On recognising words that are squares for the shuffle product

Romeo Rizzi, Stéphane Vialette

To cite this version:

Romeo Rizzi, Stéphane Vialette. On recognising words that are squares for the shuffle product. Theoretical Computer Science, 2023, 956, pp.111156.1-16. 10.1016/j.tcs.2017.04.003 . hal-04498180

HAL Id: hal-04498180

https://hal.science/hal-04498180

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On recognizing words that are squares for the shuffle product

Romeo Rizzia ${ }^{\text {a }}$, Stéphane Vialette ${ }^{\text {b }}$
${ }^{a}$ Computer Science Department, University of Verona, Verona, Italy
${ }^{b}$ Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France

Abstract

The shuffle of two words u and v of A^{*} is the language $u \amalg v$ consisting of all words $u_{1} v_{1} u_{2} v_{2} \ldots u_{k} v_{k}$, where $k \geq 0$ and the u_{i} and the v_{i} are words of A^{*} such that $u=u_{1} u_{2} \ldots u_{k}$ and $v=v_{1} v_{2} \ldots v_{k}$. In other words, $u ш v$ is the finite set of all words obtainable from merging the words u and v from left to right, but choosing the next symbol arbitrarily from u or v. A word $u \in A^{*}$ is a square for the shuffle product if it is the shuffle of two identical words (i.e., $u \in v \amalg v$ for some $v \in A^{*}$).

Whereas it can be decided in polynomial-time whether or not $u \in v_{1} \amalg v_{2}$ for given words u, v_{1} and v_{2} [J.-C. Spehner. Le Calcul Rapide des Mélanges de Deux Mots, Theoretical Computer Science, 1986], we show in this paper that it is NP-complete to determine whether or not a word u is a square for the shuffle product. The novelty in our approach lies in representing words as linear graphs, in which deciding whether or not a given word is a square for the shuffle product reduces to computing some inclusion-free perfect matching. Finally, we prove that it is NP-complete to determine whether or not an input word is in the shuffle of a word with its reverse.

Keywords: Combinatorics on words; Shuffle operator; Complexity.

1. Introduction

Let A be an alphabet. The shuffle $u \amalg v$ of words u and v over A is the finite set of all words obtainable from merging the words u and v from left to right, but choosing the next symbol arbitrarily from u or v [14]. The iterated shuffle of u is the language $\epsilon \cup u \cup(u \amalg u) \cup(u \amalg u \amalg u) \cup \ldots$ These definitions naturally extend to languages. It is known that the shuffle product is a commutative and associative operation, which is also distributive over union. The operations of shuffle and iterated shuffle have been used by many researchers to describe

[^0]sequential computation histories of concurrent programs [12]. Interestingly, it was observed in [11] that some aspects of the shuffle product bear strong similarities with genetic recombinations (a non-tree-like event that produces a child sequence by crossing two parent sequences).

For the iterated shuffle, there are basically two kinds of questions that can be addressed depending on whether or not the shuffled element is given as a part of the input. This distinction basically reduces to the two following problems:

- "Given $u, v \in A^{*}$, is u in the iterated shuffle of v ?", and
- "Given $u \in A^{*}$, is u in the iterated shuffle of some $v \in A^{*}$?".

If we focus on only one application of the shuffle product, we are left with the two following problems:

- "Given $u, v \in A^{*}$, is $u \in v$ ш v ?", and
- "Given $u \in A^{*}$, does there exist $v \in A^{*}$ such that $u \in v$ Ш v ?".

As we shall see soon, these two problems dramatically differ in complexity.
We briefly review the key results that arise in our context. Given words u, v_{1} and v_{2}, it can be tested in $O\left(|u|^{2} / \log (|u|)\right)$ time whether or not $u \in$ $v_{1} \amalg v_{2}[21]$. (To the best of our knowledge, the first $O\left(|u|^{2}\right)$ time algorithm appeared in [16]. This algorithm can easily be extended to check in polynomialtime whether or not a word is the shuffle of any fixed number of given words.) The shuffle $u Ш v$ of words u and v can be computed in $O\left((|u|+|v|)\binom{|u|+|v|}{|u|}\right)$ time [19]. An improvement and generalization has been proposed in [1], where it is proved that, given words $u_{1}, u_{2}, \ldots, u_{k}$, the shuffle $Ш_{i=1}^{k} u_{i}$ can be computed in $O\left(\binom{\left|u_{1}\right|+\left|u_{2}\right|+\ldots+\left|u_{k}\right|}{\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{k}\right|}\right)$ time.

Given words $u, v_{1}, v_{2}, \ldots, v_{k} \in A^{*}$, it is however NP-complete to decide whether or not $u \in Ш_{i=1}^{k} v_{i}[16,24]$, and recently the problem has been proven to be \mathbf{W} [2]-hard parameterized by k [20]. This remains true even if the alphabet has size 3 [24]. Of particular interest, it is shown in [24] that this problem remains NP-complete even if all words $v_{1}, v_{2}, \ldots, v_{k}$ are identical, thereby proving that, for two words u and v, it is NP-complete to decide whether or not u is in the iterated shuffle of v. Again, this remains true even if the alphabet has size 3.

Strongly related is the problem of shuffling a word with its reverse. Let $u \in A^{*}$. It is easily seen that if there exists $v \in A^{*}$ such that $u \in v ш v^{R}$, then u is an Abelian square (i.e., $u=v v^{\prime}$, where v^{\prime} is a permutation of v). Of particular interest, it is shown in [17] that if u is a binary Abelian square, then there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$, thereby proving that it is polynomial-time solvable to decide whether or not a binary word is the shuffle of another word with its reverse. The equivalence is, however, no longer true for larger alphabets. For example, $a b c a b c$ is a ternary Abelian square that cannot be written as an element of $v ш v^{R}$ for any word $v \in A^{*}[17]$.

In this paper, our approach lies in the use of linear graphs (i.e, those graphs with sets of vertices equipped with some total order), in which deciding whether or not a given word is in the shuffle of another word with itself (or its reverse) reduces to computing some constrained perfect matching. We show that, given $u \in A^{*}$, it is NP-complete to decide whether or not u is the shuffle of some word $v \in A^{*}$ with itself (i.e., does there exist some $v \in A^{*}$ such that $u \in$ $v \amalg v ?$). Notice that this result was first claimed by K. Iwama [9], but it turns out that the proof has a serious flaw [3]. Buss and Soltys [5] have also, very recently, independently solved this problem (as an answer to Erickson [8] on the Stack Exchange discussion board) using a similar constrained perfect matching approach. The two proofs use, however, different reductions, and it is worth noticing that Buss and Soltys managed to obtain the stronger result that the question remains hard for a size-9 alphabet. Furthermore, we complete the positive result of [17] by proving that, given $u \in A^{*}$, it is NP-complete to decide whether or not u is the shuffle of some word $v \in A^{*}$ with its reverse (i.e., does there exist some $v \in A^{*}$ such that $u \in v \amalg v^{R}$?).

2. Definitions

We follow standard terminology on words [6]. Let A be an alphabet. The empty word is denoted ϵ. A word $v=a_{1} a_{2} \ldots a_{n} \in A^{n}$ with $a_{i} \in A$ is a subsequence of $u \in A^{*}$ if there exist $n+1$, not necessarily distinct and possibly empty, words $u_{1}, u_{2}, \ldots, u_{n+1} \in A^{*}$ such that $u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}=u$, and we write $v \preceq u$ to denote this fact. The reverse of $v=a_{1} a_{2} \ldots a_{n}$ with $a_{i} \in A$ is the word $v^{R}=a_{n} \ldots a_{2} a_{1}$.

