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In this article, we present an efficient numerical model able to solve the vectorial nonlinear pulse propa-
gation equation in circularly symmetric multimode waveguides. The algorithm takes advantage of the
conservation of total angular momentum of light upon propagation and takes into account the vectorial
nature of the propagating modes, making it particularly relevant for studies in ring-core fibers. While
conventional propagation solvers exhibit a computational complexity scaling as N4

mode where Nmode is
the number of considered modes, the present solver scales as N3/2

mode. As a first example, it is shown that
orbital angular momentum modulation instability processes take place in ring-core fibers in realistic
conditions. Finally, it is predicted that the modulation instability process is followed by the appearance of
breather-like angular structures. © 2024 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Advancements in optical fiber technology have sparked renewed
interest in the potential use of multimode waveguides to address
limitations inherently associated with monomode propagation.
The abundance of potential waveguide architectures now avail-
able opens doors to exploring an extremely rich variety of prop-
agation dynamics [1, 2]. Solitons [3–8] and associated resonant
radiations through geometric parametric instabilities [9], invari-
ant space-time wavepackets [10–14], self-cleaning [15, 16] and
related condensation/thermalization [17–22] phenomena are
some nonlinear fascinating effects, among others, taking place
in multimode fibers that have been intensively studied during
the last few years. Beside these nonlinear phenomena, the use of
multimode fibers for increasing the number of data-transmitting
channels lets envision the possibility to overcome the expected
data-carrying capacity crunch of single-mode fibers. In this
regard, specially designed multimode optical fibers, called ring-
core fibers, have been developed so as to minimize spatial-mode
couplings [23–25]. The originality of these fibers lies in the modal
content they support. First, contrary to conventional multimode
fibers, these fibers only support one single kind of ring-shaped
radial modes (p-modes) with well separated propagation con-
stants, which has the advantage to strongly limit mode coupling.
The other strong advantage of the latter property is that this re-
duces the initially full 3D+1 problem ([r, θ, t, z], where (r, θ, z) are
the cylindrical coordinates, z being the direction along which the
light propagates, and t stands for time) into a far simpler 2D+1
(θ, t, z) problem. In a theoretical point of view, this dimensional-
ity reduction lets envision the possibility to study the existence

of new kind of solutions, otherwise impossible to find in more
complex waveguides. Another important property of the modes
supported by these fibers is that they are also eigenvectors of
the total angular momentum (TAM) operator. This is in fact
true not only for ring-core fibers but also for any circularly sym-
metric waveguides. However, the peculiarity of the ring-core
fiber modes lies in their polarization content. While modes of
conventional fibers are in very good approximation circularly
polarized (excepted for the special case of transverse-electric
and transverse-magnetic modes), the ones of ring-core fibers are
extremely vectorial [26], i.e., their polarization contents strongly
vary within their transverse sections. Theoretically speaking, the
immediate consequence of this point is that scalar propagation
equation does not hold anymore in such a system. Accordingly,
if one wants to simulate the (nonlinear) propagation within these
fibers, one necessarily has to use vectorial propagation solvers,
which obviously increases the complexity of the simulations.
The latters can become strongly computationally demanding, in
particular when the waveguide is massively multimode. In this
context, it is then of paramount importance to develop fast and
accurate full vectorial models able to capture as close as possible
the nonlinear propagation dynamics in waveguiding structures
potentially supporting hundreds of modes.
Recently, we developed a numerical algorithm able to efficiently
solve the scalar version of the nonlinear unidirectional pulse
propagation equation (UPPE) [10]. This algorithm, valid in the
weak guidance approximation, was shown to be not only more
accurate since based on UPPE, but also far faster [27] than the
classical algorithm solving the multimode generalized nonlin-
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ear Schrödinger equation (MM-GNLSE), even if the latter was
massively parallelized [28]. This is because the complexity of
MM-GNLSE scales approximately as N4 [29], where N is the
number of modes to handle while, as shown below, the devel-
oped algorithm approximately scales as N3/2. Note however,
that the superiority of our algorithm on MM-GNLSE ones in
terms of calculation speed only holds when the number of modes
becomes higher and higher. In this article, we present a vectorial
version of our algorithm that remains valid beyond the weak
guidance approximation, i.e., that takes into account the vecto-
rial nature of the modes. We restrict this study to waveguides
presenting a cylindrical symmetry around the propagation axis.
In the first section, after recalling the propagation equation, we
discuss the general properties of vectorial modes and their inti-
mate link with the TAM of light. In particular, we will show how
the conservation of TAM in circularly symmetric waveguide can
be advantageously used for constructing a fast-modal transform,
i.e., a transformation allowing to go back and forth between a
modal representation of the field and its representation in the di-
rect space. In the second section, we will present the developed
algorithm for solving in an efficient way the vectorial nonlinear
UPPE equation. Finally, in the last section we will present a
numerical example. In particular, it is predicted, for the first
time, that a moderately intense continuous field propagating
in a ring-core fiber can evolve towards an angular breather-like
structure.

