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Abstract. We complete the 2D 2-fields turbulence model previously used with an interchange- 
like instability by slightly modifying the parallel loss terms to drive drift wave instabilities.  We 
show that the instability driven by temperature fluctuations of the sheath losses is identical to 
that of the drift wave turbulence. The linear analysis is performed and used to select control 
parameters that yield identical maximum growth rates for the interchange alone and drift wave 
alone instability. Combining the two instabilities doubles the maximum growth rate. The non- 
linear simulations are used to analyse the SOL width. The simulations allow one to identify a 
low field side SOL region where interchange and drift wave are unstable and a high field side 
SOL region where only the drift wave is unstable. The SOL profiles appear exponential in the 
region close to the source but depart from a simple exponential fall-off in the far SOL. The 
low field side SOL width is found to be larger in the interchange alone case, slightly smaller 
when both instabilities are present and finally narrower when only the drift waves. For the high 
field side SOL, without interchange, the drift wave SOL width is observed to be identical to 
that on the low field side and larger than that when both instabilities at play. The Sherwood 
dimensionless parameter, ratio of convective particle flux divided by the diffusive particle flux, 
is used to compare the efficiency of turbulent transport. The profiles of the Sherwood parameter 
for time and flux surface averaged transport indicate that turbulent transport is dominant close 
to the separatrix but is less effective towards the far SOL. The Sherwood parameter evolution, 
determined with the flux-surface averaged transport, indicates that outward avalanche transport 
with corrugations governs the case with interchange only. When combining the two instabilities, 
outward avalanche transport is less pronounced and inward avalanche transport is observed, 
reducing the overall turbulent transport efficiency. The avalanche transport with drift waves 
only compared to interchange only is found to be inhibited. 

 
 
 

 

1. Introduction 
The problem of turbulent transport and its control remains a key issue for the performance of 
fusion devices. In the core it is detrimental and reduces the confinement [1] while in the SOL it is 
beneficial by increasing the width of this boundary layer, thereby spreading the heat load on the 
plasma facing components [2]. Given this importance, a dedicated effort is organised to address 
this problem. On the one hand sophisticated gyrokinetic codes [3, 4] have been developed to 
address core transport and a comparable effort is dedicated to the edge and Scrape-Off Layer 
turbulence [5, 6], mostly using fluid models. Besides such first principle models, reduced models 
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[7, 8, 9] are also contemplated to have fast access to simulations of experiments and forecast 
experimental scenarios. We propose here an intermediate model providing first principle analysis 
of turbulent transport but reduced to the simplest 2D, 2 fields model [10, 11] that make such 
a model very attractive to generate large data bases with scans of control parameters [12]. 
Such a model is flux driven and characterised by avalanche transport [10, 13], also reported as 
”blob” transport [14]. Similar transport behaviour has been observed for heat in the gyrokinetic 
framework [15]. This model has also allowed us to recover staircase confinement [16], first 
analysed in the gyrokinetic framework [17]. Our claim in such an approach is that physics 
problems such as turbulent transport must be robust so that a strongly simplified fluid code 
should capture qualitatively the behaviour of the system, provided the problem at hand is not 
specifically governed by kinetic properties, such as the problem of the sheath physics [18, 19]. 
The model that is used is known as the TOKAM2D model [20]. It was developed to investigate 
interchange like turbulence in the SOL [21, 22]. Recently it has been extended to analyse the 
interface transport barrier between the edge plasma with closed field lines and the SOL with 
sheath boundary conditions [23], considering the interchange instability mechanism and zonal 
flow generation [24]. The model evolves a transported field, typically the density at constant 
thermal energy, set out of thermodynamic equilibrium either by a prescribed gradient -as used 
to investigate linear stability or gradient driven turbulence- or by a radially localised source 
such that the mean flux is imposed and the field gradient an output of turbulent transport. The 
latter regime has been named flux driven. We show in this paper that the transported field can 
be the thermal energy, assuming the density to be constant. The charge balance equation for 
a quasi-neutral plasma yields the vorticity equation, which depends on the electric potential, 
the second field addressed in the model. The coupling between the two equations is crucial to 
generate an instability and characterises the mechanism that governs the instability. The aim 
of the present work is to complete the TOKAM2D framework by incorporating the drift wave 
instability considering the seminal Hasegawa-Wakatani model [25]. We revisit the derivation of 
the model to highlight the changes made in the TOKAM2D model to incorporate the parallel 
loss term that drive the drift wave instability, Section 2. We show in particular that accounting 
for temperature fluctuations in the parallel sheath loss term, as published in [26], yields an 
instability drive that is identical to that of the drift wave model, see section 2.2. The linear 
dispersion relation is then investigated and control parameter values are chosen such that the 
interchange instability alone or the drift wave instability alone exhibit the same growth rate 
Section 3. The non-linear simulations with the selected control parameters are presented in 
Section 4. Finally, Section 5 closes the paper. 

 
2. Plasma turbulence model 
2.1. Transverse transport model 
Two linear turbulence mechanisms have been used to investigate plasma turbulence with a 
minimum transport model. The linear drive is either that of drift wave turbulence as investigated 
in the seminal paper [25], or interchange-like [20]. These models couple two fields and use fluid 
equations restricting the phase space dimension to the directions transverse to the magnetic 
field, typically r a radial and θ an angle coordinate. Parallel transport in taken into account by 
loss terms that are simplified to only depend on the chosen fields. The transport model then 
takes the form of a conservation equation for either the density n or the scalar pressure p = nT 
proportional to the internal energy density, or combining these equations a transport equation 
for the thermal energy T . We address here the transport model in the cold ion limit so that 
the thermal energy T is that of the electrons. The second field of these models is the vorticity 
w and its evolution equation is given by the charge balance equation. The drift expansion is 
used to determine the transverse transport, at lowest order the electric vE and diamagnetic 

v∗ drift velocities, and at higher order the ion polarisation velocity. In the cold ion limit, the 
vorticity W , is determined by the electric potential φ, W = ∇2 φ. In this limit the transverse 

transport model for plasma turbulence is akin to the Rayleigh-B´enard 2D turbulence model [27] 
for neutral fluids, as underlined in Ref.[11, 28]. Transverse transport is then the competition 
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depending on ∇ × B, one then finds that ∇⊥· f vf,⊥ = B· ∇g × ∇(hf ) = B g, hf therefore 
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between convection and diffusion. Above a threshold in the departure from thermodynamic 
equilibrium, a bifurcation takes place from purely diffusive transport to convection dominated 

transport. Let f be the field that is transported, and Q  and Q⊥ the parallel and transverse 
flux of f . For the transverse flux one then has: 

Q⊥ = f vf,⊥ − Df,⊥∇⊥f (1a) 

where vf,⊥ and Df,⊥ are the transverse convective velocity and diffusion coefficient respectively. 
The evolution of f is then determined by the divergence of the fluxes Q⊥ and Q  together 
with local evolution properties such as a localised source term that governs the departure from 

equilibrium. We shall assume that the diffusion coefficients Df,⊥ are constant so that: 

∇⊥·Q⊥ = ∇⊥·
 
f vf,⊥

 
− Df,⊥∇2 f (1b) 

The electric and diamagnetic drift velocities a re prop ortiona l to B × ∇g. Negl ecting the terms 

proportional to the Poisson bracket of g and hf . At lowest order in the drift expansion, one 
obtains the evolution equation for the electron density n: 

∂ n + B
h

φ, 
 n i 

+ 
B h  1  

, p 
i 
− D 

 

∇2 n = S 

 

— ∇ Γ  
 

(2a) 

The charge balance equation, computing the divergence of the transverse current including 
the ion polarisation current and enforcing the Boussinesq approximation yields the vorticity 
equation. 