The shuffle (also sometimes referred to as the ordinary shuffle in the literature) of two words u and v, denoted $u \amalg v$, is the language of all words w such that $w=u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n}$, where $u_{i}, v_{i} \in A^{*}, u_{1} u_{2} \ldots u_{n}=u$, and $v_{1} v_{2} \ldots v_{n}=v$. It may be defined inductively on words by $u \amalg \epsilon=u, \epsilon \amalg u=u$, and $u a \amalg v b=(u \amalg v b) a \cup(u a \amalg v) b$. A word $u \in A^{*}$ is said to be a square for the shuffle product if it is the shuffle of two identical words (i.e., $u \in v Ш v$ for some $\left.v \in A^{*}\right)$. The iterated shuffle of u is the language $\epsilon \cup u \cup(u Ш u) \cup(u Ш u \amalg u) \cup \ldots$

For two words $u=a_{1} a_{2} \ldots a_{n}$ and $v=b_{1} b_{2} \ldots b_{n}, a_{i}, b_{i} \in A$, of the same length, we denote their perfect shuffle ${ }^{1} u Ш_{p} v=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n}$. Note that $u Ш_{p} v$ needs not equal to $v \varpi_{p} u$. Moreover, $\left(u Ш_{p} v\right)^{R}=v^{R} Ш_{p} u^{R}$. Abusing notation, it will be useful to allow $|u|=|v|+1$, where $u=a_{1} a_{2} \ldots a_{n+1}$ and $v=b_{1} b_{2} \ldots b_{n}$, in which case we define $u Ш_{p} v=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} a_{n+1}$.

For a graph G, we denote $\mathbf{V}(G)$ as the set of vertices and $\mathbf{E}(G)$ as the set of edges. Let $u=u_{1} u_{2} \ldots u_{n} \in A^{n}$ be a word on some alphabet A. The graph associated to u, denoted G_{u}, is defined by $\mathbf{V}\left(G_{u}\right)=\{1,2, \ldots, n\}$ and $\mathbf{E}\left(G_{u}\right)=\left\{\{i, j\}: i \neq j \wedge u_{i}=u_{j}\right\}$. (We write (i, j) for an edge of $\mathbf{E}\left(G_{u}\right)$

[^1]if it is clear from the context that $i<j$, and $\{i, j\}$ otherwise.) Clearly, G_{u} is the disjoint union of cliques, one clique for each distinct letter. Recall that two edges of a graph are independent if they do not share a common vertex, and that a matching \mathcal{M} in G is a set of pairwise independent edges. A matching is perfect if it covers all the vertices of the graph. In case the set of vertices is equipped with a total order, a matching \mathcal{M} is said to be inclusion-free if there do not exist (independent) edges (i, j) and (k, ℓ) in \mathcal{M} such that $i<k<\ell<j$. Similarly, a matching \mathcal{M} is said to be precedence-free (resp. crossing-free) if there do not exist (independent) edges (i, j) and (k, ℓ) in \mathcal{M} such that $i<j<k<\ell$ (resp. $i<k<j<\ell$). Finally, a perfect matching \mathcal{M} is said to be a tower if it is both precedence-free and crossing-free.

3. Being a square for the shuffle product

This section is devoted to proving hardness of recognizing those words that are squares for the shuffle product. Notice that, as observed in [8], the special case where each letter occurs at most 4 times easily reduces to 2 -Sat. This approach generalizes to general strings but does not give a polynomial-time decision procedure as clauses may contain up to $\max \left\{|u|_{a}: a \in \Sigma\right\}-1$ literals.

At the heart of our approach for proving hardness is the following property. (See Fig. 1 for an illustration.)

Lemma 1. Let $u \in A^{*}$ for some alphabet A, and G_{u} be the corresponding linear graph. Then, u is a square for the shuffle product if and only if there exists an inclusion-free perfect matching in G_{u}.

Proof. Indeed, suppose first that there exists $v \in A^{*}$ such that $u \in v Ш v$. Let $2 n=|u|$. Fix the occurrences in u of the two copies of v and write $I^{1}=$ $\left\{i_{1}^{1}, i_{2}^{1}, \ldots, i_{n}^{1}\right\}, i_{1}^{1}<i_{2}^{1}<\ldots<i_{n}^{1}$, for the positions in u of the first copy of v and $I^{2}=\left\{i_{1}^{2}, i_{2}^{2}, \ldots, i_{n}^{2}\right\}, i_{1}^{2}<i_{2}^{2}<\ldots<i_{n}^{2}$, for the positions in u of the second copy of v. It is easily seen that $\mathcal{M}=\left\{\left\{i_{j}^{1}, i_{j}^{2}\right\}: 1 \leq j \leq n\right\}$ is a subset of $\mathbf{E}\left(G_{u}\right)$. Furthermore, \mathcal{M} is a perfect matching since $I^{1} \cap I^{2}=\emptyset$, and $I^{1} \cup I^{2}=\{1,2, \ldots 2 n\}$. It is also inclusion-free. Indeed, if it were not the case then there would exist two edges $e=\left\{i_{j}^{1}, i_{j}^{2}\right\}$ and $e^{\prime}=\left\{i_{k}^{1}, i_{k}^{2}\right\}, j<k$, in \mathcal{M} such that $i_{j}^{1}<i_{k}^{1}<i_{k}^{2}<i_{j}^{2}$. This is a contradiction since $i_{k}^{2}>i_{j}^{2}$ if $k>j$.

Conversely, let $\mathcal{M} \subseteq \mathbf{E}\left(G_{u}\right)$ be an inclusion-free perfect matching of G_{u}. Let $I^{1}=\{j: \exists k>j$ with $(j, k) \in \mathcal{M}\}$ and $I^{2}=\{k: \exists j<k$ with $(j, k) \in$ $\mathcal{M}\}$. Then $\left|I^{1}\right|=\left|I^{2}\right|$. Write $I^{1}=\left\{i_{1}^{1}, i_{2}^{1}, \ldots, i_{n}^{1}\right\}$ and $I^{1}=\left\{i_{1}^{2}, i_{2}^{2}, \ldots, i_{n}^{2}\right\}$ with $i_{1}^{1}<i_{2}^{1}<\ldots<i_{n}^{1}$ and $i_{1}^{2}<i_{2}^{2}<\ldots<i_{n}^{2}$. Let $v=u_{i_{1}^{1}} u_{i_{2}^{1}} \ldots u_{i_{n}^{1}}$ and $v^{\prime}=u_{i_{1}^{2}}^{2} u_{i_{2}^{2}} \ldots u_{i_{n}^{2}}$. We claim that $v=v^{\prime}$. Indeed, suppose, aiming at a contradiction, that $v \neq v^{\prime}$. Let $j-1$ be the length of the largest common prefix of v and v^{\prime}. Then it follows that there exist i_{k}^{1} and i_{ℓ}^{2} such that $i_{j}^{1}<i_{k}^{1}<i_{j}^{2}<i_{\ell}^{2}$ with $\left\{i_{j}^{1}, i_{\ell}^{2}\right\} \in \mathcal{M}$ and $\left\{i_{k}^{1}, i_{j}^{2}\right\} \in \mathcal{M}$, and hence \mathcal{M} is not inclusion-free. This is the sought contradiction.

Figure 1: The linear graph G_{u} of $u=a b a b b b a a$ together with an inclusion-free perfect matching \mathcal{M}. The perfect matching \mathcal{M} denotes $u \in v Ш v$ for $v=a b b a$ and reads as $u=\begin{array}{lllllll}a & b & b & & & a \\ & a & b & b & a\end{array}$ with the first copy of v on top and the second on bottom.

The following easy result is used in upcoming Proposition 4. Two points are worth noting First, Proposition 2 is most probably folklore, but we do not know any reference. Second, requiring equal length input words in the proof of Proposition 4 is actually not a crucial property but it greatly simplifies the exposition by avoiding introducing length specific gadgets.

Proposition 2. The Longest Common Subsequence problem is NP-complete even if the input consists of binary words that are all of the same length.

Proof. We reduce from the Longest Common Subsequence problem for binary words which is known to be NP-complete [15]. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$, $u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$, be our input collection of words, and k be a positive integer. Write $\left|u_{i}\right|=n_{i}$ for $1 \leq i \leq m$ and assume $n_{1} \leq n_{2} \leq \ldots \leq n_{m}$. Define a new collection of words $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$, as follows:

$$
v_{i}=u_{i} 0^{n_{m}-k+1} 1^{n_{m}-n_{i}} .
$$

It is easily seen that V is composed of words that are all of the same length $2 n_{m}-k+1$. Define $k^{\prime}=n_{m}+1$.

We claim that there exists a subsequence of length k common to all words of U if and only if there exists a common subsequence of length k^{\prime} common to all words of V.