2. LINEAR PROPAGATION EQUATION AND MODE
STRUCTURE OF CIRCULARLY SYMMETRIC WAVEG-
UIDES

A. Propagation equation

We consider here an isotropic non-magnetic medium without
current and charges, whose linear susceptibility χ(1) is inhomo-
geneous in space. At this point, since this section is devoted to
study the modal structure of waveguides, we consider a linear
propagation regime. The Maxwell’s equations read:

−→∇ ×−→
E = −∂t

−→
B ,

−→∇ · −→D = 0
−→∇ ×−→

B = µ0∂t
−→
D ,

−→∇ · −→B = 0,
(1)

where µ0 is the vacuum permeability,
−→
E and

−→
B are the electric

and magnetic fields respectively. In the frequency space, the

electric displacement field
−→̃
D respects

−→̃
D = ϵ0n2−→̃E , (2)

where n =
√

1 + χ(1) is the frequency- and spatially-dependent

refractive index and ϵ0 is the vacuum permittivity. Since
−→̃
D has

a divergence equal to zero, it implies:

−→∇ ·
−→̃
E = −−→∇

[
log
(

n2
)]

·
−→̃
E . (3)

The electric field propagation equation then reads in the fre-
quency space

−→
□
−→̃
E =

−→
0 , (4)

with
−→
□
−→̃
E = ∇2−→̃E +

n2ω2

c2

−→̃
E +

−→
S [

−→̃
E ], (5)

where ω is the angular frequency, c is the speed of light in vac-
uum, and

−→
S [

−→̃
E ] =

−→∇
[−→∇ (

log n2
)
·
−→̃
E
]

. (6)

For a circularly symmetric waveguide (supposed homogeneous
all along z), the refractive index only depends on r in the cylin-
drical coordinates system (r,θ,z) and, for simplicity, we define
f (r) = log n2. In this case, one has

−→∇ f (r) = ∂r f (r)−→e r. (7)

so that

−→
S [

−→̃
E ] =

−→∇
(−→∇ f ·

−→̃
E
)
=


∂2

r f Ẽr + ∂r f ∂r Ẽr

1
r ∂r f ∂θ Ẽr

∂r f ∂z Ẽr

 , (8)

where the electric field
−→̃
E is decomposed in cylindrical coordi-

nates as −→̃
E = Ẽr

−→e r + Ẽθ
−→e θ + Ẽz

−→e z. (9)

Physically speaking, the operator
−→
S [

−→̃
E ] is directly related to the

spin-orbit coupling phenomenon, as we will discuss a bit latter.

B. Total angular momentum of light: eigenvectors and eigen-
values

Let us consider the operators Lz and Sz acting on the electric
field as:

Lz = −i
∂

∂θ
Id, Sz = i

0 −1

1 0

 , (10)

where Id is the two-dimensional identity matrix, and θ the polar
angle. The operator Lz (resp. Sz) corresponds to the projection
along z of the orbital (resp. spin) angular momentum of light.
They can be seen as infinitesimal generators of rotations around
the z axis of the field amplitude and polarization, respectively.
While the eigenvectors of Sz correspond to the left and right
circularly polarized fields (|σ+⟩, |σ−⟩) with respective eigenval-
ues (1,−1), the eigenvectors of Lz are fields owing an helical
wavefront eiℓθ (ℓ ∈ Z) with eigenvalues ℓ.
If one now considers the TAM of light, any eigenvectors of
Jz = Lz + Sz write

|Φjℓ ⟩ = eiℓθ
[

a+|σ+⟩+ a−e2iθ |σ−⟩
]

, (11)

with corresponding eigenvalues jℓ = ℓ+ 1 (ℓ ∈ Z) and (a+, a−)
the respective complex amplitudes of the two circularly polar-
ized components. In particular, for a given jℓ, one can define the
two orthonormal eigenvectors |Ψ±,jℓ ⟩

|Ψ±,jℓ ⟩ =
eiℓθ

√
2

[
|σ+⟩ ± e2iθ |σ−⟩

]
, (12)

that form a bi-dimensional basis of representation of any eigen-
vectors of Jz with corresponding eigenvalue jℓ = ℓ + 1. In
particular, one has:

|Φjℓ ⟩ =
(

a+ + a−√
2

)
|Ψ+,jℓ ⟩+

(
a+ − a−√

2

)
|Ψ−,jℓ ⟩. (13)

It is also interesting for the following to express |Ψ±,jℓ ⟩ in cylin-
drical coordinates (−→e r,−→e θ):

|Ψ+,jℓ ⟩ = eijℓθ−→e r, |Ψ−,jℓ ⟩ = ieijℓθ−→e θ . (14)
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C. Total angular momentum eigenvectors: an orthonormal
basis for representing the electric field

First, one has to emphasize that analysing only the transverse

part of the field
−→̃
E ⊥(r, θ) is sufficient at this stage. This is be-

cause, first, the longitudinal part of the field
−→̃
E z can be retrieved

using the divergence constraint (Eq. 3) and secondly, because
this component is generally speaking extremely weak in fibers.

For simplicity, we will then use the shorthand notation
−→̃
E for the

transverse part. Moreover, note that all derivations made below
apply in the frequency domain. However, we will omit when
not necessary the notation specifying that the field is expressed
in the frequency domain.
Since the electric field is intrinsically angularly 2π periodic, both
circularly polarized field components can be decomposed as a
Fourier series in polar angle:

−→
E (r, θ) = ∑

ℓ

a+,ℓ(r)e
iℓθ |σ+⟩+ a−,ℓ(r)e

iℓθ |σ−⟩. (15)

In cylindrical coordinates, it writes

−→
E (r, θ) = ∑

ℓ

a+,ℓ(r)√
2

ei(ℓ+1)θ (−→e r + i−→e θ

)
+ ∑

ℓ

a−,ℓ(r)√
2

ei(ℓ−1)θ (−→e r − i−→e θ

)
,

(16)

which can be recast as
−→
E (r, θ) = ∑

jℓ

A+,jℓ (r)|Ψ+,jℓ ⟩+ A−,jℓ (r)|Ψ−,jℓ ⟩, (17)

with A±,jℓ (r) =
a+,ℓ(r)±a−,ℓ+2(r)√

2
. The eigenvectors |Ψ±,jℓ ⟩ hence

form an orthonormal basis, any electric field being represented
as a unique weighted sum of TAM eigenvectors.