∂ W + 
 1 h

φ, W 
i 
+ 

B h  1  
, p 

i 
− ν ∇2 W = 

1 
∇ J (2b) 

It is possible to replace the transport equation for the density, taken at constant electron temper- 
ature Te, by the transport equation for the electron thermal energy Te at constant density. The 
parallel loss term is then typically the parallel divergence of the electron energy flux including 
parallel heat diffusion a contribution of the parallel convection of thermal energy. 

 
Without changing notation, one the density n, magnetic field B, length scale L, time t, electric 

potential φ by n0, B0, L0, τ0, Te/e respectively. Given the sound velocity cs = Te/mi, and 
setting τ0 = 1/Ω0 = mi/eB0 the inverse ion cyclotron frequency, one defines the normalisation 
length scale L0 = ρ0 = c0/Ω0, ρ0, hence the reference ion Larmor radius. One then finds that 
the diffusion process is normalised by the so-called Bohm diffusion DB = Te/(eB0) = ρ2Ω0. 

∂ n + 
h

φ, n
i 

− 
h

n, 
 1  i 

− D 

 

∇2 n = S 
  1  

— ∇ Γ  (3a) 

 
∂tW + 

h
φ, W 

i 
+ 1 h  1  , n

i
 — ν⊥∇⊥W = 

2 
0 ∇ J (3b) 

n B2 Ω0φ0 n 

This set of equations, coupling the density or the thermal energy to the vorticity, describes 2D 
plasma turbulence. 

 
2.2. Parallel loss term 
Two kinds of parallel loss terms can be addressed: that governed by parallel transport or that 
governed by the sheath boundary conditions as in the Scrape-off Layer of magnetic fusion devices. 
Let us first address the sheath parallel losses. The boundary conditions come into play when 
averaging the equations in the parallel direction assuming that all fields in Eq.( 3a) and Eq.( 3b) 
are constant along a field line, the so-called flute approximation. The parallel loss term is then 

ρ 

⊥ n 

⊥ 

⊥ n 
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determined by the divergence of an outflux of the form ∇ Q . The parallel average of the latter 
yields: 

 1  
∫ L 

 
 

  1  
∫ L 

 

  

  1    

 

We further assume that s = 0 corresponds to the stagnation point such that Q (s = 0) = 0 and 

that the flux leaving the SOL is determined by the sheath conditions, Q (s = L ) = Qsheath so 

that: 

 1  L  

L   0 

 1  
ds ∇ Q =  Q 

L 

 
sheath 
 

 
(4b) 

Using the Mach = 1 Bohm boundary condition, grounded wall potential, the electron particle 
flux to the wall can be determined by the values of the fields at the sheath entrance. This 
expression depends on the parameter Φs that accounts for the difference of mobility between 
electrons and ions addressed in a kinetic framework. A strongly simplified description yields 
Φs = 1 Log(mi/me) therefore a constant depending on the mass ratio, mi and me being the 
ion and electron mass. For the evolution of the density field Eq.( 3a), the loss term is then 
determined by: 

Γsheath = ncse
Φs−eφ/Te (5a) 

 

Linearising this expression for small density n and electric potential φ fluctuations, and given 
eφ = ΦsTe, one obtains: 

Γsheath = n c
  

1 + 
ñ 

− 
e φ̃  

(5b) 

The ion particle outflux at the sheath is ncs so that the linearised ion flux is n cs 1 + n/n . The 
linearised parallel current loss to the wall is then: 

jsheath = en c
  e φ̃  

(5c) 

One then finds the linear expressions depending on n and φ for the parallel outflux that appear 
in Eq.( 3): 

 

Γsheath = n c
  n — 

eφ 
(6a) 

jsheath = en c
  eφ 

(6b) 

 
When addressing the thermal energy transport at constant density and fluctuating thermal 

energy T˜
e , the linearised parallel current and relevant energy flux qsheath to the wall depend on 

 
 

T̃ e and eφ /̃T e: 
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  eφ˜ 

− Φ 
 

 

 

T˜
e
 

(7a) 
 

 

qsheath = γ 
 

 

n c T 

 
1 + 3 

T̃ e 
− 

eφ  ̃
+ Φ 

  

T˜
e
 

(7b) 
 

0 

e e 

e e e 

(4a) 

r e 



THEORY OF FUSION PLASMAS JOINT VARENNA - LAUSANNE WORKSHOP 2022 IOP Publishing 

Journal of Physics: Conference Series 2397 (2022) 012018 doi:10.1088/1742-6596/2397/1/012018 

5 

 

 

∫ 

∫ 

  
2 

→ 

T 

→ 

− 
 
∇ 

   

0 0 
T0 

s 
T0

 

r 0 0 0 
T0 

s 2 T0 

3 0 2 
e 

e e 
meν 

ek k 

 

 
One can determine γr given the sheath energy transmission factor, typically γr = 2 Φs + 1 . The 

  

3 3 

parallel fluxes for the coupled transport equations are then: 

jsheath = en c
  eφ 

− Φ 
Te

 
(8a) 

qsheath = γ n c T
  

− 
eφ 

+
 

Φ + 3
 Te

 
(8b) 

 
Normalising these loss terms and replacing n/n0 ot Te/T0 by f to obtain a general expression 
we find therefore: 

 1  L  
− 
L   0

 

 1  L 

L   0 

ds ∇ Q  = −σf f + σf φ (9a) 

 

ds ∇ j  = σφφ − σφf (9b) 

The σ terms are diagonal while the σ are non-diagonal coupling terms. When addressing the 
case of density transport f = n with Te constant, the coefficients are: 

σ  = 
ρ0

 
f L ; σf = 

ρ0 

L 
; σφ = 

ρ0 

L 
; σφ = 0 (10a) 

while for the case of thermal energy transport f = Te with constant density, the coefficients are: 

σ  = 
ρ0  

Φ 
f L s 

 
 

+ 3
   

; σf 
= 

ρ0 

L 
; σφ = 

ρ0 

L 
; σφ = 

ρ0 
Φ 

L 
s (10b) 

These results hold in the SOL provided the parallel variations are small which allows using the 
flute approximation and enforces that the parallel losses are governed by the sheath conditions. 
In the edge plasma or in the high recycling or detached SOL regime this formulation of the 
parallel loss terms must be modified to account for parallel transport. A crude model can 
be addressed including collisional friction in the electron momentum balance equation. For 
adiabatic electrons in the electrostatic regime, the balance equation is then: 

∇ pe + meνnue  = en∇ φ (11a) 

The friction term is proportional to the collision frequency ν and drives the collisional relaxation 
of the difference between mean electron parallel velocity ue  and mean ion parallel velocity ui  

in the limit ui  0. We therefore neglect the ion response both to determine both the parallel 

electron flux and current. In this expression ν stands for the electron-ion collision frequency for 
ions of charge Z and density n. 