Suppose first that there exists a subsequence w of length k common to all words of U. It is immediate to check that $w 0^{n_{m}-k+1}$ is a word of length $k^{\prime}=n_{m}+1$ common to all words of V.

Conversely, suppose that there exists a subsequence w of length $k^{\prime}=n_{m}+1$ common to all words of V. We first observe that $v_{m}=u_{m} 0^{n_{m}-k+1}$ as $1^{n_{m}-n_{m}}$ reduces to the empty word. Hence, since $k^{\prime}>n_{m}=\left|u_{m}\right|$ it follows that w terminates with a sequence of 0's. Therefore we may safely assume that $w=$ $w^{\prime} 0^{n_{m}-k+1}$ and that the $0^{n_{m}-k+1}$ suffix of w occurs in the $0^{n_{m}-k+1} 1^{n_{m}-n_{i}}$ suffix of every $v_{i}, 1 \leq i \leq m$. Then it follows that w^{\prime} is a word of length $k^{\prime}-\left(n_{m}-k+1\right)=k$ that occurs as a subsequence in every $u_{i}, 1 \leq i \leq m$.

The next easy lemma turns out to be extremely useful for Proposition 4.
Lemma 3. Any word $u \in\{0,1\}^{p+q}$ with $|u|_{0}=p$ and $|u|_{1}=q$ is a subsequence of $\left(0^{p} 1\right)^{q} 0^{p}$.

We are now in position to prove our main result.
Proposition 4. It is NP-complete to determine whether or not a word is a square for the shuffle product.

Proof. The problem is certainly in NP. To prove hardness, we propose a polynomial-time reduction from the NP-complete Longest Common SubseQUENCE problem for binary words (01-LCS for short) which is defined as follows: Given a collection of words $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$, and positive integers p and q, decide whether there exists a subsequence of size $p+q$ with p letters 0 and q letters 1 common to all sequences of U [15]. According to Lemma 2, we may assume that $\left|u_{i}\right|=\left|u_{j}\right|$ for $1 \leq i<j \leq m$. According to Lemma 2, we may assume that $\left|u_{i}\right|=\left|u_{j}\right|$ for $1 \leq i<j \leq m$. We write (U, p, q) for such an instance of 01-LCS.

Let $(U, p, q), U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$ and $\left|u_{i}\right|=$ $\left|u_{j}\right|=n$ for $1 \leq i<j \leq m$, be an arbitrary instance of $01-L C S$. Let us construct from this instance a word w over the $(3 m+6)$-size alphabet A defined as follows:

$$
A=\{0,1\} \dot{\cup}\left\{s, s^{\prime}\right\} \dot{\cup}\left\{t, t^{\prime}\right\} \dot{\cup}\left\{x_{i}, y_{i}, z_{i}: 1 \leq i \leq m\right\}
$$

The word target w is defined by

$$
w=W_{s} W_{1} W_{2} \ldots W_{m} W_{t}
$$

where $W_{s}, W_{1}, W_{2}, \ldots, W_{m}$ and W_{t} are words in A^{*} (we refer to these words as our gadget words).

Let us now describe the various gadget words. The source and sink gadget words, denoted W_{s} and W_{t} respectively, are defined as follows

$$
\begin{aligned}
& W_{s}=s^{\prime} 0^{p q} s^{\prime} s\left(0^{p} 1\right)^{q} 0^{p} s \\
& W_{t}=t\left(0^{p} 1\right)^{q} 0^{q} t t^{\prime} 0^{p q} t^{\prime}
\end{aligned}
$$

where s, s^{\prime}, t and t^{\prime} are four letters that do not occur in any other gadget word. To shorten the exposition, we shall speak about the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of $W_{s}\left(\right.$ resp. $\left.W_{t}\right)$ to designate the factor of $W_{s}\left(\right.$ resp. $\left.W_{t}\right)$ that occurs between the two occurrences of the letter s (resp. t), and about the $0^{p q}$-factor of W_{s} (resp. W_{t}) to designate the factor of W_{s} (resp. W_{t}) that occurs between the two occurrences of the letter s^{\prime} (resp. t^{\prime}). For each input word $u_{i}=u_{i, 1} u_{i, 2} \ldots u_{i, n}$, the associated gadget word W_{i} is defined by

$$
W_{i}=x_{i} W_{i}^{\prime} x_{i} y_{i} W_{i}^{\prime} y_{i}
$$

where

$$
W_{i}^{\prime}=u_{i, 1} z_{i} u_{i_{2}} z_{i} \ldots u_{i, n-1} z_{i} u_{i, n}
$$

In other words, $W_{i}^{\prime}=u_{i} Ш_{p} z_{i}^{n}$. (Notice that letters x_{i}, y_{i} and z_{i} only occur in the gadget word W_{i}.)

With the corresponding linear graph G_{w} in mind, for any letter $a \in A$ occurring only twice in w, we shall write (a, a)-edge to designate (without any ambiguity) the unique edge connecting the two occurrences of letter a in G_{w}.

A schematic description of the reduction is depicted in Figure 2 and a full example involving 3 binary words in given in Appendix (subsections Describing the 01-LCS instance and Full example for shuffled square words).

We now claim that there exists a common subsequence with p letters 0 and q letters 1 common to all sequences of U if and only if w is a square for the shuffle product. It will be convenient to see the reduction as a flow-like procedure, where some piece of information (the common subsequence) emitted from gadget W_{s} (the source) propagates lossless to gadget W_{t} (the sink) going through all gadgets $W_{i}, 1 \leq i \leq m$ (every such gadget being associated to an input word of our input instance of 01-LCS).

For the forward direction, suppose that there exists a common subsequence v of the words $u_{1}, u_{2}, \ldots, u_{m}$ with p occurrences of the letter 0 and q occurrence of the letter 1. Write $k=p+q$ and $v=v_{1} v_{2} \ldots v_{k}$. According to Lemma 1, it is enough to show that G_{w} has an inclusion-free perfect matching. Now, observe that v is a subsequence of both the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} and the $\left(0^{p} 1\right)^{q} 0^{p}$ factor of W_{t} (see Lemma 3). Furthermore, by hypothesis (and construction), v also occurs in each gadget word $W_{i}^{\prime}, 1 \leq i \leq m$. Fix any occurrence of v as a subsequence in (i) the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s}, (ii) the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t}, and (iii) in every W_{i}^{\prime} gadget word, $1 \leq i \leq m$ (if W_{i}^{\prime} contains several occurrences of v as a subsequence, we fix any but the same occurrence in the two W_{i}^{\prime} gadget words.) We can now turn to defining an inclusion-free perfect matching \mathcal{M} of G_{w}. This perfect matching contains both intra-gadget edges (i.e., edges connecting two identical letters that occur in the same gadget word), and inter-gadget edges (i.e., edges connecting two identical letters that occur in distinct - but consecutive - gadget words).
Intra-gadget edges:

- \mathcal{M} contains (i) the (s, s)-edge, (ii) the ($\mathrm{s}^{\prime}, \mathrm{s}^{\prime}$)-edge, and (iii) $p q$ pairwise crossing edges that connect the leftmost $p q$ letters 0 of W_{s} to the $p q$ letters 0 of the $\left(\begin{array}{ll}0^{p} & 1\end{array}\right)^{q} 0^{p}$-factor of W_{s} that do not correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s}.
- For every $1 \leq i \leq m, \mathcal{M}$ contains (i) the $\left(x_{i}, x_{i}\right)$-edge,, (ii) the $\left(y_{i}, y_{i}\right)$ edge, (iii) $n-1$ pairwise crossing edges connecting the $n-1$ occurrences of letter z_{i} in the leftmost W_{i}^{\prime} gadget word to the $n-1$ occurrences of letter z_{i} in the rightmost W_{i}^{\prime} gadget word, and (iv) $n-p-q$ pairwise crossing edges connecting the $n-p-q$ letters of the leftmost W_{i}^{\prime} gadget word that do not correspond to the chosen occurrence of v in W_{i}^{\prime} to the $n-p-q$ letters of the rightmost W_{i}^{\prime} gadget word that do not correspond to the occurrence of v in W_{i}^{\prime}.
- \mathcal{M} contains (i) the (t, t)-edge, (ii) the $\left(t^{\prime}, t^{\prime}\right)$-edge, and (iii) $p q$ pairwise crossing edges connecting the $p q$ letters 0 of the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} that do not correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t} to the last $p q$ letters 0 of W_{t}.