D. Spin-orbit coupling
Spin-orbit coupling [30] can be highlighted by looking at the ac-
tion of the operator

−→
S on a circularly polarized field embedding

a well defined orbital angular momentum. Let us consider a
circularly polarized electric field

−→
E (|σ±⟩,ℓ) embedding an orbital

angular momentum ℓ.

−→
E (|σ±⟩,ℓ) = A(r)eiℓθ |σ±.⟩ (18)

In cylindrical coordinates, the electric field components (Er, Eθ)
write

Er (|σ±⟩, ℓ) = A(r)ei(ℓ±1)θ ,

Eθ (|σ±⟩, ℓ) = ±iA(r)ei(ℓ±1)θ .
(19)

Injecting Eq. 19 in Eq. 8, one has

−→
S
[−→

E (|σ±⟩,ℓ)
]
=

∂2
r f A(r) + ∂r f ∂r A(r)

i(ℓ±1)
r ∂r f A(r)

 ei(ℓ±1)θ . (20)

The vector
−→
S can be finally projected back in the circular polar-

ization basis:

S|σ+⟩ =
Sr − iSθ√

2
e−iθ

S|σ−⟩ =
Sr + iSθ√

2
eiθ ,

(21)
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Fig. 1. Refractive index profile of the air-core fiber used in the
present example (a) and propagation constants as a function
of the TAM jℓ of the vectorial modes (b). Only one group of
radial modes is guided within the ring (blue squares and red
circles) while the second (and higher) order radial modes are
not (orange diamonds and green stars). The modes depicted
as blue squares and red circles differ by their distinct polariza-
tion patterns. Panel (c) displays the second-order derivative of
the guided modes propagation constants with respect to jℓ.

where Sr (resp. Sθ) is the component along −→e r (resp. −→e θ) of
−→
S given in Eq. 20. One then notices that the term

−→
S induces a

spin-orbit coupling through the refractive index gradient. More
particularly, for a circularly polarized electric field (|σ±⟩), the
component of opposite helicity (i.e., along |σ∓⟩) of

−→
S is

S|σ∓⟩ =
∂2

r f A(r) + ∂r f ∂r A(r)∓ ℓ±1
r ∂r f A(r)

√
2

ei(ℓ±2)θ . (22)

One can readily deduce the following selection rules that apply
in circularly symmetric media:

(|σ+⟩, ℓ)
−→
S→ (|σ−⟩, ℓ+ 2) ,

(|σ−⟩, ℓ)
−→
S→ (|σ+⟩, ℓ− 2) ,

(23)

The operator
−→
S then does not conserve neither the spin nor

the orbital angular momentum on their own but nevertheless
conserves the projection along the z axis of the TAM operator
J = L+ S as we discuss now.
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Fig. 2. Electric field transverse profiles of the 7 first modes of the first group. Each column corresponds to a mode of well-defined
TAM. The first row depicts the radial intensity profile of the circular left (solid blue) and right (dashed red) polarization component
of the mode. The middle (resp. bottom) row depicts the spatial phase profile of the circular left (resp. right) component of the
mode.

E. Total angular momentum conservation in circularly symmet-
ric media

The conservation of TAM can be highlighted by looking at the
action of the propagation operator

−→
□ (Eq. 5) on an electromag-

netic field embedding a well defined TAM jℓ. In this regard,
it is sufficient to express the propagation equation for the two
orthonormal eigenvectors of the TAM (Eq. 12). As described
previously (Eq. 4), the propagation equation of the electric field

spectrum
−→̃
E in a non-magnetic, inhomogeneous, isotropic and

linear medium reads −→
□
−→̃
E =

−→
0 . (24)

Let us now consider the following two fields
−→̃
E ±,jℓ

−→̃
E ±,jℓ = A±,jℓ (r)|Ψ±,jℓ ⟩e

iKzz, (25)

that own the same TAM jℓ. Injecting them into Eq. 4, one obtains

∇2−→̃E ±,jℓ +
n(r)2ω2

c2

−→̃
E ±,jℓ = D+,jℓ

[
A±,jℓ (r)

]
eiKzz|Ψ±,jℓ ⟩

+D−,jℓ

[
A±,jℓ (r)

]
eiKzz|Ψ∓,jℓ ⟩,

(26)

with

D+,jℓ =

(
∂2

r +
1
r

∂r −
j2ℓ + 1

r2 +
n(r)2ω2

c2 − K2
z

)
,

D−,jℓ =
2jℓ
r2 .

(27)

and, in the case of circularly symmetric inhomogeneous media,

−→
S [

−→̃
E +,jℓ ] = S+,jℓ [A±,jℓ (r)]e

iKzz|Ψ±,jℓ ⟩

+ S−,jℓ [A±,jℓ (r)]e
iKzz|Ψ∓,jℓ ⟩,

−→
S [

−→̃
E −,jℓ ] =

−→
0 .

(28)

with

S+,jℓ = ∂2
r f + ∂r f ∂r,

S−,jℓ =
ℓ+ 1

r
∂r f .