ν = 4 
√

2πLogΛ
 

Ze2/(4πε )
 2 nvthe

 (11b) 

 
Neglecting collisions in the limit ν  0 and for constant electron thermal energy Te then leads 
to the density dependence used to obtain Eq.( 5a). For ν > 0 the momentum balance equation 
yields the parallel electron flux driven by the parallel thermodynamic forces. 

 
Γe  = nue  = 

 1  
p

 

meν e 

 
— en∇ φ

 
(11c) 

Stepping to Fourier space in the parallel direction to determine the divergence of the parallel 
electron flux, one obtains after linearising the term n∇ φ ≈ n0∇ φ: 

k2 

−∇ Γ  ≈ ik Γ̂  = − 
  

p̂   − en0φ̂ 
 

(12a) 
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From this expression one can step directly to the divergence of the electron current: 

k2e 

∇ j  ≈ ik ĵ  = −  
  

p^  − en0 φ̂  
 

(12b) 

 
When normalised these expressions lead to: 

−∇ Γ  ≈ −C
  

n − φ
 

(13a) 
 

  
 

 

C =  
mi 

me 
k L  

2  ρ0Lcoll 

L2 
(13c) 

 
For this calculation we have defined Lcoll = c0/ν ∝ T 2/(nvthe). Furthermore, we have 

replaced the Fourier modes by the normalised fluctuations of the electric potential φ˜ and 

density ñ .  The fluctuations, typically f˜, are such that k  /= 0, else C = 0, and will be 

approximated by f = f  f . The average performed in the parallel direction is akin to a 
flux surface average that removes the parallel divergence contribution. Compared to the sheath 
conductivity parameters σ ≈ ρ0/L , either Eq.( 10a) or Eq.( 10b), one finds that typically 

C/σ mi/me (k L ) Lcoll/L . Whenever C 1 the transport tends to enforce the standard 

electron adiabatic transport conditions. In the SOL, the sheath boundary conditions then 
govern the electron parallel losses. Conversely, when C σ, the parallel losses imposed by 
the parallel transport are small and dwarfed by  the sheath losses. The regime of interest 
is such that C/σ . 1. One must then have  mi/me (k L )2 . (L /Lcoll) and therefore 

k L  . (me/mi)1/4(L /Lcoll)1/2. Only the large wavelength fluctuations can exhibit non 

adiabatic electron transport and generate parallel transport losses that can compete with the 
sheath losses. Conversely, the flute approximation and sheath dominated losses in the SOL will 
hold provided the collisionality is small enough so that Lcoll/L  & (me/mi)1/2. 

 
2.3. Model equations for plasma turbulence 
Having defined a generic form for the parallel loss terms, we now address the balance equations 
combining transverse and parallel transport. We first address the density, in Eq.( 3), simplifying 
the notation for the normalised quantities. 

∂ n + 
h

φ, n
i 

− B
h

n, 
 1  i 

− D ∇2 n = S 
 

−
 

σ 
 

 

n − σ 

 
φ

 
(14a) 

For the particular case of the problem we address in this paper, the contributions that account 
for the variation of B are small and do not change qualitatively the behaviour of the system. 
One can then set B = 1 in Eq.( 14a) to obtain a simplified evolution equation for the density. 

∂tn + 
h

φ, n
i 

− D⊥∇2 n = Sn −
 

σnn − σnφ
 

(14b) 

In this expression, the transverse transport of the electron density n is not addressed in the 
adiabatic framework. Should one enforce that n is a function of the electric potential φ, then 

the cross-field convection described by the Poisson bracket  φ, n  vanishes altogether, removing 

both turbulent transport and coupling to the vorticity equation. However, when addressing 
the parallel transport, the adiabatic electron response has been used, namely the electrons are 
assumed in mechanical equilibrium on the time scale of the ion transport so that the time 
derivative of the electron momentum is set to zero. It is to be underlined that although the 
electron parallel transport is addressed in the adiabatic framework, it does not enforce that 
the electrons are Boltzmannian and the electron density a function of the electric potential. 

⊥ n n n 
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The latter regime is only achieved when the electron parallel current is set to be null. Since the 

parallel transport is taken into account by the reaction terms on the right hand side of Eq.( 14b), 
σnn+σnφ, the problem that is addressed is 2D in a plane transverse to the magnetic field, with 

a radial coordinate and a poloidal angle that labels the field lines. For simplicity, we assume a 
slab geometry and define the normalised coordinates x = r/ρ0 and y = aθ/ρ0. The evolution 
equation Eq.( 14b) exhibits a single non-linear term, the divergence of the transverse particle 
flux written as the Poisson bracket φ, n . To address this term in the linear analysis, we split 
the density n into a mean n and fluctuating ñ contributions. The mean is defined as the average 
on both time and poloidal angle, it therefore only depends on the radial coordinate x. With this 
separation, the Poisson bracket is the sum of three contributions. The non linear contribution 

in terms of the fluctuations φ˜, ñ , and two linearised terms with respect to the fluctuations, 

φ˜, n = ∂y φ̃  
xn and φ, ñ = xφ ∂y ñ .  The former linear contribution is of particular 

importance since it couples the density evolution to the electric potential evolution whatever 
the right hand side reaction terms. To highlight this term, and replace the source term S in 

gradient driven regimes, we add the term ∂y φ̃  n/Ln with control parameter 1/Ln =  xn/n. 
One then obtains: 

∂ n + 
n 

∂ φ + 
h

φ, n
i 

− D∇2 n = S 
 

 

— σ n + σ φ (14c) 

With the control parameters 1/Ln and Sn one can switch from a flux driven mode with 1/Ln → 0 
and a radially localised particle source Sn to a gradient driven mode with Sn = 0 and a finite 

prescribed value for Ln. We now address the transport of vorticity W = ∇2 φ. 

∂ W + 
h

φ, W 
i 

− B
h

n, 
 1  i 

− ν 

 

∇2 W = S 
 

 

— σ n + σ φ (15a) 

In the chosen slab geometry, and restricting the poloidal region to the equatorial neighbourhood 
on the low field side, the term 1/B = R/RB is proportional to R and therefore to x. The Poisson 
bracket n, 1/B2 is then proportional to ∂yn and the order of magnitude of the proportionality 
factor is ρ0/R0 therefore comparable to ρ0/L . The exact calculation depends on the problem 
of interest. One either assumes a toroidally localised region, as done when one determines the 
parallel losses using the local transport properties, or one performs an average in the parallel 
direction so that the parallel losses are governed by the sheath losses. One introduces the control 
parameter g so that B n, 1/B2 = g∂yn to encompass these various cases with g ∝ ρ0/L . One 

furthermore considers physics without a vorticity source so that SW = 0. The vorticity equation 
can then be written in a generic form, analogous to that addressed for the Rayleigh-B´enard 
instability. 