Inter-gadget edges:

- \mathcal{M} contains $p+q$ pairwise crossing edges connecting the $p+q$ letters of the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} that correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} to the $p+q$ letters of the leftmost W_{1}^{\prime} gadget word that correspond to the chosen occurrence of the common subsequence v in W_{1}^{\prime}.
- For every $1 \leq i<m, \mathcal{M}$ contains $p+q$ pairwise crossing edges connecting the $p+q$ letters of the rightmost W_{i}^{\prime} gadget word that correspond to the chosen occurrence of v in W_{i}^{\prime} to the $p+q$ letters of the leftmost W_{i+1}^{\prime} gadget word that correspond to the chosen occurrence of v in W_{i+1}^{\prime}.
- \mathcal{M} contains pq pairwise crossing edges connecting the $p+q$ letters of the rightmost W_{m}^{\prime} gadget word that correspond to the chosen occurrence of the common subsequence v in W_{m}^{\prime} to the $p+q$ letters of $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t} that correspond to the chosen occurrence of the common subsequence v.

It can be easily verified that \mathcal{M} is a perfect inclusion-free matching. Indeed, all inter-gadget edges in \mathcal{M} are pairwise crossing (and inter-gadget edges in \mathcal{M} connect consecutive gadgets words), and no two intra-gadget edges are in inclusion.

For the reverse direction, suppose that w is a square for the shuffle product. Once again, according to Lemma 1, this amount to saying that G_{w} has an inclusion-free perfect matching \mathcal{M}. We begin with a sequence of easy observations. First, observe that the letters $s, s^{\prime}, t, t^{\prime}, x_{i}(1 \leq i \leq m)$, and y_{i} ($1 \leq i \leq m$) occur exactly twice in w, and hence the $2 m+4$ edges connecting these vertices two by two have to be in \mathcal{M} since it is perfect. In other words, \mathcal{M}
contains the (s, s)-edge, the $\left(s^{\prime}, s^{\prime}\right)$-edge, the (t, t)-edge, the $\left(t^{\prime}, t^{\prime}\right)$-edge, and the $\left(x_{i}, x_{i}\right)$-edge and the (y_{i}, y_{i})-edge for $1 \leq i \leq m$. Let us now focus on the source W_{s} gadget word. Since both the (s, s)-edge and the $\left(s^{\prime}, s^{\prime}\right)$-edge are in \mathcal{M}, then it follows that (i) no edge in \mathcal{M} can connect two identical letters occurring in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s}, and (ii) no edge in \mathcal{M} can connect two identical letters occurring in the $0^{p q}$-factor of W_{s}. Then it follows that \mathcal{M} contains $p q$ pairwise crossing edges connecting all letters from the $0^{p q}$-factor of W_{s} to $p q$ letters 0 occurring in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} (otherwise \mathcal{M} would not be inclusion-free). Similar considerations apply to W_{t} yielding (i) no edge in \mathcal{M} can connect two identical letters occurring in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t}, and (ii) no edge in \mathcal{M} can connect two identical letters occurring in the $0^{p q}$-factor of W_{t}. Then it follows that \mathcal{M} contains $p q$ pairwise crossing edges connecting $p q$ letters 0 occurring in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t} to all letters from the $0^{p q}$-factor of W_{t} (otherwise \mathcal{M} would not be inclusion-free). We now turn to the W_{i} gadget words. For every $1 \leq i \leq m, \mathcal{M}$ has to contain both the (x_{i}, x_{i})-edge and (y_{i}, y_{i})-edge, and hence \mathcal{M} contains $n-1$ pairwise crossing edges connecting the $n-1$ letters z_{i} of the leftmost W_{i}^{\prime} gadget word to the $n-1$ letters z_{i} of the rightmost W_{i}^{\prime} gadget word (otherwise one edge connecting two letters z_{i} would be included in the (x_{i}, x_{i})-edge or in the ($\left.y_{i}, y_{i}\right)$-edge).

According to the above, $p+q$ letters of W_{s} have to be involved in some intergadget edges of \mathcal{M}. But \mathcal{M} contains the (x_{1}, x_{1})-edge, an hence these $p+q$ inter-gadget edges are pairwise crossing and each connect a letter occurring in the $\left(\begin{array}{ll}0^{p} & 1\end{array}\right)^{q} 0^{p}$-factor of W_{s} to a letter in the leftmost W_{1}^{\prime} gadget word. Now, since the $2(n-1)$ occurrences of letter z_{i} are involved in $n-1$ pairwise crossing edges, then it follows that \mathcal{M} contains $n-p-q$ pairwise crossing edges connecting the $n-p-q$ letters $u_{1, j}$ of the leftmost W_{1}^{\prime} gadget word that are not involved in the leftmost $p+q$ inter-gadget edges to $n-p-q$ letters $u_{1, j}$ of the rightmost W_{1}^{\prime} gadget word. Of particular importance, these $n-p-q$ edges have to be position preserving, i.e., each edge connect a letter $u_{1, j}$ of the leftmost W_{1}^{\prime} gadget word to a letter $u_{1, j}$ of the rightmost W_{1}^{\prime} gadget word for a same position j. At this point, $p+q$ letters of the rightmost W_{1}^{\prime} gadget are yet to be involved in \mathcal{M}. Since \mathcal{M} contains both the $\left(y_{1}, y_{1}\right)$-edge and the $\left(x_{2}, x_{2}\right)$-edge, the only solution is that \mathcal{M} contains $p+q$ pairwise crossing edges connecting letters from the rightmost W_{1}^{\prime} gadget word to the leftmost W_{2}^{\prime} gadget word. The same process continues until $p+q$ pairwise crossing edges connecting the rightmost W_{m}^{\prime} gadget word to the W_{t} sink gadget word.

It follows from the examination of \mathcal{M} that the $p+q$ pairwise crossing edges connecting $p+q$ letters of the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} to $p+q$ letters of the leftmost W_{1}^{\prime} gadget word define a word with p letters 0 and q letters 1 that occurs as a subsequence in each input word u_{i}.

It is worth noticing that S.C. Li and M. Li [13] proved that computing the largest inclusion-free matching in a linear graph is NP-complete. However, their quite complicated proof involves general linear graphs and not linear graphs that are unions of cliques, and hence cannot be used in the context of shuffling words (the above proposition may, however, be seen as a much simpler proof of Li and

Li's result).
We also notice that in the proof of Proposition 4, some letters occur exactly twice in the constructed word w. Clearly, in this case, w cannot be the shuffle of $k \geq 3$ identical copies of some word $v \in A^{*}$. We have thus proved the following.

Proposition 5. It is NP-complete to decide whether or not a word $u \in A^{*}$ is in the iterated shuffle of some word $v \in A^{*}$ with $u \neq v$.

Another easy easy corollary of Proposition 4 is worth mentioning.
Proposition 6. For a palindromic word $u \in A^{*}$, it is NP-complete to determine whether or not there exists $v \in A^{*}$ such that $u \in v Ш v$. This remains true even if one restricts v to be palindromic as well.

Proof. Let $u \in A^{*}$ and let a be any letter not in A. Consider the palindromic word $w=u a a u^{R}$. We claim that u is a square for the shuffle product if and only if w is a square for the shuffle product.

Suppose first that u is a square for the shuffle product. Then, there exists $v \in A^{*}$ such that $u \in v \amalg v$. We check at once that $w \in u a u^{R} ш u a u^{R}$, and hence w is a square for the shuffle product.

Conversely, suppose that w is a square for the shuffle product. Since $a \notin A$, then $w \in x a y \amalg x a y$ for some words $x, y \in A^{*}$. Therefore, $u \in x 山 x$ (and $u^{R} \in y \amalg y$), and hence u is a square for the shuffle product.

Anticipating Section 4, we observe that Proposition 7 can be rephrased as follows.

Proposition 7. For a palindromic word $u \in A^{*}$, it is NP-complete to determine whether or not there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$. This remains true even if one restricts v to be palindromic as well.