(29)

The action of the propagation operator hence couples only states
owing the same TAM, confirming thereby that the propagation
operator

−→
□ preserves the TAM of light. Other said, the electro-

magnetic fields that are invariant at a given absolute phase over
the propagation (i.e., optical modes) in circularly symmetric in-
homogeneous media are also necessarily eigenvectors of TAM.
This remark then implies that optical modes necessarily take the
following functional form

−→
E mode(r, θ, z) =

(
A+,jℓ (r)|Ψ+,jℓ ⟩+ A−,jℓ (r)|Ψ−,jℓ ⟩

)
eiKzz,

(30)
which can be recast in cylindrical coordinates as

−→
E mode(r, θ, z) = eijℓθ

[
Ar,ℓ(r)

−→e r + iAθ,ℓ(r)
−→e θ

]
eiKzz. (31)

Before presenting how the radial part of the modes can be evalu-
ated, it is interesting to have a close look on the structure of the
matrix coupling |Ψ+,jℓ ⟩ and |Ψ−,jℓ ⟩. Schematically, according to
Eqs. (27-28), the coupling matrix Cjℓ has the following form:

Cjℓ =

d+ + S+ − j2
ℓ

r2 jℓd−

jℓ (d− + s−) d+ − j2
ℓ

r2

 , (32)

where d+ = ∂2
r +

1
r ∂r − 1

r2 + n(r)2ω2

c2 , d− = 2
r2 , and s− = 1

r ∂r f .
Calculating the optical modes amounts to solve the equation
system Cjℓ |ϕjℓ ⟩ = K2

z |ϕjℓ ⟩, where |ϕjℓ ⟩ is an eigenvector of Cjℓ
(and consequently a mode of the waveguide) and K2

z is its asso-
ciated eigenvalue that corresponds to the square of the modal
propagation constant. First, it is clear that the determinant of
Cjℓ only depends on j2ℓ . As a consequence, the modal propaga-
tion constants will not depend on the sign of jℓ. This essential
degeneracy, linked to the system symmetry, reflects that there is
no preferential rotation direction for the field. Moreover, for not
too strong refractive index gradient, one has S ≪ D. Looking at
Eq. 32 for jℓ ̸= 0, in the limiting case S → 0, optical modes will
tend to the following functional forms:

−→
E mode(r, θ, z) ≃ A(r)eijℓθ

[−→e r ± i−→e θ

]
eiKzz,

≃ A(r)ei(jℓ∓1)θeiKzz|σ±⟩.
(33)
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The modes jℓ ̸= 0 are then in good approximation circularly
polarized owing a well defined orbital angular momentum. Note
that this last remark only holds for fiber exhibiting a not too
strong refractive index gradient, such as conventional fibers.
This is not the case, for instance, for ring-core fibers, as we will
discuss a bit later. On the contrary, when jℓ = 0, |Ψ+,0⟩ and
|Ψ−,0⟩ are not coupled anymore. They are thus eigenvectors of
the propagation equation but do not share the same eigenvalue,
excepted in the bulk case. The modes for jℓ = 0 will then be
either radially (i.e., along −→e r) or azimuthally (i.e., along −→e θ)
polarized:

−→
E +,jℓ=0(r, θ, z) = Ar(r)eiKrz−→e r,
−→
E −,jℓ=0(r, θ, z) = Aθ(r)eiKθ z−→e θ ,

(34)

with Kr ̸= Kθ . The next section is now devoted to describe how
the modal transverse profile can be calculated efficiently.

F. Determination of the radial distribution of the modes
As discussed before, optical modes of circularly symmetric
waveguides are necessarily eigenvectors of the TAM operator so
that their general functional forms follow Eq. 31. One has to em-
phasize here that the refractive index derivatives appearing in
Cjℓ has to be understood in the sense of distributions that make
possible to differentiate functions whose derivatives do not ex-
ist in the classical sense. This point is of particular importance
when one deals with step index fibers whose refractive index
profiles exhibit discontinuities. As far as the radial distribution
of the modes is concerned, it can be numerically evaluated for
any refractive index distribution by using a convenient repre-
sentation basis for the radial dimension. Note again that this
procedure has to be repeated, if needed, for every frequencies
independently. As it was done in our previous scalar algorithm
[10], we decided here to use a radial basis set composed of zero
order Bessel functions J0(k⊥r). The main advantage of such a
choice is that it is extremely easy to go back and forth between a
direct space representation of the field and its representation in
the Bessel basis (through a fast Hankel transform with its related
unitary transformation matrix H [31]). In the present case, the
basis set used for the calculation is then composed of vector
field functions B that follow the general functional form given
in Eq. 31

B = eijℓθ
[

J0 (k⊥r)−→e r + i J0
(
k′⊥r

)−→e θ

]
. (35)

Numerically speaking, the theoretically infinite and dense Bessel
basis becomes finite and discrete. This is because a finite and
discrete number of radial points is used. As a result, sampling
the radial part of each field polarization component with Nr
spatial points implies the use of a Bessel radial basis containing
Nr vectors. The numerical procedure for calculating the optical
modes consequently amounts, for any given TAM jℓ, to diago-
nalize Cjℓ expressed in the basis B and whose dimension is 4N2

r
(the factor 4 coming from the fact that the subspace associated
to a given jℓ is bi-dimensional). The diagonalization returns 2Nr
orthonormal eigenvectors vjℓ that form an orthonormal basis
Beig(jℓ). The matrix Vjℓ , filled with the coordinates of the eigen-
vectors vjℓ in the basis B, is then the transformation matrix from
B to Beig(jℓ). As a result, once an electric field is decomposed in
the basis B (which corresponds to the Hankel transform of the
radial profiles of both polarization components), it is extremely
easy to describe it in the modal basis. In the following section,
we will see in more details how this can be done numerically in
an efficient way.