∂t(W ) + 
h

φ, W 
i 

+ g∂yn − ν⊥∇2 (W ) = −σφn + σφφ (15b) 

The system we address to investigate SOL turbulence is therefore: 

∂ n + 
 1  

∂ φ + 
h

φ, n
i 

− D ∇ n = S  − σ n + σ φ (16a) 

∂tW + g∂yn + 
h

φ, W 
i 

− ν⊥∇2 W = −σφn + σφφ (16b) 

The control parameter g allows one to address interchange-like plasma turbulence, while the 
parameter σφ is the key control parameter for drift wave turbulence. For SOL conditions 
with constant thermal energy, we shall consider the interchange instability assuming σn = 0 
and σφ = 0.  Conversely for drift wave turbulence, we set g = 0 and retain σn and σφ 
with σn = σφ = σn = σφ = C. For SOL conditions the latter case would be similar to the 
model named ”temperature gradient instability induced by conducting end walls” by Berk et al. 
presented in Ref.[26] provided one replaces n by Te in the present model. One finds therefore 

n n 

⊥ W 



THEORY OF FUSION PLASMAS JOINT VARENNA - LAUSANNE WORKSHOP 2022 IOP Publishing 

Journal of Physics: Conference Series 2397 (2022) 012018 doi:10.1088/1742-6596/2397/1/012018 

8 

 

 

⊥ ∇ 

^ + 
L

 

 ̂

 ̂  ̂

2 

   
 

— 
  

φ 

 

 
that the latter instability is in fact a drift wave instability where the parallel losses are governed 
by the temperature dependence of the sheath boundary conditions. To investigate the general 
case with competing interchange and drift waves linear instabilities we shall consider cases with 
g /= 0 and σφ /= 0. 

 
3. Dispersion relation 
To investigate the linear instability we use the system Eq.( 16) without enforcing particular 
values for the σ conductivity coefficients. W is the vorticity W = 2 φ. We compute the growth 
rate γ with the linearised equations in Fourier space for the gradient driven case, hence for 
Sn = 0 and 1/Ln finite. 

 

γn 
iky 

n 
φ  ̂+ D⊥k2n̂ = −σnn̂ + σnφ̂  (17a) 

ky 2 σφ σφ 

γφ̂  − i
k2 g n̂  + ν⊥k φ  ̂= − 

k2 φ
 ̂+ 

k2 n̂ (17b) 

The dispersion relation determines the condition to achieve a solution different from the trivial 

solution n = 0 and φ^ = 0, therefore: 

 
γ + An

  
γ + Aφ

  
− BnBφ = 0 (18a) 

where: 

An = Dk2 + σn ; Aφ = νk2 + 
σφ

 

k2 
(18b) 

 1  B  = ik − σ ; B  = −ig
ky 

− 
σφ

 (18c) 
n y 

Ln 
n φ 

k2 k2 

For the specific case σn = 0 and σφ = 0, the coefficients Bn and Bφ are imaginary and therefore 
BnBφ is real. This particular case corresponds to the linear interchange instability. Conversely, 
when g = 0 and σφ = 0, Bφ is real and the product BnBφ complex. This property also has an 
impact on the phase difference of the eignemodes. 

Bφ 

φ^ = − 
γ + A 

n̂ (19) 

In the interchange case Bφ is imaginary and γ is real so that there is a phase shift of π/2 between 

n and φ. Conversely, when Bφ is real γ is complex and the phase difference departs from π/2. 

We now define A: 

A = 1
 

An + Aφ

 
(20a) 

so that the dispersion relation takes the form: 

 
γ + A

 2 
= BnBφ − AnAφ + A2 = D (20b) 

The coefficient D can be split into a real part Dr and an imaginary part Di. 

g k2 σnσ 
  

Dr = A2 + δ ; δ =  y +  φ − AnAφ (20c) 
Ln k2 k2 

D = 
ky  

gσ 
i 

k2 n 

σφ 
(20d) 

Ln 

One can remark that A ∈ R+, AnAφ ∈ R+, A − AnAφ ∈ R+ so that if BnBφ ∈ R+ an instability 
only occurs when BnBφ ≥ AnAφ. One thus identifies BnBφ as the drive for the instability and 
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A, An and Aφ as the damping processes. In the general case BnBφ ∈ C and γ has a real part γr 
that determines the growth rate of the instability and an imaginary part γi that determines the 
mode frequency. We note α + iβ the root of D hence such that α2  β2 = Dr and 2αβ = Di. 
One then obtains: 

α2 = 1

  
Dr +

  
D2 + D2

 1/2
 

(21a) 
 

so that the largest growth rate is:  

 
γr = −A + α (21b) 

with α chosen positive. One recovers here that the coefficient A characterises damping processes 
since for α = 0, γr = −A, therefore negative and leading to an exponentially decaying solution. 
An instability will occur if α ≥ A, therefore α2 > A2. Inspecting Eq.( 21a) one finds that D2 is 
a positive contribution to γr and favours the occurrence of an instability. One can also readily 
notice that if δ > 0, Dr > A2 so that α2 > A2. One finds therefore that the two first terms in 
the definition of δ Eq.( 20c), namely (g/Ln)(k2/k2) and σnσφ/k2 are the driving terms for the 
instability. One can then proceed the calculation and obtain: 

k2   σ  2 
2

 

A sufficient condition for an instability is to verify δ > 0. One can then recover standard cases, 
that addressed for interchange in the SOL with σn = 0 and σφ = 0 such that the condition for 
instability is δ > 0 and therefore for that case: 

g k2 

 y > AnAφ (22b) 
Ln k2 

Since AnAφ ≥ 0, a threshold for the instability in the departure from thermodynamic equilibrium 
is required Ln > 0 since g > 0, therefore 1/Ln positive. The linear interchange instability also 
favours ky  kx, which maximises the aspect ratio parameter k2/k2. For a drift wave instability 
with g = 0 and σn = σφ = C one obtains: 

  C k2  2 
 

 

 
 

 
2 2

 
 

 

 
C2  

 
 

 

The marginal instability condition does not depend on the sign of Ln. Should An and Aφ not 
depend on C, then C only accounts for the destabilising effect with a role analogous to g on the 
left hand side of Eq.( 23a) as well as a destabilising role on the right hand side by inhibiting 
the damping term AnAφ. If one now accounts for σn = σφ = C as done when addressing the 
standard drift wave instability, one then obtains AnAφ = Dνk4 + C(νk2 + D) + C2/k2 and 
2A = (D + ν)k2 + C(1 + 1/k2). For g = 0, the marginal linear instability condition is then given 
by: 

 1  
> 

|Ln| 

(D + ν)k4 + C(k2 + 1) 
Dνk4 

C ky 

 
+ C(νk2 

 
+ D) 

 
 1/2  

(23b) 

One finds therefore that the drift wave instability exhibits a threshold in density gradient and 
that unlike that for interchange, it does not depend on the sign of the gradient. In that respect 
interchange can only be unstable in the Low Field side SOL generating a ballooned transport 
similar to that evidenced experimentally [29, 30, 31, 32]. Conversely, the drift wave turbulence 
is unstable in both the low and high field side SOL. In Eq.( 23b) one finds that at small C the 
threshold condition is proportional to 1/C while at large C the asymptotic dependence is C1/2. 
When scanning C, the threshold condition goes through a minimum, which indicates that for a 

y k2 

  

AnAφ − (23a) 
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Figure 1: Left hand side, instability growth rate γDwI (kx, ky) with mixed Drift Wave + 