The case of binary alphabets (in a slightly altered question) is considered in [4]. For a word u, let $f(u)$ be the largest integer m such that there exist a word v of length m such that u contains a subsequence in $v ш v$. Let $f(n, A)=\min \{f(u): u$ is of length n, over alphabet $A\}$. It is shown in [4] that $2 f(n,\{0,1\})=n-o(n)$ using the regularity lemma for words. In other words, any binary word of length n can be split into two identical subsequences and, perhaps, a remaining subsequence of length $o(n)$. A similar result is proven for k identical subsequences of a word over an alphabet with at most k letters. An additional outcome of Lemma 1 is worth mentioning in this context.

Proposition 8. Let $u \in A^{*}$. There is a polynomial-time approximation scheme (PTAS) for computing the longest subsequence of u that is a square for the shuffle product.

Proof. Jiang gave a polynomial-time approximation scheme for computing the largest inclusion-free matching in a linear graph [10]. The result now follows from Lemma 1.

4. Being the shuffle of a word with its reverse

As we mentioned in Section 1, for a given u over some binary alphabet A, it is polynomial-time solvable to determine whether or not there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$. Indeed, if there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$, then u is an Abelian square (i.e., $u=v v^{\prime}$, where v^{\prime} is a permutation of v). Furthermore, if u is a binary Abelian square, then there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$ [17]. The equivalence is, however, no longer true for larger alphabets (the words $a b c a b c$ is an example of a ternary Abelian square that cannot be written as an element of $v \amalg v^{R}$ for any word v). As a complementary result to [17], we use again linear graphs to show that the problem is NP-complete for large alphabets. We need the following equivalence which can be seen as the analogous of Lemma 1 (see Fig. 3 for an illustration.); the lemma corrects a mistake in the former version of the paper [18].

Figure 3: The linear graph G_{u} of $u=a b b b b b a b$ together with and a precedence-free perfect matching \mathcal{M}^{\prime} that can be partitioned into two towers. The perfect matching \mathcal{M}^{\prime} denotes $u \in v \amalg v^{R}$ for $v=a b b a$ and reads as $u=$| a | b | | b | | | b | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | b | | b | b | a | with the first copy | of v on top and the second on bottom.

Lemma 9. Let $u \in A^{2 n}$ for some alphabet A, and G_{u} be the corresponding linear graph. Then, there exists $v \in A^{n}$ such that $u \in v Ш v^{R}$ if and only if there exists a precedence-free perfect matching in G_{u} that can be partitioned into two towers.

Proof. Suppose that there exists $v=v_{1} v_{2} \ldots v_{n} \in A^{n}$ such that u is in the shuffle of v with its reverse. Then the first half of u must contain some prefix of v, say $v_{1} v_{2} \ldots v_{k}$, and the second half of u must contain the remaining suffix of v, say $v_{k+1} v_{k+2} \ldots v_{n}$. Then it follows that the second half of u must contain (in the remaining positions) some prefix of v, reversed. But a straightforward counting argument shows that that this prefix must be $v_{1} v_{2} \ldots v_{k}$. Therefore, the first half of u must contain the remaining symbols of v, reversed. This shows that the first half of u is just $v_{1} v_{2} \ldots v_{k}$ shuffled with $\left(v_{k+1} v_{k+2} \ldots v_{n}\right)^{R}$, and the second half of u is just $v_{k} v_{k+1} \ldots v_{n}$ shuffled with $\left(v_{1} v_{2} \ldots v_{k}\right)^{R}$. Construct a perfect matching \mathcal{M} of G_{u} as follows: Join every letter of $v_{1} v_{2} \ldots v_{k}$ in the first half of u to the corresponding letter of $\left(v_{1} v_{2} \ldots v_{k}\right)^{R}$ in the second half of u (call this set $\left.\mathcal{M}_{\text {Red }}\right)$, and every letter of $\left(v_{k+1} v_{k+2} \ldots v_{n}\right)^{R}$ in the first half of u to the corresponding letter of $v_{k+1} v_{k+2} \ldots v_{n}$ in the second half of u (call this set $\mathcal{M}_{\text {Blue }}$). Clearly, \mathcal{M} is precedence-free (every edge connect a letter in the first half of u to a letter in the second half of u) and can partitioned into two towers $\left(\mathcal{M}_{\text {Red }}\right.$ and $\left.\mathcal{M}_{\text {Blue }}\right)$

Conversely, suppose that there exists a precedence-free perfect matching \mathcal{M} in G_{u} that can be partitioned into two towers, say $\mathcal{M}_{\text {Red }}$ and $\mathcal{M}_{\text {Blue }}$ with $\mathcal{M}=\mathcal{M}_{\text {Red }} \dot{\cup} \mathcal{M}_{\text {Blue }}$. Since \mathcal{M} is precedence-free, every edge of \mathcal{M} connects a letter in the first half of u to a letter in the second half of u. Let us say that a letter of u is Red (resp. Blue) if is part of an edge in $\mathcal{M}_{\text {Red }}$ (resp. $\mathcal{M}_{\text {Blue }}$) so that we may define $u_{\text {Red }}$ (resp. $u_{\text {Blue }}$) to be the subsequence of u made of all Red (resp. Blue) letters. Let $u_{\text {Red }}^{1}$ (resp. $u_{\text {Red }}^{2}$) be the subsequences of u made of all Red letters in the first (resp. second) half of u, and $u_{\text {Blue }}^{1}$ (resp. $u_{\text {Blue }}^{2}$) be the subsequences of u made of all Blue letters in the first (resp. second) haft of u. We claim that $u_{\text {Red }}^{1} u_{\text {Blue }}^{2}=\left(u_{\text {Blue }}^{1} u_{\text {Red }}^{2}\right)^{R}$, thereby proving the lemma as $u \in\left(u_{\text {Red }}^{1} u_{\text {Blue }}^{2}\right) \amalg\left(u_{\text {Blue }}^{1} u_{\text {Red }}^{2}\right)$ is immediate by construction. Indeed, since $\mathcal{M}_{\text {Red }}$ and $\mathcal{M}_{\text {Blue }}$ are towers, we have $u_{\text {Red }}^{1}=\left(u_{\text {Red }}^{2}\right)^{R}$ and $u_{\text {Blue }}^{1}=\left(u_{\text {Blue }}^{2}\right)^{R}$, and hence $u_{\text {Red }}^{1} u_{\text {Blue }}^{2}=\left(u_{\text {Red }}^{2}\right)^{R}\left(u_{\text {Blue }}^{1}\right)^{R}=\left(u_{\text {Blue }}^{1} u_{\text {Red }}^{2}\right)^{R}$.

We now turn to proving hardness. Whereas the general idea of the reduction is the same as in the proof of Proposition 4, the proof turns out to be a little bit more complex.

Proposition 10. For a word $u \in A^{*}$, it is NP-complete to determine whether or not there exists $v \in A^{*}$ such that $u \in v Ш v^{R}$.

Proof. The problem is certainly in NP. Again, to prove hardness, we propose a polynomial-time reduction from the NP-complete Longest Common SUBSEQUENCE problem for binary words (01-LCS): Given a collection of words $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$, and positive integers p and q, decide whether there exists a subsequence of size $p+q$ with p letters 0 and
q letters 1 common to all sequences of U [15]. According to Lemma 2, we may assume that $\left|u_{i}\right|=\left|u_{j}\right|$ for $1 \leq i<j \leq m$. We write (U, p, q) for such an instance of 01-LCS.

Let $(U, p, q), U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$ and $\left|u_{i}\right|=$ $\left|u_{j}\right|=n$ for $1 \leq i<j \leq m$, be an arbitrary instance of 01 -LCS. Let $Z=\left\{z_{i, j}\right.$: $1 \leq i \leq m \wedge 1 \leq j \leq n\}$ be an alphabet of $m(n+1)$ new letters, and, for every $1 \leq i \leq m$, define the word $z_{i}=z_{i, 1} z_{i_{2}} \ldots z_{i, n+1}$ of length n.