G. Fast modal transform

Let us assume that the electric field
−→
E to be decomposed in

the eigenbasis is initially written in the direct space (in polar
coordinates) and in the circular polarization basis

−→
E (r, θ) = a+(r, θ)|σ+⟩+ a−(r, θ)|σ−⟩. (36)

Note that, numerically speaking, the coordinates (r and θ) are
sampled with a number of points Nr and Nθ respectively. For
simplicity, the field is written as a matrix of dimension 2Nr × Nθ ,
where the first (resp. last) Nr rows correspond to the left (resp.
right) circular polarization component. Note that the angular
sampling implies that only a finite number of TAM values is

considered (jℓ ∈
[
− Nθ

2 , Nθ
2 − 1

]
). The field can be easily recast so

as to be written along the vectors −→e r and −→e θ with the following
transformation T

−→
E (r, θ) = ar(r, θ)−→e r + iaθ(r, θ)−→e θ , (37)

with

ar(r, θ) =
eiθ a+ + e−iθ a−√

2
, aθ(r, θ) =

eiθ a+ − e−iθ a−√
2

. (38)

One can now decompose the two field components as an angu-
lar Fourier series

−→
E = ∑

jℓ

ejℓθ
[

ar,jℓ (r)
−→e r + iaθ,jℓ (r)

−→e θ

]
−→
E = ∑

jℓ

ar,jℓ (r)|Ψ+,jℓ ⟩+ aθ,jℓ (r)|Ψ−,jℓ ⟩ ,
(39)

where the coefficients ar,jℓ and aθ,jℓ are easily obtained by mak-
ing a fast Fourier transform FFTθ of the field matrix along the
second dimension (i.e., along θ). After this operation, the field is
represented, at each r, in the basis of the TAM operator (Eq. 14).
Numerically speaking, the Jth column (of length 2Nr) of the ma-

trix representing the field is then now
[

ar,jℓ(J), aθ,jℓ(J)

]
. If one

now wants to express the field in the modal basis, the last re-
maining operation is to multiply each column by the matrix
Mjℓ = Vjℓ H, where H is the Hankel transform unitary matrix
[31]. Note that the matrix Mjℓ to use is not the same for each
column (i.e., for each jℓ). Numerically speaking, it is then ad-
vantageous to reshape at this point the field matrix as a column
vector (of length 2Nr Nθ) and define a sparse block diagonal
matrix M (of dimension 4N2

r N2
θ ) that is defined as

M =


Mj1 (0) (0)

(0)
. . . (0)

(0) (0) MjNθ

 (40)

Doing so avoids a numerically heavy loop over jℓ and allows to
express the field in the modal basis for every jℓ at once. After
the operation, the field is expressed in the modal basis and can
be reshaped back into a 2Nr × Nθ matrix. The global operation
for going from the real space to the modal basis finally reads

Ē (p, jℓ) = R−1
2 MR2

(
FFTθ

[
T
−→
E (r, θ)

])
, (41)

where R2 is the numerical operation for transforming the 2D
matrix into a column vector and Ē (p, jℓ) is the electric field
expressed in the modal basis. Equation 41 constitutes the fast



Research Article Journal of the Optical Society of America B 6

Fig. 3. Electric field transverse profiles of the 7 first modes of the second group. Each column corresponds to a mode of well-
defined TAM. The first row depicts the radial intensity profile of the circular left (solid blue) and right (dashed red) polarization
component of the mode. The middle (resp. bottom) row depicts the spatial phase profile of the circular left (resp. right) component
of the mode.

modal transform that allows to go back and forth from the real
space to the modal space. Note that, we considered here that
the initial field was monochromatic. When dealing with pulsed
fields, the transformation described above as to be performed in
the frequency domain since the transformation matrix (Eq. 40)
obtained during the diagonalization is now frequency depen-
dent and denoted hereafter Mω . In this case, the modal trans-
form of a field

−→
E (r, θ, t) reads

Ē (p, jℓ, ω) = R−1
3 MωR3

(
FFTθ

[
FFTt

(
T
−→
E (r, θ, t)

)])
, (42)

where FFTt is the one-dimensional fast Fourier transform op-
erated along the time dimension, R3 stands for the numerical
operation transforming the 3D matrix representing the field into
a column vector, and Mω is the following sparse block diagonal
transformation matrix (of dimension 4N2

r N2
θ N2

t , where Nt is the
number of sampling points used in the time domain):

Mω =


Mω1 (0) (0)

(0)
. . . (0)

(0) (0) MωNt

 (43)

The modal transform described above can be used for projecting
any vector field distributions in the modal basis. As we will
see later, it will be particularly useful for solving the nonlinear
unidirectional pulse propagation equation.