Interchange conditions, g = 1.5 10−4 and C = 6.0 10−5 versus the wave numbers kx and 

ky. The steps in kx and ky, kx,min and ky,min, are πρ∗ with 1/ρ∗ = 256. The black contour 
is plotted for γDwI = 0. The dashed black line is the line of ky values at the maximum of the 
growth rate γDwI at given kx and the star symbol locates the value for kx = 5kx,min. 
Right hand side, maximum growth rate for kx ≥ 5kx,min and all values of ky, blue curve 
maximum of γI (g) versus g for Interchange without drift waves, black curve maximum of γDW (C) 

versus C for Drift Waves without interchange. For gc = 1.5 10−4 and Cc = 6.0 10−5, open 
black square marker and closed blue triangle respectively, the growth rate values are equal 
γI (gc) = γDW (Cc) = γc. 

 
given value of the density gradient 1/|Ln| the drift wave turbulence is stable in both the small 
and large C limit. This property holds for k /= 0. At small values of k, the roll-over to the 1/C 
dependence can only be found for C  (D + ν)k4. As for the interchange instability Eq.( 22b), 
the condition Eq.( 23b) indicates that the ky = 0 cannot become unstable, the turbulence onset 
is clearly governed by the loss of poloidal invariance ky /= 0. 

 
The linear analysis is investigated numerically, varying the wave vectors kx and ky as well as 

the control parameters g and C. The control parameters are for all cases D⊥ = ν⊥ = 10−2 and: 
 

• Interchange case, labelled I: g /= 0, σn = σφ = Cc and σn = σφ = 0, 
• Drift Wave case, labelled DW: g = 0, σn = σφ = σn = σφ = C /= 0, 

 

• Drift Wave + Interchange case, labelled DwI, g /= 0 and σn = σφ = σn = σφ = C /= 0. 

The wave vectors are stepped respectively by kx,min and ky,min the smallest non-zero chosen 

value for the wave vectors, here kx,min = ky,min = πρ∗ with 1/ρ∗ = Lx the radial box size 
normalised by the reference Larmor radius ρ0. For each value of the control parameters, given 
Eq.( 21), one can determine the growth rate γ(kx, ky), see Figure 1 left hand side. For the chosen 

example of DwI linear analysis g = gc = 1.5 10−4 and C = Cc = 6.0 10−5. One finds that the 
growth rate maximum is located at ky = 8 ky,min and kx = 0. For each value of kx one can 
determine the maximum of the growth rate when varying ky. The line of these ky values are 
plotted on Figure 1 left hand side dash black line. For kx = 5kx,min one finds that the maximum 
is at ky = 8ky,min, black star marker. The black contour line on Figure 1 left hand side is that 
of marginality γ(kx, ky) = 0, on the left hand side, above and below this contour γ(kx, ky) < 0, 
the modes kx, ky are stable. In the following, the reference value chosen to characterise the 
growth rate γ for all values of parameters g and C is the maximum of γ(kx, ky) for all values 
of kx ≥ 5kx,min and all values of ky. The characteristic growth rates γDW (C), black curve, and 
γI (g), blue curve, are plotted versus C and g on Figure 1 right hand side. One finds that γDW 
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Figure 2: Left hand side, for kx = 5kx,min growth rate versus ky/ky,min for Drift Wave (DW), 
γDW black curve open circles, g = 0 and σn = σφ = σn = σφ = Cc, Interchange (I), γI blue curve 
open triangles for g = gc, σn = σφ = Cc and σn = σφ = 0 and Drift Wave with Interchange 
(DwI), γDwI red curve closed squares for g = gc σn = σφ = σn = σφ = Cc. The control 
parameters Cc and gc are chosen so that the maxima of γDW and γI have the same value. The 
sum γI + γDW is observed to peak at a value similar to the peak value of γDwI . 

Right hand side, maximum instability growth rate of combined Drift Wave and Interchange 
instability γDwI (C, g) in log10 scale, scanning log10(C) horizontal axis and log10(g) vertical axis 
with g /= 0 and σn = σφ = σn = σφ = C /= 0. The black-white dashed contour line is for the 
marginality condition γDwI (C, g) = 0. 

 

 
becomes negative at large C as expected and decays to the small values of C, but will become 

negative only for C < 10−9 given the chosen values of kx,min and ky,min. For Interchange, one 

recovers that γI (g) increases monotonically with g becoming positive for g 6. 10−5. For the 

turbulence simulations we select C = Cc = 6.0 10−5, open black square, and g = gc = 1.5 10−4, 
closed blue triangle, for which the maximum growth rate γDW (Cc) is equal to the maximum 
growth rate γI (gc), see Figure 1 right hand side. The choice that is made gc and Cc is further 
analysed of Figure 2 left hand side. The growth rate γDW , black curve open circles, and γI , 
blue curve open triangles, are plotted versus kx/kx,min for kx = 5kx,min. As chosen, the two 
growth rates have the same peak value but for different ky, the Drift Wave being shifted towards 
lower ky compared to the Interchange case. Combining the two instabilities yields γDwI , red 
curve closed squares, which close to double growth rate and intermediate peak value of ky. The 
peak behaviour is found to compare well to γDW +γI as if the turbulent processes where additive. 

 
The linear stability analysis of Drift waves and Interchange instability mechanisms (DwI) has 

been investigated varying the control parameters C and g, Figure 2 right hand side where the 
characteristic growth rate is plotted versus C in log scale lower axis and g in log scale, vertical 
axis. As observed on Figure 1 right hand side, varying C has little effect. It bounds the unstable 

region to the right when C becomes large, typically of order 10−3. This is shown by the vertical 
dashed black and white line that indicates the marginality condition γDwI = 0. For g   0, 
the horizontal dashed black and white line indicates the stabilising effect for small values of C. 
The unstable region governed by the drift wave instability appears to extend for C in the range 

10−6 ≤ C ≤ 10−3. The main variation of the growth rate is governed by the variation of g. 
Finally the selected conditions Cc and gc, such that the drift wave and interchange instability 
yield the same value for the characteristic growth rate is indicated by the open black marker. 

This point lies in a region of rather weak growth rate . 10−3 agreeing with the peak value 
indicated on Figure 2 left hand side. 
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4. Simulation of turbulent SOL widths 
The system of two coupled equations Eq.( 16) is used to investigate the effect of competing 
linear drives of plasma turbulence on the SOL width. Simulations are performed with the 
TOKAM2D code that has been fully verified [33]. The code is pseudo-spectral in both radial 
and poloidal directions and the time stepping scheme is an order 4 Runge-Kutta. Consequently 
the simulation domain is periodic in both poloidal y and radial x directions. The poloidal 
periodicity is consistent with an angle but the radial periodicity requires more attention. A 
source term is implemented with Gaussian shape in the radial direction, half width 8 ρ0 and 
constant in the poloidal direction. Consequently, the density gradient to the right of the source 
is negative while the density gradient to the left is positive. At maximum and minimum density, 
regions with weak density gradients and vanishing radial particle fluxes are expected. The 
latter minimum region is observed to govern a region of stability that separates the simulation 
domain in two parts. A negative gradient region, standing for a low field side SOL region 
with interchange and possibly drift wave instabilities, and a positive density gradient region, 
standing for a high field side SOL region with only the drift wave instability. The two SOL 
regions are coupled via the source region, typically the separatrix. The drawback of handling 
radial periodic conditions is compensated by the numerical efficiency, first the high accuracy 
of the scheme, but also addressing directly two plasma turbulence cases, that of drift waves 
with or without interchange. Since the code evolves the Fourier modes, the results of the linear 
analysis can be directly applied.  The mesh stepping is chosen equal to ρ0 in the x and y 

directions, therefore defining kx,min = ky,min = πρ∗ where 1/ρ∗ is the size of the simulation 
domain in number of mesh points Nx and Ny. For the results presented here we have chosen 