Let us construct from this instance a word w over the $(m n(n+3)+7)$-size alphabet A defined as follows:

$$
\begin{aligned}
A= & \{0,1\} \dot{\cup} \\
& \left\{r, b_{1}, b_{2}, t_{1}, t_{2}\right\} \dot{\cup} \\
& \left\{x_{i}, y_{i}: 1 \leq i \leq m\right\} \dot{\cup} \\
& \left\{z_{i, j}: 1 \leq i \leq m \wedge 1 \leq j \leq n+1\right\} .
\end{aligned}
$$

The word w is defined by

$$
w=V_{t} V_{m} V_{m-1} \ldots V_{1} V_{s} W_{s} W_{1} W_{2} \ldots W_{m} W_{t}
$$

where $V_{s}, W_{s}, V_{t}, W_{t}, W_{1}, W_{2}, \ldots, W_{m}, V_{1}, V_{2}, \ldots, V_{m}$ are words in A^{*} (we refer to these words as our gadget words).

Let us now describe the various gadget words. The two source gadget words, denoted V_{s} and W_{s}, are defined as follows:

$$
\begin{aligned}
V_{s} & =r b_{1} 0^{p q} b_{2} \\
W_{s} & =r b_{2}\left(0^{p} 1\right)^{q} 0^{p} x_{1} b_{1}
\end{aligned}
$$

where r, b_{1} and b_{2} are three letters that do not occur in any other gadget word (x_{1} will appear soon in gadget word V_{1}). The two sink gadget words, denoted V_{t} and W_{t}, are defined as follows:

$$
\begin{aligned}
V_{t} & =t_{1} t_{2}\left(0^{p} 1\right)^{q} 0^{p} \\
W_{t} & =t_{1} y_{m} 0^{p q} t_{2}
\end{aligned}
$$

where t_{1} and t_{2} are two letters that do not occur in any other gadget word (y_{m} will appear soon in gadget word V_{m}). For each input word $u_{i}=u_{i, 1} u_{i, 2} \ldots u_{i, n}$, the two associated gadget word, denoted V_{i} and W_{i}, are defined by:

$$
\begin{aligned}
V_{i} & =x_{i} y_{i}\left(z_{i} Ш_{p} u_{i}\right)^{R} \\
W_{i} & = \begin{cases}z_{1} Ш_{p} u_{1} & \text { if } i=1 \\
x_{i} y_{i-1}\left(z_{i} Ш_{p} u_{i}\right) & \text { if } n>1\end{cases}
\end{aligned}
$$

Notice that letters x_{i}, y_{i} and $z_{i, j}, 1 \leq j \leq n+1$, only occur in the gadget words
V_{i} and W_{i}. By construction we have

$$
\begin{aligned}
\left|V_{s}\right| & =p q+3 \\
\left|W_{s}\right| & =p q+p+q+4 \\
\left|V_{t}\right| & =p q+p+q+2 \\
\left|W_{t}\right| & =p q+3 \\
\left|V_{i}\right| & =2 n+3 \quad(1 \leq i \leq m) \\
\left|W_{1}\right| & =2 n+1 \\
\left|W_{i}\right| & =2 n+3 \quad(2 \leq i \leq m),
\end{aligned}
$$

and hence $|w|=4 p q+2(p+q)+2 m(2 n+3)+10$. Furthermore,

$$
\begin{aligned}
\left|V_{t} V_{m} V_{m-1} \ldots V_{1} V_{s}\right| & =\left|W_{s} W_{1} W_{2} \ldots W_{m} W_{t}\right| \\
& =p q+p+q+m(2 n+3)+5 \\
& =\frac{|w|}{2}
\end{aligned}
$$

(i.e., $V_{t} V_{m} V_{m-1} \ldots V_{1} V_{s}$ is the first half of w and $W_{s} W_{1} W_{2} \ldots W_{m} W_{t}$ is the second half of w).

As in the proof of Proposition 4, with the corresponding linear graph G_{w} in mind, for any letter $a \in A$ occurring only twice in w, we shall write (a, a)edge to designate (without any ambiguity) the unique edge connecting the two occurrences of letter a in G_{w}.

A schematic description of the reduction is depicted in Figure 4 and a full example involving 3 binary words in given in Appendix (subsections Describing the 01-LCS instance and Full example for shuffled square words with reverse).

We now claim that there exists a common subsequence with p letters 0 and q letters 1 common to all sequences of U if and only if there exists $v \in\{0,1\}^{*}$ such that $w \in v \amalg v^{R}$. Albeit less obvious than in Proposition 4, it will be nevertheless convenient to see the reduction as a flow-like procedure, where some piece of information (the common subsequence) emitted from the source (the V_{s} and W_{s} word gadgets), propagates "lossless" to the target (the V_{t} and W_{t} gadgets) going through all gadgets V_{i} and $W_{i}, 1 \leq i \leq m$ (every such pair of gadgets being associated to an input word of our input instance of 01-LCS). Note that "lossless" has here to be understood in the broadest sense of the term since, as we shall see soon, dealing with precedence-free perfect matchings that can be partitioned into two towers challenge us to consider in the constructed word w both a input string and its reverse, and hence both the common subsequence (viewed as some data) and its complement with respect to each input words.

For the forward direction, suppose that there exists a common subsequence v of the words $u_{1}, u_{2}, \ldots, u_{m}$ with p occurrences of the letter 0 and q occurrence of the letter 1 . Write $k=p+q$ and $v=v_{1} v_{2} \ldots v_{k}$. According to Lemma 9 , it is enough to show that G_{w} has a precedence-free perfect matching in G_{w} that can be partitioned into two towers. Now, observe that v is a subsequence of both the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} and the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of V_{t}. Furthermore, by hypothesis (and construction),

- v^{R} occurs in each gadget word $V_{i}, 1 \leq i \leq m$,
- v occurs in each gadget word $W_{i}, 1 \leq i \leq m$.

Fix any occurrence of v as a subsequence in (i) the $\left(\begin{array}{ll}0^{p} & 1)^{q} \\ 0^{p} \text {-factor of } & W_{s} \text {, }\end{array}\right.$ (ii) the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{t}, and (iii) in every W_{i} gadget word, $1 \leq i \leq m$. Furthermore, fix any occurrence of v^{R} as a subsequence in every V_{i} gadget word, $1 \leq i \leq m$. We can now turn to defining a precedence-free perfect matching \mathcal{M} in G_{w} that can be partitioned into two towers. For the sake of presentation, let us use the colours Red and Blue. The matching \mathcal{M} is precisely defined as follows:

- \mathcal{M} contains the (r, r)-edge. These two edges are coloured Red.
- \mathcal{M} contains the $\left(b_{1}, b_{1}\right)$-edge and the $\left(b_{2}, b_{2}\right)$-edge. These two edges are coloured Blue.
- \mathcal{M} contains $p q$ edges that connect the $p q$ letters 0 of V_{s} to the $p q$ letters 0 of the $\left(\begin{array}{ll}0^{p} & 1\end{array}\right)^{q} 0^{p}$-factor of W_{s} that do not correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s}. These $p q$ edges form a tower and are coloured Blue.
- \mathcal{M} contains the $\left(x_{i}, x_{i}\right)$-edge for $1 \leq i \leq m$. These m edges form a tower (by construction) and are coloured Red.
- \mathcal{M} contains the $\left(y_{i}, y_{i}\right)$-edge for $1 \leq i \leq m$. These m edges form a tower (by construction) and are coloured Blue.
- \mathcal{M} contains the $p+q$ edges that connect the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} to the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v^{R} in V_{1}. These m edges form a tower (by construction) and are coloured Red.
- \mathcal{M} contains the $p+q$ edges that connect the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of $W_{i}, 1 \leq i \leq m-1$ to the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v^{R} in V_{i+1}. These $p+q$ edges form a tower (by construction) and are coloured Red.
- For every $1 \leq i \leq m, \mathcal{M}$ contains the $n+1\left(z_{i, j}, z_{i, j}\right)$-edges together with $n-p-q$ edges that connect that connect the p letters 0 and q letters 1 that do not correspond to the chosen occurrence of the common subsequence v^{R} in V_{i} to the p letters 0 and q letters 1 that do not correspond to the chosen occurrence of the common subsequence v in W_{i}. These $2 n-p-q+1$ edges form a tower (by construction) and are coloured Blue.
- \mathcal{M} contains the $p+q$ edges that connect the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{m} to the p letters 0 and q letters 1 that correspond to the chosen occurrence of the common subsequence v^{R} in the $\left(0^{p} 1\right)^{q} 0^{p}{ }_{-}$ factor of W_{t}. These $p+q$ edges form a tower (by construction) and are coloured Red.
- \mathcal{M} contains the $p q$ letters 0 that do not correspond to the chosen occurrence of the common subsequence v^{R} in the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} to the $p q$ letters 0 if V_{t}. These $p q$ edges form a tower (by construction) and are coloured Blue.
- \mathcal{M} contains the $\left(t_{1}, t_{1}\right)$-edge. This edge is coloured Red.
- \mathcal{M} contains the $\left(t_{2}, t_{2}\right)$-edge. This edge is coloured Blue.