H. Numerical example
For the present example, we consider an air-core fiber whose (cir-
cularly symmetric) refractive index profile is depicted Fig. 1(a).
Such kind of fiber is now well-known for allowing the prop-
agation of modes embedding orbital angular momenta with
extremely low cross-talks over long distances. We consider for
this example a wavelength of 1.035µm. We used 250 (resp. 64)
points for sampling the radial (resp. angular) coordinate, mean-
ing that a total of 32000 modes (guided in the ring-core or not)
have been calculated. As shown in Fig. 1(b), among all modes
calculated, the considered fiber supports a total of 62 modes
guided within the ring-core, all belonging to the same group of

radial modes. The guided modes can be divided into two dis-
tinct groups of modes, whose (spatially-dependent) polarization
patterns are orthogonal. Each mode belonging to a particular
group of modes has a distinct TAM jℓ. Note that modes of the
same group but with opposite TAM own exactly the same ef-
fective refractive index. Figure 2 (resp. Fig. 3) depicts the seven
first guided modes of the first (resp. second) polarization group.
As shown, all modes share almost the same radial distribution.
Moreover, they are characterized by their strong vectorial nature,
i.e., their spatially-depend polarization pattern. However the
polarization of the modes gradually approaches to a pure circu-
lar polarization as the TAM value increases. This can be seen by
noticing that the amplitude of one polarization component, rela-
tively to the other, becomes weaker and weaker as the TAM |jℓ|
increases. As far as the phase spatial distribution is concerned
(middle and bottom rows), one retrieves the expected signa-
ture of fields owing a well-defined TAM (Eq. 11). After having
presented the algorithm for calculating the modes, their associ-
ated propagation constants and the modal transform, one can
now describe how to solve the unidirectional pulse propagation
equation.

3. NUMERICAL ALGORITHM FOR SOLVING THE NON-
LINEAR UNIDIRECTIONAL PULSE PROPAGATION
EQUATION

A. Nonlinear unidirectional pulse propagation equation
When nonlinear effects are taken into account, the electric dis-
placement field

−→
D reads in the frequency domain
−→̃
D = ϵ0

(
1 + χ(1)

)−→̃
E +

−→̃
P NL, (44)

where
−→
P NL is the nonlinear polarization. The divergence of the

electric field then now verifies

−→∇ ·
−→̃
E = −

−→∇ (
log n2

)
·
−→̃
E +

−→∇ ·
−→̃
P NL

ϵ0n2

 , (45)

where n =
√

1 + χ(1) is the linear refractive index. As a result,
the nonlinear propagation equation now reads in the frequency
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Fig. 4. Computation time per propagation loop as a function
of the number of radial (solid blue) and angular (dashed red)
points. The solid blue (resp. dashed red) curve has been calcu-
lated with Nθ=16 (resp. Nr=250).

domain

−→
□
−→̃
E = −ω2

−→̃
P NL

ϵ0c2 −
−→∇
(−→∇ ·

−→̃
P NL

)
ϵ0n2 , (46)

with
−→
□ the operator defined in Eq. 5. If one projects this equation

on the modal space (i.e., on the basis composed of the vectorial
modes of the linear propagation equation) and neglecting the
backward field, one obtains the nonlinear UPPE equation

∂z Ē = iKz Ē +
i

2ϵ0Kz

ω2P̄NL

c2 +

−→∇
(−→∇ · −→P NL

)
n2


 , (47)

where Ā stands for the decomposition of a three-dimensional
vector field

−→
A on the modal basis and Kz is the associated prop-

agation constant. Note here that Eq. 47 takes into account both
the transverse field and its associated longitudinal component
(i.e., the field component polarized along z). For a more detailed
derivation of the nonlinear unidirectional pulse propagation
equation, we invite the reader to refer to [32]. In the context of
propagation within an optical fiber, a fair approximation is to
neglect the last term in Eq. 47, and also the longitudinal com-
ponent of the field since this part remains generally small as
compared to its transverse part. As a result, its contribution to
the nonlinear polarization will be neglected. As a result, we
will now consider that the field is in fair approximation purely
transverse (i.e., contained in the [r, θ] plane). However, one has
to keep in mind that these approximations break when the field
embeds modes that have propagation constants far smaller than
the propagation constant in bulk (Kz ≪ nω

c ).

B. Complex envelope equation
Most of the time, it is more convenient to deal with a propagation
equation acting on the complex envelope of the field. This is
done by defining the complex field −→ε as

−→
E =

−→ε +
−→
ε∗

2
. (48)

For convenience, we also introduce the vector field
−→
ξ as

−→
ξ =

√
2

ϵ0cn
−→ε , (49)

so that the total intensity I reads

I =
−→
ξ ·

−→
ξ∗ . (50)

In the context of optical fiber propagation, we consider that the
medium is in good approximation isotropic, at least, in a micro-
scopic point of view. In this regard, the number of independent
elements of the third-order nonlinear susceptibility tensor χ(3)

reduces to one.We can consequently define an unique nonlinear
refractive index n2 as

n2 =
3χ

(3)
xxxx

4ϵ0cn2
0

, (51)

where n0 is the bulk refractive index taken at the central fre-
quency of the considered field. Neglecting the term responsible
for third harmonic generation and considering at this point a
pure electronic instantaneous Kerr effect, the nonlinear polariza-
tion reads in the circular polarization basis

−→
P NL =

2n0n2
3

[|ξ+|2 + 2|ξ−|2
]

ξ+[
2|ξ+|2 + |ξ−|2

]
ξ−

 , (52)

where ξ+ (resp. ξ−) is the left (resp. right) circular component of
−→
ξ . Note that, if needed, the Raman-induced contribution to the

nonlinear polarization can also be added. As one can remark,
the nonlinear polarization term is easily calculated in the direct
space (and in the circular polarization basis). Finally, it is of
common use to consider a sliding time origin (corresponding,
at any propagation distance z, to the arrival time of a pulse
propagating at a group velocity vg0 ). The complex unidirectional
pulse propagation finally reads in the modal basis

∂z ξ̄ = i
(

Kz −
ω

vg0

)
ξ̄ + i

n0ω2

Kzc2 P̄NL. (53)

In the next section, we will see how Eq. 53 can be numerically
resolved in an efficient way using the modal transform presented
in section G.