Nx = Ny = 256 (ρ∗ 4. 10−3). One can show that the amplitude of the source defines the 
density normalisation and is not a relevant control parameter. For flux driven simulations we 
set 1/Ln = 0 so that the available control parameters are g, σn = σφ and σn = σφ with fixed 

D⊥ = ν⊥ = 10−2. As indicated previously, we present in this paper the simulations for the three 
reference cases listed above, namely Drift Wave (DW), Interchange (I) and allowing for the two 
instability mechanisms (DwI). 
We first compare the radial profiles of the density averaged over time and poloidal angle. For 

the Drift Wave case, nDW is symmetric with respect to the mid-box location, Figure 3 left 
hand side. As expected, the turbulence drives a comparable transport in the low field side and 
high field side SOL. An exponential decay is observed close to the source with e-folding length 
1/λ = 0.018. This value is quite close to that used to perform the linear analysis in the previous 
Section, 1/Ln = 0.02. The sharper decay towards the mid-box region is harder to explain 
since it suggests a reduction of the turbulent transport efficiency despite a larger departure 
from thermodynamic equilibrium as determined by the density gradient. Let us now analyse 
the profile of nDwI , red curve open red markers, for the simulation combining both instability 
mechanisms, Figure 3 right hand side. The profile is no longer symmetric and is clearly broader 
in the low field side where the interchange mechanism is at play. This imbalance of transport 
must also modify the source flux that can be expected to be larger for the low field side SOL 
than for the high field side SOL. Regarding the exponential fall-off, in the low field side SOL 
close to the source region the e-folding length is typically 1/λ  0.011, and further in the low 
field side SOL it decreases to 1/λ = 0.018 before dipping to still smaller values. For the high 
field side SOL, the e-folding length appears to be 1/λ ≈ 0.029. More accurate values of the 
e-folding length are obtained by computing rn/n (using the Fourier transform to compute the 
derivative). This calculation yields directly 1/λ, Figure 4 left hand side. On this figure the data 
from all three simulations are compared, black curve head up open black triangles for the Drift 
Wave only instability mechanism, blue curve head down open blue triangles for Interchange as 
only instability mechanism, and red curve, open red circles, when combining the two instabilities. 
In some regions one can easily define a nearly constant value of ∇rn/n, while this becomes less 
obvious in other regions, in particular for the high field side SOL where ∇rn/n is positive. One 
finds that the width of the low field side SOL is broader with interchange only 1/|λI | ≈ 0.013, 
slightly narrower when combining the two instability mechanisms 1/|λDwI | ≈ 0.015 and still 
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Figure 3: Density profiles in log-scale, the source is located at x = 0 and x = 256 (periodicity 
condition). 
Left hand side, nDW from a simulation with drift wave instability mechanism only, black curve 
head up open triangles. The profile is symmetric with respect to the mi-box radius at x = 128. 
One can fit an exponential decay in the region closest to the source with e-folding length λ, 
1/λ ≈ 0.018. 

Right hand side, nDwI for a simulation combining drift wave and interchange instability 
mechanisms, red curve open circles. We have identified 3 regions with exponential decay, two 
for the low field side SOL, x  170, and one for the high field side SOL, x  170. In the low 
field side SOL, the decay closest to the source exhibits an e-folding length of order 1/λ 0.011, 
with a sharper decay further radially, 1/λ 0.018. In the high field side the exponential decay 
away from the source is characterised by an e-folding length 1/λ = 0.029, closer to that expected 
without turbulent transport 1/λdίff = 0.08 

larger for the drift wave only case 1/ λDW  0.019. One finds as previously discussed that 
the profiles tend to exhibit sharper gradients before the reversal of the slope, the far SOL 
appear narrower than the SOL close to the separatrix. Regarding the high field side SOL, where 

interchange is stable, one finds that  r/n approaches the value 1/λdίff =  σn/D⊥   0.08 
that would be reached without turbulent transport and only the diffusive transport. The drift 
wave only case is symmetric, hence 1/|λDW | ≈ 0.019. The case combining the two instabilities, 
appears to generate a narrower SOL with 1/ λDwI  0.029. All these results strongly disagree 
with the trend one could expect given the analysis of the growth rates. Some effects can be 
related to expected changes in phase between the density fluctuations and the fluctuations of 
the radial E B drift velocity governed by the ratio γi/γr. Another point, in line with the 
importance we give to flux driven conditions, is that the flux that drives the turbulence varies 
in these simulations, in particular the ratio between the flux to the high field SOL and that to 
the low field SOL depends on the asymmetry of turbulent transport in these two regions. This 
could govern a non-linear effect on the SOL width. To illustrate this last aspect, we now present 
the so-called Sherwood dimensionless parameter for these simulations. 

To investigate the transport barriers that appear in global flux driven simulations [34, 35] 
it is convenient to compute the ratio of the turbulent flux Γturb divided by the total flux 

Γtotal = Γdίff + Γturb where Γturb = ⟨nvr,E×B⟩ and Γdίff = −D⊥ ⟨∇rn⟩. In a barrier region 
Γturb/Γtotal 0 while elsewhere Γturb/Γtotal 1 providing a convenient criterion to analyse the 
transport barrier dynamics as well as its dynamics [35]. The Sherwood dimensionless parameter 
Sh for particle transport is similar to the Nusselt number used for heat transport, and is defined 
as the ratio of the convective (turbulent) flux divided by the diffusive flux, hence Sh = Γturb/Γdίff. 

| | ≈ 
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Figure 4: Left hand side: Profiles of rn/n for the simulation with drift wave instability 
mechanism only, black curve head-up open triangles, interchange only blue curve head-down 
open blue triangles and the case combining the two instabilities, red curve open red circles. 
Regions with near constant values of r/n, indicated by the horizontal dashed lines allow us to 
define the e-folding lengths discussed in the text. The top horizontal black dashed line is the 
value of  r/n that is expected for diffusive transport without turbulent E  B convection. 

Right hand side: Profiles of the Sherwood parameter for the same simulations and same 
convention, DW black curve with open head-up triangles, I blue curve with blue open head- 
down triangles, DwI red curve with red open circles. Here the Sherwood number is computed 
with the time and y averages of the fluxes. The Sherwood number diverges when  rn  0, 
in the source region and towards the mid-box where the density gradient reverses, the latter 
locations are indicated by the vertical dash-dot lines. 