It is a tedious simple matter to check that \mathcal{M} is a precedence-free perfect matching in G_{w} that can be partitioned into two towers (Red and Blue above).

For the reverse direction, suppose that there exists v such that $w \in v$ Ш v^{R}. Once again, according to Lemma 9, this amount to saying that G_{w} has a precedence-free perfect matching \mathcal{M} that can be decomposed into two towers. Let us colour the edges of first tower with the colour Red and the edges of the second tower with the colour Blue. We begin with a sequence of easy observations. First, observe that \mathcal{M} being precedence-free, every edge in \mathcal{M} has to join a letter in the first half of w to a letter in the second half of w (the first half of w terminates at the first occurrence of the letter b_{2} in V_{s}). We now observe that the letters r, b_{1} and b_{2} occur exactly twice in w, and hence the 3 edges connecting these vertices two by two have to be in \mathcal{M} since it is perfect. In other words, \mathcal{M} contains the (r, r)-edge, the $\left(b_{1}, b_{1}\right)$-edge, and the $\left(b_{2}, b_{2}\right)$-edge. But these three edges induce the subgraph. , as w contains the subsequence $r b_{1} b_{2} r b_{2} b_{1}$. Then it follows that the the $\left(b_{1}, b_{1}\right)$-edge and the $\left(b_{2}, b_{2}\right)$-edge are part of the same tower in \mathcal{M} and hence are coloured with the same colour, say Blue, and that the (r, r)-edge is part of the other tower in \mathcal{M}, and hence is coloured with the other colour, say Red. Let us now focus on V_{s} in its entirety. Recall that $V_{s}=r b_{1} 0^{p q} b_{2}$ and that b_{2} is the last letter of the first half of w. Therefore, since \mathcal{M} is a precedence-free matching no two letters 0 of V_{s} are connected by an edge in \mathcal{M}. We show that every letter 0 of V_{s} is connected to a letter 0 of W_{s} in \mathcal{M}. Indeed, any edge of \mathcal{M} involving a letter 0 of V_{s} is crossing with the (r, r)-edge of \mathcal{M} and hence the $p q$ letters 0 of V_{s} are involved in $p q$ Blue pairwise stacking edges in \mathcal{M}. But the (b_{1}, b_{1})-edge is also coloured Blue, and hence every letter 0 of V_{s} is connected to a letter 0 of W_{s} in $\mathcal{M}\left(b_{1}\right.$ is indeed the last letter of $\left.W_{s}\right)$. Turning now to W_{s}, p letters 0 and q letters 1 of the $0^{p}\left(10^{p}\right)^{q}$-factor are not involved in the above-mentioned Blue pairwise stacking edges of \mathcal{M}. But W_{s} is in the second half of w and hence neither two letters 0 of W_{s} nor two letters 1 of W_{s} are connected by an edge in \mathcal{M}. Furthermore, any edge of \mathcal{M} involving any of these $p+q$ letters is crossing with the $\left(b_{1}, b_{1}\right)$-edge that is coloured Blue, and hence has to be coloured Red.

Now, thanks to the $\left(x_{1}, x_{1}\right)$-edge (the letter x_{1} occurs exactly twice in w, and hence the (x_{1}, x_{1})-edge has to be in \mathcal{M} since it is perfect), we see that these $p+q$ letters of W_{s} are connected in \mathcal{M} to letters of V_{1}. We now turn to V_{1}. By construction the $n+1$ letters $z_{1, j}$ have to be involved in $n+1$ pairwise stacking edges with the $n+1$ letters $z_{1, j}$ in W_{1}. But these $n+1$ edges together with the $\left(y_{1}, y_{1}\right)$-edge are all crossing with the $\left(x_{1}, x_{1}\right)$-edge that is coloured Red, and hence have to coloured Blue. Now, thanks to the Blue $\left(y_{1}, y_{1}\right)$-edge, the remaining $n-p-q$ letters 0 or 1 of V_{1} are also involved in this Blue stacking with letters in W_{1}. Furthermore, thanks to the $z_{1, j}$ letters, these edges match position at position. The same process continues until $p+q$ pairwise nested edges connecting the rightmost V_{t} gadget word to the W_{t} sink gadget word.

It follows from the examination of \mathcal{M} that the $p+q$ pairwise nested edges connecting $p+q$ letters of the $\left(0^{p} 1\right)^{q} 0^{p}$-factor of W_{s} to $p+q$ letters of the V_{1} gadget word define a word with p letters 0 and q letters 1 that occurs as a subsequence in each input word u_{i}.

It is worth mentioning that if we drop the partition into 2 towers constraint in Lemma 9, we are left with a polynomial-time solvable problem as finding a maximum size precedence-free matching in a linear graph is polynomial-time solvable [7, 22, 23] (this problem is nothing but Abelian square recognition).

5. Conclusion and Open problems

In this paper we have used a (union of cliques) linear graph framework to show that it is NP-complete to recognize those words that squares for the shuffle product. Using the same framework, we have proved that recognizing those words that are the shuffle of another word with its reverse is also NP-complete.

There are a number of further directions of investigation in this general subject. We mention one open problem that is, in our opinion, the most interesting. How hard is the problem of detecting squares for the shuffle product for bounded alphabet words? It is proved in [5] that the problem is NP-complete for an alphabet with 9 symbols (it is claimed that this can be improved to 7 letters). Notice that it is claimed without proof in [2] (Fact 2 Subsection 2.2) that detecting squares for the shuffle product is NP-complete for binary words. This result - that would be an important improvement over [5] and Proposition 4 is yet to be confirmed.

