supporting orbital angular momentum modes only, i.e. a vortex ring-core fiber, by means of the 

scalar multimode unidirectional pulse propagation equation. In particular, we demonstrated that 

azimuthal modulation instability can take place in such a fiber, with anomalous rotation group-



velocity dispersion, and it can be described by analytical breather solutions of the corresponding 

nonlinear Schrödinger equation. Vortex soliton dynamics, nonlinear beam compression, and four-

wave mixing processes between OAM modes were also confirmed as possible nonlinear 

phenomena in such a fiber. The possibility of making use of an integrable 1-D NLS equation of 

studying 2D nonlinear waves offers a multitude of further developments based on the whole family 

of NLS solutions. Fundamental instabilities and recurrent oscillations within the nonlinear 

propagation of OAM modes could be investigated [43]. Our results also open a new route for 

studying transverse nonlinear waves in optical fibers, but it also provides an interesting alternative 

to current fiber solutions [44] in order to manipulate OAM states and signals, in particular by means 

of nonlinear OAM converters and amplifiers through the above-studied parametric process. 
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