 
 

 

Figure 5: Sherwood number Sh computed with y-averaged fluxes versus radial position x, 
horizontal axis, and time t, vertical axis. Data from the simulation ”I” with only the interchange 
instability mechanism. 
Left hand side: Plot for the time interval Ω0∆t = 6. 104, corresponding to 1250 snapshots, 
Right hand side: Plot for a reduced time window Ω0∆t = 2. 104 and different colour-scale to 
highlight the structure with negative values of Sh and the region with Sh 1, green colour 
range. The black plain line is oriented like the typical ballistic propagation of the outward 
avalanches. The vertical mauve dash-dot lines indicate the radial position where ⟨Γdίff⟩y,t = 0. 
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Figure 6: Sherwood number Sh computed with y-averaged fluxes versus radial position x, 
horizontal axis, and time t, vertical axis. The black plain line is oriented like the typical ballistic 
propagation of the outward avalanches. The vertical mauve dash-dot lines indicate the radial 
position where Γdίff y,t = 0. Left hand side: Simulation ”DwI” of Drift waves with interchange. 
Right hand side: simulation ”DW” with drift wave only. 

 
It is clearly related to the criterion we have used to analyse the transport barriers and can also 
be related to the SOL width: Sh = λ2/λ2 − 1. Depending of the choice made for the fluxes 
three different values are obtained. Local values of the fluxes depending on radial position 
x, poloidal angle y and time can be used. Very large fluctuations in x, y and time are then 
observed. Regarding the effective radial transport, it is more convenient to consider y-averaged 
fluxes yielding a time dependent Sherwood profile. This reduces significantly the magnitude of 
the Sherwood number and retains the dynamics. Finally, one can use the time and y-averaged 
fluxes yielding a radial profile, with a further reduction in the magnitude of the Sherwood 
number. The profiles of the Sherwood dimensionless number are plotted on Figure 4 right 
hand side. This Figure summarizes many points discussed above. First, Sh tends to decrease 
gradually for x & 64 towards the point with inversion of the density gradient reversal (indicated 
by the vertical dashed lines). Second, the interchange exhibits a higher value of Sh compared 
to the case combining the two instabilities. Third, the drift wave case is identical for the high 
and low field side SOL, when the interchange is the only linear drive it does not contribute to 
the low field side SOL turbulence and for the high field side SOL the simulation with combined 
instabilities exhibits less turbulent transport than that with drift wave only. 

On Figure 5 are presented the Sherwood number determined with for y-averaged (flux surface 
average in this 2D model) radial fluxes of particles for the simulation ”I” with interchange as only 
linear drive. On Figure 5 left hand side, the colour-scale is chosen to highlight the avalanches. 
These exhibit long range propagation from 64  x  192. For 0  x  64, closer to the 
source location at x = 0, corrugations [17, 16], the vertically oriented dark structures, appear 
to inhibit the long range propagation. The colour scale is changed on Figure 5 right hand side 
for comparison to the other simulations with drift waves. The time window is reduced and 
colour-scale symmetric between 250 and +250. The colour-scale also allows one to identify 
the region with positive Sherwood number and Sh 1 that corresponds to the green colour- 
range. One can then clearly notice that the long range avalanche region extends up to x 194 
highlighted by the vertical mauve dash dot line that indicates the radial position where the 
time average density profile reverse, therefore with zero gradient and vanishing diffusive flux 
Γdίff. One can remark strongly negative structures of the Sherwood numbers, blue colour-scale, 
embedded in regions of maximum Sherwood number, with white colour-scale, and located in the 
region that exhibits the corrugations. The same plot, same time window and same colour-scale, 
is shown on Figure 6 for the simulation ”DwI” with drift wave and interchange, left hand side, 
and simulation ”DW” with only drift wave. On the left hand side with interchange present, 
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the pattern of avalanche transport is still apparent but inhibited compared to the case with 
only interchange. Corrugation patterns are not visible. Regions with large negative Sherwood 
number are more frequent and appear to align according to the avalanche pattern. This suggests 
time sequences with large avalanches with outward flux, these being nearly concomitant with 
avalanches with large inward fluxes. The reversal of the avalanche direction of transport can 
be related to the phase change between the over-dense structures and the location of maximum 
radial E  B convection. Finally, in the case with drift wave only turbulence, the avalanche 
pattern is clearly inhibited and the magnitude of the Sherwood number is reduced for both the 
negative and positive values. The ballistic propagation of the outward avalanches indicated by 
the black lines, Figure 5 right hand side and Figure figure: sherwood DW left and right hand 

side are found to be quite comparable, 4.6 ρ∗cs, 4.4 ρ∗cs and 5.1 ρ∗cs respectively. 

 
5. Discussion and conclusion 
In this paper we have revisited the seminal papers on SOL interchange turbulence [10] and 
drift wave turbulence [25] to obtain a versatile 2D model to investigate numerically plasma 
turbulent transport. We have shown that the instability triggered by the effect of temperature 
fluctuations on the sheath conductivity, when linearised, is in fact comparable to drift wave 
turbulence. Therefore, provided one extends the model to allow the transported field to be 
either the temperature at constant density or the density at constant temperature, one can use 
this 2D model with two different instability mechanisms to investigate both the edge plasma 
and the SOL. The model then describes the E B convection of the transported field, here 
defined as the density, to the E  B convection of the vorticity, identical in this simplified 
version to the Laplacian of the electric potential φ. The physics of interface barriers has been 
investigated with such a model [23] modified to handle both closed and open field lines. The 
linear analysis indicates that most of the parallel losses participate to damping processes of 
the large-scale fluctuations -while dissipative effects are damping processes of the small-scale 
fluctuations. Conversely, the buoyancy effect with control parameter g and the parallel the 
parallel conductivity proportional to the density field with control parameter C, govern the 
coupling between the two fields and consequently the linear instabilities. The interchange 
like instability is shown to depend on the sign of the density gradient making it stable in the 
high field side SOL and possibly unstable in the low field side SOL. conversely the drift wave 
turbulence does not depend on the sign of the density gradient and can be triggered in both 
high and low field SOL. Furthermore, the interchange instability grows with g but the drift 
wave instability levels-off at modest growth rate and is stabilised at large values of C. Using 
the linear analysis we have selected a case, such that the growth rate of drift waves and the 
interchange growth rate are identical, the growth rate when both instabilities are at play being 
roughly the double. The choice defines three cases that have been investigated numerically 
for both high and low field SOL. We have used the SOL width to characterise the turbulent 
transport. The largest SOL e-folding length is observed with interchange only, and therefore 
is restricted to the low field side turbulent transport. The model including both interchange 
and drift waves is found to yield a small but comparable width on the low field side, together 
with the narrowest SOL width located on the high field side. Finally, the drift wave case 
with no buoyancy effect generates the same narrow SOL width in the high and low field SOL. 
The Sherwood dimensionless number, ratio of the convective particle transport, therefore the 
turbulent particle transport, divided by the diffusive transport, is also used to characterise the 
turbulent transport. It indicates, agreeing with the analysis of the density gradient, that for the 
chosen parameters the SOL is rather inhomogeneous. The largest e-folding length and turbulent 
transport are localised towards the source region (the separatrix), then the amplitude of the 
gradients increase significantly while the effectiveness of turbulent transport is reduced. The 
ongoing investigation suggests that turbulence with corrugations characterise the broad SOL 
region, while long range avalanche transport appear to prevail where the turbulent transport 
is reduced and gradient amplitude increase. The connection to the issue of the distance to 
marginality, which is most likely equivalent to a weak flux forcing, is presently analysed. 