References

[1] C. Allauzen, Calcul efficace du shuffle de k mots, Tech. report, Institut Gaspard Monge, Université de Marne-la-Vallée, 2000.
[2] H. Aoki, R. Uehara, and K. Yamazaki, Expected length of longest common subsequences of two biased random strings and its application, Tech. Report 1185, RIMS Kokyuroku, 2001.
[3] K. Iwama (author of [9]), 2012, Personal communication.
[4] M. Axenovich, Y. Person, and S. Puzynina, A regularity lemma and twins in words, J. Comb. Theory, Ser. A 120 (2013), no. 4, 733-743.
[5] S. Buss and M. Soltys, Unshuffling a square is NP-hard, Journal of Computer and System Sciences 80 (2014), no. 4, 766-776.
[6] C. Choffrut and J. Karhumäki, Combinatorics of words, in g. rozenberg and a. salomaa (eds), handbook of formal languages, Springer-Verlag, 1997.
[7] C. Erdong, Y. Linji, and Y. Hao, Improved algorithms for largest cardinality 2-interval pattern problem, Journal of Combinatorial Optimization 13 (1983), 263-275.
[8] J. Erickson, How hard is unshuffling a string?, http://cstheory.stackexchange.com/q/34 (version: 2010-12-01).
[9] K. Iwama, Unique decomposability of shuffled strings: A formal treatment of asynchronous time-multiplexed communication, Proc. 15th Annual ACM Symposium on Theory of Computing (STOC), Boston, Massachusetts, USA, ACM, 1983, pp. 374-381.
[10] M. Jiang, A PTAS for the weighted 2-interval pattern problem over the preceding-and-crossing model, 1st Annual International Conference on Combinatorial Optimization and Applications (COCOA'07), Xi'an, Shaanxi, China (A. Dress, Y. Xu, and B. Zhu, eds.), Lecture Notes in Computer Science, vol. 4616, 2007, pp. 378-387.
[11] J.D. Kececioglu and D. Gusfield, Reconstructing a history of recombinations from a set of sequences, Discrete Applied Mathematics 88 (1998), no. 1-3, 239-260.
[12] T. Kimura, An algebraic system for process structuring and interprocess communication, Proc. 8th annual ACM symposium on Theory of computing (STOC), Hershey, Pennsylvania, USA (A.K. Chandra, D. Wotschke, E.P. Friedman, and M.A.Harrison, eds.), ACM, 1976, pp. 92-100.
[13] S.C. Li and M. Li, On two open problems of 2-interval patterns, Theoretical Computer Science 410 (2009), no. 24-25, 2410-2423.
[14] M. Lothaire, Applied combinatorics on words, Series: Encyclopedia of Mathematics and its Applications, no. 105, Cambridge university press, 2005.
[15] D. Maier, The complexity of some problems on subsequences and supersequences, Journal of the ACM 25 (1978), no. 2, 322-336.
[16] A. Mansfield, On the computational complexity of a merge recognition problem, Discrete Applied Mathematics 5 (1983), 119-122.
[17] D. Henshall N. Rampersad and J. Shallit, Shuffling and unshuffling, Bulletin of the EATCS (2012), 131-142.
[18] R. Rizzi and S. Vialette, On recognizing words that are squares for the shuffle product, Computer Science - Theory and Applications - 8th International Computer Science Symposium in Russia, CSR 2013, Ekaterinburg, Russia (Arseny M. Shur Andrei A. Bulatov, ed.), Lecture Notes in Computer Science, vol. 7913, Springer, 2013, pp. 235-245.
[19] J.-C. Spehner, Le calcul rapide des melanges de deux mots, Theoretical Computer Science (1986), 171-203.
[20] R. van Bevern, R. Bredereck, L. Bulteau, C. Komusiewicz, N. Talmon, and G.J. Woeginger, Precedence-constrained scheduling problems parameterized by partial order width, Discrete Optimization and Operations Research 9th International Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings, 2016, pp. 105-120.
[21] J. van Leeuwen and M. Nivat, Efficient recognition of rational relations, Information Processing Letters 14 (1982), no. 1, 34-38.
[22] S. Vialette, On the computational complexity of 2-interval pattern matching problems, Theoretical Computer Science 312 (2004), no. 2-3, 223-249.
[23] , Two-interval pattern problems, Encyclopedia of Algorithms (M.-Y. Kao, ed.), Springer, 2008, pp. 985-989.
[24] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle, Journal of Computer and System Sciences 28 (1984), no. 3, 345-358.

Appendix

This appendix is devoted to illustrating the proofs of Proposition 4 and Proposition 10. In the subsection Describing the 01-LCS instance we describe a specific instance of the 01-LCS problem. In the subsection Full example for shuffled square words (resp. Full example for shuffled square words with reverse) we fully construct exhibit the construction as described in Proposition 4 (resp. Proposition 10). Notice that we do use the same specific 01-LCS instance i, the two example constructions.

Describing the 01-LCS instance

Recall that the Longest Common Subsequence for binary words (written 01-LCS for short) is defined as follows: Given a collection of words $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, u_{i} \in\{0,1\}^{*}$ for $1 \leq i \leq m$, and a positive integer k, decide whether there exists a subsequence of size k common to all sequences of U [15]. Without loss of generality, we may assume that $\left|u_{i}\right|=\left|u_{j}\right|$ for $1 \leq i<j \leq m$, and that that we are looking for a common subsequence with p letters 0 and q letters $1, k=p+q$. We write (U, p, q) for such an instance of the 01-LCS problem.

In what follows, we consider the specific instance of the 01-LCS problem $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, where $u_{1}=0001011, u_{2}=0010100$ and $u_{3}=1010101$. For $p=3$ (i.e., number of letters 0 is the sought solution) and $q=2$ (i.e., number of letters 1 is the sought solution), a solution is given by $w=00101$. Aiming at better illustrating the reductions used in Proposition 4 and Proposition 10, we fix an arbitrary occurrence of the solution $w=00101$ in each input word u_{1}, u_{2} and u_{3} as follows:

Figure 5: The intra-gadget edges in gadget W_{s} for the solution 00101. Double arrows designate free letters (i.e. letters that are not involved in these intra-gadget edges).

Full example for shuffled square words

We present the solution for the reduction used in Proposition 4 for the specific instance of the 01 -LCS problem $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, where $u_{1}=0001011$, $u_{2}=0010100$ and $u_{3}=1010101$, with $p=3$ and $q=2$. The occurrence of the solution in each input string u_{1}, u_{2} and u_{3} is assumed to be the one given in Subsection Describing the 01-LCS instance.

We have decomposed the whole construction into a sequence of five figures describing the various parts:

- Figure 5: the intra-gadget edges in gadget word W_{s},
- Figure 6: the inter-gadget edges for gadget words W_{s} and W_{1} (gadget word W_{s} is not fully represented) together with the intra-gadget edges in gadget word W_{1},
- Figure 7: the inter-gadget edges for gadget words W_{1} and W_{2} (gadget word W_{1} is not fully represented) together with the intra-gadget edges in gadget word W_{2},
- Figure 8: the inter-gadget edges for gadget words W_{2} and W_{3} (gadget word W_{2} is not fully represented) together with the intra-gadget edges in gadget word W_{3}, and
- Figure 9: the inter-gadget edges for gadget words W_{s} and W_{1} (gadget word W_{3} is not fully represented) together with the intra-gadget edges in gadget word W_{t}.

Figure 6: The inter-gadget edges for gadget words W_{s} and W_{1} (gadget word W_{s} is not fully represented) together with the intra-gadget edges in gadget word W_{1}. The (s, s)-edge is an intra-edge of gadget word W_{s} (and hence part of Figure 5) but is shown for the sake of clarity. The crossed
letters in (partial) gadget word W_{s} denote those letters that are involved in the intra-gadget edges described in Figure 5 . Double arrows designate free letters (i.e. letters that are not involved in these the intra-gadget edges for gadget words W_{s} and W_{1}.

Figure 7: The inter-gadget edges for gadget words W_{1} and W_{2} (gadget word W_{1} is not fully represented) together with the intra-gadget edges in gadget word W_{2}. The crossed letters in (partial) gadget word W_{1} denote those letters that are involved in the intra-gadget edges described in
Figure 5. Double arrows designate free letters (i.e. letters that are not involved in these the intra-gadget edges for gadget words W_{1} and W_{2}.

Figure 8: The inter-gadget edges for gadget words W_{2} and W_{3} (gadget word W_{1} is not fully represented) together with the intra-gadget edges
Figure 7. Double arrows designate free letters (i.e. letters that are not involved in these the intra-gadget edges for gadget words W_{2} and W_{3}.

Figure 10: The edges connecting gadget words V_{s} and W_{s}. Double arrows designate free letters in gadget word W_{s} (i.e. those letters of W_{s} that are not involved in these edges connecting gadget words V_{s} and W_{s}).

Full example for shuffled square words with reverse
We present the solution for the reduction used in Proposition 10 for the specific instance of the 01-LCS problem $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, where $u_{1}=0001011$, $u_{2}=0010100$ and $u_{3}=1010101$, with $p=3$ and $q=2$. The occurrence of the solution in each input string u_{1}, u_{2} and u_{3} is assumed to be the one given in Subsection Describing the 01-LCS instance.

We have decomposed the whole construction into a sequence of five figures describing the various parts:

- Figure 10: the edges connecting gadget words V_{s} and W_{s},
- Figure 11: the edges connecting gadget words W_{s} and V_{1} and the edges connecting gadget words V_{1} and W_{1},
- Figure 12: the edges connecting gadget words W_{1} and V_{2} and the edges connecting gadget words V_{2} and W_{2},
- Figure 13: the edges connecting gadget words W_{2} and V_{3} and the edges connecting gadget words V_{3} and W_{3}, and
- Figure 14: the edges connecting gadget words W_{3} and V_{t} and the edges connecting gadget words V_{t} and W_{t}.

[^0]: *Work partially supported ANR project BIRDS JCJC SIMI 2-2010.
 URL: romeo.rizzi@univr.it (Romeo Rizzi), vialette@univ-mlv.fr (Stéphane Vialette)

[^1]: ${ }^{1}$ Note that some authors - see for example [17] - use $ய$ to denote the perfect shuffle operator and \amalg (larger symbol) to denote the ordinary shuffle operator. To avoid confusion, we prefer to use $Ш_{p}$ for the perfect shuffle operator.