C. Numerical algorithm
The starting point for the numerical algorithm presented here is
to note that the linear term can be easily evaluated in the modal
space while it is far more convenient to calculate the nonlinear
one in the direct space. As a result, the strategy for solving Eq. 53
is to use a split-step algorithm during which both terms (linear
and nonlinear) are evaluated in a different representation space.
In this regard, one can see the present method as a split-step
modal algorithm, in analogy with the well-known split-step
Fourier and split-step Hankel-Fourier algorithms. The proposed
algorithm is then extremely close to the one we presented for
solving the scalar version of UPPE [10]. The key point of the
algorithm lies in the construction of the modal transform, de-
scribed in section G (Eq. 42), for being able to efficiently go from
the direct space to the modal space (and vice versa). Knowing the
expression of a field

−→
ξ (r, θ, z, t) at a given z, one can calculate

the field at a close distance z + dz as follow. First, one evaluates
its expression ξ̄ in the modal basis using Eq. 42. Then, a linear
propagation step over dz/2 is performed so that

ξ̄ → e
i
(

Kz− ω
vg0

)
dz
2 ξ̄. (54)

After this, the nonlinear polarization is evaluated in the direct
space. This is done by evaluating the new field ξ̄ in the di-
rect space. Once calculated in the direct space, the nonlinear
polarization is expressed in the modal basis with the modal
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transform so as to solve the second term in Eq. 53 by a fourth-
order Runge-Kutta algorithm. Finally, a second linear step over
dz/2 is performed in the modal basis. Doing so avoids to deal
with multiple summations of overlap integrals as it is usually
done in simulations solving the multimode-generalized nonlin-
ear Schrodinger equation. In order to assess the efficiency of the
algorithm, we evaluated how the computation time increases
with the number of modes involved in the code [which is equal
to 2Nr Nθ , where Nr (resp. Nθ) is the number of points in the
radial (resp. angular) dimension]. For this, we timed one hun-
dred nonlinear propagation loops as a function of Nr and Nθ in
the monochromatic case (Nt=1). The calculations have been per-
formed in a Dell Optiplex 5260 computer (32 Go RAM, processor
Intel I7 8th generation). The results are summarized in Fig. 4. As
shown, the propagation algorithm complexity is approximately
O
(

Nr2Nθ

)
. The fact that the algorithm complexity is higher in

Nr than in Nθ comes from the fact that only fast Fourier trans-
forms are performed along θ while the modal transform needs
to deal with matrix vector multiplications in the radial domain.
If one wants to evaluate how the code behaves with the number
of modes involved Nmode, this can be done by setting Nθ = Nr,

which leads to a complexity O
(

N3/2
mode

)
, which is far more effi-

cient than algorithms solving the MM-GNLSE, known to behave
as O

(
N4

mode
)

[28, 29].

4. NUMERICAL EXAMPLE: ANGULAR MODULATION IN-
STABILITY AND ANGULAR BREATHER-LIKE GENER-
ATION IN RING-CORE FIBER

Nonlinear effects in ring-core fibers have become a recent subject
of active study, leading to effects never observed in conventional
fibers [33, 34]. Here, using the code presented in this paper, we
predict that, first, vector modulation instability takes place in
ring-core-fibers, and second, that angular breather-like solutions
can emerge in appropriate conditions. For this purpose, we
consider the propagation of a continuous (λ0 = 1.035µm) laser
field propagating in the ring-core fiber considered in section
H. The effective mode area for the transverse electric mode is
approximately 150 µm2 and the associated effective nonlinear
coefficient is γ ≃ 1.3 W−1km−1. The initial field

−→
ξ (r, θ, z = 0)

is coupled in the transverse electric (fundamental) mode (J = 0)
with a power P0=200 kW.

−→
ξ (r, θ, z = 0) =

√
I0F(r)−→e θ , (55)

where F(r) is the normalized radial profile of the transverse
electric mode of the ring-core fiber. The peak intensity I0 is
defined so that ∫∫

r
−→
ξ · −→ξ ∗drdθ = P0. (56)

and approximately equals to 185 GW/cm2. A weak random
noise (both in phase and amplitude) is superimposed in the
modal space to the initial field. Note that such an initial condi-
tion is experimentally realistic with femtosecond, picosecond
and even nanosecond Ytterbium doped fiber amplifiers [35] now
commercially available. In particular, the use of long pulses will
limit effects, such as self-phase modulation and modal group
velocity dispersion, that could be potentially detrimental for
observing the effect presented below. In order to limit the
computational time, we discarded the time dependence of the
field. At the early stage of propagation, only two particular
modes start to exponentially grow up. These modes belong
to the pump beam vectorial group and have a TAM jℓ = ±1
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Fig. 5. Energy gain of the modes jℓ = ±1 as a function of
the propagation distance. The blue (resp. red) solid line cor-
responds to the mode jℓ = 1 (resp. jℓ = −1) of the first
group, i.e., belonging to the vectorial group of the pump. The
green (resp. yellow) dashed line depicts the mode jℓ = 1 (resp.
jℓ = −1) belonging to the second vectorial group of modes.