THEORY OF FUSION PLASMAS JOINT VARENNA - LAUSANNE WORKSHOP 2022 IOP Publishing 

Journal of Physics: Conference Series 2397 (2022) 012018 doi:10.1088/1742-6596/2397/1/012018 

17 

 

 

 

 
Acknowledgements 
This work has been carried out thanks to the support of the A*MIDEX project (ANR-11-IDEX- 
0001 02, TOP project) funded by the ‘Investissements d’Avenir’ French Government program, 
managed by the French National Research Agency (ANR). This work has been also supported 
by the French National Research Agency grant SISTEM (ANR-19-CE46-0005-03) and by the 
French National Research Agency grant AIM4EP (ANR-21-CE30-0018-01). This work has been 
carried out within the framework of the EUROfusion Consortium, funded by the European 
Union via the Euratom Research and Training Programme (Grant Agreement No. 633053 and 
Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however 
those of the author(s) only and do not necessarily reflect those of the European Union or the 
European Commission. Neither the European Union nor the European Commission can be held 
responsible for them. 

 

 
References 
References 

[1] ITER Physics Expert Group 1999 Nuclear Fusion 39 2175–2249 URL 
https://iopscience.iop.org/article/10.1088/0029-5515/39/12/302 

[2] Loarte A, Lipschultz B, Kukushkin A, Matthews G, Stangeby P, Asakura N, Counsell 
G, Federici G, Kallenbach A, Krieger K, Mahdavi A, Philipps V, Reiter D, Roth J, 
Strachan J, Whyte D, Doerner R, Eich T, Fundamenski W, Herrmann A, Fenstermacher 
M, Ghendrih P, Groth M, Kirschner A, Konoshima S, LaBombard B, Lang P, Leonard A, 
Monier-Garbet P, Neu R, Pacher H, Pegourie B, Pitts R, Takamura S, Terry J, Tsitrone 
E, the ITPA Scrape-off Layer and Group D 2007 Nuclear Fusion 47 S203–S263 URL 
https://doi.org/10.1088/2F0029-5515/2F47/2F6/2Fs04 

[3] Garbet X, Idomura Y, Villard L and Watanabe T 2010 Nuclear Fusion 50 043002 URL 
http://stacks.iop.org/0029-5515/50/i=4/a=043002 

[4] Grandgirard V, Abiteboul J, Bigot J, Cartier-Michaud T, Crouseilles N, Dif-Pradalier 
G, Ehrlacher C, Esteve D, Garbet X, Ghendrih P, Latu G, Mehrenberger M, Norscini 
C, Passeron C, Rozar F, Sarazin Y, Sonnendrucker E, Strugarek A and Zarzoso 
D 2016 Computer Physics Communications 207 35 – 68 ISSN 0010-4655 URL 
http://www.sciencedirect.com/science/article/pii/S0010465516301230 

[5] Tamain P, Bufferand H, Ciraolo G, Colin C, Galassi D, Ghendrih P, Schwander F and 
Serre E 2016 Journal of Computational Physics 321 606 – 623 ISSN 0021-9991 URL 
http://www.sciencedirect.com/science/article/pii/S0021999116301838 

[6] Bufferand H, Bucalossi J, Ciraolo G, Falchetto G, Gallo A, Ghendrih P, Rivals N, Tamain P, 
Yang H, Giorgiani G, Schwander F, d’Abusco M S, Serre E, Marandet Y and Raghunathan 
M 2021 Nuclear Fusion 61 116052 URL https://doi.org/10.1088/1741-4326/ac2873 

[7] Bourdelle C, Garbet X, Imbeaux F, Casati A, Dubuit N, Guirlet R and Parisot T 2007 
Physics of Plasmas 14 112501 (Preprint https://doi.org/10.1063/1.2800869) URL 
https://doi.org/10.1063/1.2800869 

[8] Bufferand  H,  Bensiali  B,  Bucalossi  J,  Ciraolo  G,  Genesio  P,  Ghen- 
drih  P,  Marandet  Y,  Paredes  A,  Schwander  F,  Serre  E  and  Tamain  P 
2013 Journal of Nuclear Materials 438 S445–S448 ISSN 0022-3115 URL 
http://www.sciencedirect.com/science/article/pii/S0022311513000986 

[9] Baschetti S, Bufferand H, Ciraolo G, Ghendrih P, Serre E, Tamain P and the WEST Team 
2021 Nuclear Fusion 61 106020 URL https://doi.org/10.1088/1741-4326/ac1e60 

[10] Sarazin  Y  and  Ghendrih  P  1998  Physics  of  Plasmas  5  4214–4228  (Preprint 
https://doi.org/10.1063/1.873157) URL https://doi.org/10.1063/1.873157 

http://stacks.iop.org/0029-5515/50/i%3D4/a%3D043002
http://www.sciencedirect.com/science/article/pii/S0010465516301230
http://www.sciencedirect.com/science/article/pii/S0021999116301838
http://www.sciencedirect.com/science/article/pii/S0022311513000986


THEORY OF FUSION PLASMAS JOINT VARENNA - LAUSANNE WORKSHOP 2022 IOP Publishing 

Journal of Physics: Conference Series 2397 (2022) 012018 doi:10.1088/1742-6596/2397/1/012018 

18 

 

 

 

 
[11] Ghendrih P, Sarazin Y, Attuel G, Benkadda S, Beyer P, Falchetto G, Figarella C, 

Garbet X, Grandgirard V and Ottaviani M 2003 Nuclear Fusion 43 1013 URL 
http://stacks.iop.org/0029-5515/43/i=10/a=001 

[12] Fedorczak  N,  Gallo  A,  Tamain  P,  Bufferand  H,  Ciraolo  G  and  Ghen- 
drih P 2018 Contributions to Plasma Physics 58 471–477 (Preprint 
https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/ctpp.201700169) URL 
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/ctpp.201700169 

[13] Sarazin  Y, Garbet X, Ghendrih P  and  Benkadda  S 
2000 Physics  of  Plasmas  (1994-present)  7  1085–1088 URL 
http://scitation.aip.org/content/aip/journal/pop/7/4/10.1063/1.873947 

[14] Krasheninnikov S I 2001 Physics Letters A 283 368–370 ISSN 0375-9601 URL 
https://www.sciencedirect.com/science/article/pii/S0375960101002523 

[15] Sarazin Y, Grandgirard V, Abiteboul J, Allfrey S, Garbet X, Ghendrih P, 
Latu G, Strugarek A and Dif-Pradalier G 2010 Nuclear Fusion 50 054004 URL 
http://stacks.iop.org/0029-5515/50/i=5/a=054004 

[16] Ghendrih P, Asahi Y, Caschera E, Dif-Pradalier G, Donnel P, Garbet X, Gillot C, 
Grandgirard V, Latu G, Sarazin Y, Baschetti S, Bufferand H, Cartier-Michaud T, Ciraolo 
G, Tamain P, Tatali R and Serre E 2018 Journal of Physics: Conference Series 1125 012011 
URL http://stacks.iop.org/1742-6596/1125/i=1/a=012011 

[17] Dif-Pradalier G, Hornung G, Ghendrih P, Sarazin Y, Clairet F, Vermare L, 
Diamond P H, Abiteboul J, Cartier-Michaud T, Ehrlacher C, Est`eve D, Garbet X, 
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