(see Fig. 5). This indicates that only TAM-conserved processes
of kind 2Jpump → J1 + J2 take place at the very first stage of
the propagation. Quickly after (≃1 cm), the two modes with
same total angular momenta (jℓ = ±1) but belonging to the
second vectorial group starts to grow with more or less the
same gain (≃22 dB/m) than the one experienced by the two first
modes. During the 7 first centimeters of propagation, only these
four modes are populated. If one now decomposes the field in
left and right circularly polarized components and looking at
their orbital angular momentum spectra [see Figs. 6(a,b)], only
four contributions experiences gain (|ℓ = 0, σ−⟩, |ℓ = 2, σ−⟩,
|ℓ = 0, σ−+⟩, and |ℓ = −2, σ+⟩) during the first 7 cm. During
this first step, the angularly-resolved power distribution remains
flat [see Figs 6(c,d)]. Even if a rigorous theoretical study of this
process is beyond the scope of the present paper, all these ob-
servations nevertheless well correspond to an angular analogue
of the (time) modulation instability process taking place in sin-
gle mode fibers in the anomalous dispersion regime [36]. The
analogy is corroborated by noticing that the second (discrete)
derivative of the propagation constant with respect to the TAM
of the modes [Fig. 1(c)] is negative. In this regard, it is particu-
larly interesting to note that the numerical gain experienced by
the two first modes very well matches the analytical formula

G(jℓ) =
20

log10

√√√√√−
k(2)jℓ

2
j2ℓ

 k(2)jℓ
2

j2ℓ + 2γP0

, (57)

where k(2)jℓ
is the second-order (discrete) derivative of the propa-

gation constant with respect to jℓ [see Fig. 1(c)] evaluated for the
transverse electric fundamental mode and where G is the energy
gain evaluated in dB/m. Equation 57 is the angular analogue
of the gain formula for modulation instability in the frequency
domain. However, note that this formula is established only
empirically. Further studies will be obviously needed so as to
confirm or infirm its validity. The fact that angular modulation
instability seems to take place suggests that angular analogue of
solitons and breathers [37, 38] could be also observed. Note that
such a possibility is made possible because there is only one sin-
gle radial guided mode in such kind of fibers, which extremely
simplifies the physical process. In this regard, the propagation
of the initial field has been continued up to 20 cm. From ap-
proximately 10 cm, the orbital angular momentum spectrum of
the field starts to strongly broaden for becoming maximal at a
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Fig. 6. Orbital angular momentum spectrum (a) [resp. (b)] of the left (resp. right) circularly polarized component of the field as a
function of the propagation distance. Angular distribution of the intensity profile (c) [resp. (d)] of the left (resp. right) circularly
polarized component of the field as a function of the propagation distance. Energy gain of the fourth components growing during
the first stage of propagation (e). Angular spectrum (f) of the left (blue squares) and right (red circles) circular components at the
distance where the angular compression is maximal (z ≃13 cm) and associated angular distribution (g).

distance ≃ 13 cm. At this particular distance, the gain saturates
and the OAM spectrum of both circularly polarized components
exhibits a triangular shape in logarithmic scale [Fig. 6(f)]. In the
direct space, this spectral broadening is associated to an extreme
angular localization of the power [Fig. 6(g)], whose shape turns
out to be very similar to breather structures already observed
in fibers in the time domain. Afterwards, the angular dynam-
ics of both polarization components exhibits multiple periodic
breathing. Here again, this latter dynamics is extremely similar
to those already studied in time [39]. However, it is interesting to
note that the periodic and finite nature of the angular dimension
over which the dynamics takes place nevertheless implies some
differences in behavior with their time-domain counterparts. For
instance, the fact that the orbital angular momentum spectrum is
discrete by nature implies that the modulation instability process
has a power threshold below which the effect vanishes. This
discrete nature also explained why angular breathers appear
in the above example without the use of a deterministic and
coherent seeding as needed for their time-domain analogues.

5. CONCLUSION

To conclude, an efficient numerical algorithm for solving the
vectorial nonlinear unidirectional pulse propagation equation
has been presented. The algorithm, valid beyond the weak guid-
ance approximation for circularly symmetric waveguides, takes
advantage of the TAM conservation for being able to calculate
the vectorial optical modes. The modal calculation is used in
turn so as to build a fast modal transform, which allows to eas-
ily switch from a representation of the field in the direct space
to its decomposition in the modal space (and vice versa). The
presented algorithm has a complexity that roughly behaves as

N3/2
mode, which is far more efficient than conventional algorithms

that scale as N4
mode. As a first numerical example, we considered

the nonlinear propagation of a moderately intense transverse
electric field within a ring-core fiber. It was first shown that an-
gular modulation instability is expected to take place, suggesting
in turn the possibility to observe angular analogue of temporal
solitons and breathers. This expectation has been then corrobo-
rated by exhibiting a realistic case where vectorial breather-like
structures seem to emerge. While a rigorous study of such a
phenomenon is out of the scope of the present paper, the per-
spective to observe angular breathers in ring-core fibers could
nevertheless open the door to the study of new kind of nonlin-
ear solutions. Beyond the presented monochromatic case, an
extremely rich family of spatio-temporal (time+angle) dynamics
could be also studied in such kind of systems. In particular, it
could be interesting to see if bi-dimensional breather solutions
can be found, either in the normal or anomalous dispersion
(frequency) regimes. Note that since the number of angular
modes is finite, we anticipate that the quest to find analytical
bi-dimensional breather solutions in such a case will be far more
tractable than in the general 3D+1 situation where both radial
and angular dimensions have to be taken into account. Note,
however, that the fact that optical modes are strongly vectorial
could nevertheless complicate a bit the theoretical study.
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