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ABSTRACT

Anomaly detectors are necessary to automatize industrial
quality control. However, crafting such detectors is difficult
due to the complexity and variability of the object even when
working only with rigid objects. We show that adding a deep
learning normalization step as a preprocessing step to model
based detectors allows for better and more robust detections.
This self-supervised normalization neural network is trained
on non-anomalous data only. The proposed preprocessing
method, followed by an automatic detector, achieves state-of-
the-art results on rigid objects from the MvTec dataset.

Index Terms— Anomaly detection, deep-learning, de-
noising, self-similarity

1. INTRODUCTION

Historically, quality control in production lines has been done
by human operators. Yet, automatizing the process can accel-
erate, reduce the production cost, and smooth out the perfor-
mance variations caused by the operators’ fatigue [1, 2].

As pointed out in several reviews [3], [4], detecting
anomalies is not a classic classification problem [5], which
requires well balanced and well defined classes. Anomalies
do not form a class or even several classes. They are rare
and have no definite pattern. The objects on which to de-
tect the anomalies can also be extremely diverse. It is true
that specific algorithms perform well for simpler cases like
repetitive patterns in textile using Fourier representation [6]
or when a perfect reference is available [7]. Yet, there is no
general principle characterizing normality due to the complex
nature of ”normal” objects. An automatic self-supervised
method working with a wide range of objects is faced with
the variability of the appearance of normal objects, caused
for example by changing light reflections or varying texture.

In this paper, we therefore propose to decompose the task
into two steps (see Fig. 1), dealing separately with the two
mentioned difficulties: the variability of the normal objects
on the one side and the indefiniteness of anomalies on the
other. To reduce the variability of normality, we first apply
a self-supervised deep learning process that learns to create a
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normalized version of images of normal objects, where vari-
ations due to lighting, paint or texture are attenuated or elim-
inated. Once the data have been normalized by the neural
network, we use a self-similarity based detection method. We
shall see that this normalization process actually improves the
detection of anomalies on rigid objects.

The paper is organized as follows. Section 2 discusses
previous work. Section 3 presents a neural network learning
a variability normalization. Section 4 details the statistically
founded detector applied to the normalized images. Section
5 presents results of the proposed method on real data from
MvTec and a comparison to other state-of-the-art anomaly de-
tectors. We conclude in Section 6.

2. RELATED WORK

Anomaly detection is a basic industrial problem that is re-
ceiving much attention lately, especially after the publication
of a new reference dataset by MvTec [8]. A recent review [4]
classifies anomaly detector into five main categories:

Stochastic background models. The principle of these
anomaly detection methods is that anomalies occur in the low
probability regions of the background model [9, 10, 11].

Homogeneous background model. These methods esti-
mate and generally subtract the background from the image
to get a residual image representation on which detection is
eventually performed [12, 13].

Local homogeneity models: center-surround detection.
These methods are often used for creating saliency maps.
Their rationale is that anomalies (or saliency) occur as local
events contrasting with their surroundings [14, 15, 16]. The
main limitation of this model is that a local anomaly is not
necessarily a global anomaly.

Variational Sparsity-based background models. One re-
cent non-parametric trend is to learn a sparse dictionary rep-
resenting the background (i.e., normality) and to characterize
outliers by their non-sparsity. For that each patch of the image
is projected onto the dictionary and is detected as anomalous
based on the quality of the reconstruction as well as the num-
ber of elements of the dictionary used for the reconstruction
[17, 18, 19, 20].

Non-local self-similar background models. The basic
assumption of this generic background model, applicable to
most images, is that in normal data, each image patch belongs



Fig. 1. Our proposed pipeline for robust anomaly detection in manufactured rigid objects.

Fig. 2. Example of variability of textures in the good pill class
of the MvTech dataset [8]. Though the structure of the pills is
the same (ellipsoids with big Fs engraved), the red spots are
spread randomly and might be confused with anomalies.

to a dense cluster in the image’s patch space. Anomalies in-
stead occur far from their closest neighbors. This definition
of an anomaly can be implemented by clustering the image
patches or by a nearest neighbor search leading to a direct
rarity measurement [21, 22].

More recently, sophisticated deep learning based methods
have also been used to try to solve this problem. ITEA [23]
proceeds on grey level images, normalizes their orientation
and trains an auto-encoder on anomaly free images. AESC
[24] is similar except that here the network is trained to de-
noise the image from a stain noise. SPADE [25] creates a
feature base from a pre-trained neural network with the ref-
erence images and uses the L2 norm between the features of
an image and its kNN of the reference base as a score. It
involves features at different layers to perform a multi-scale
analysis. GANs have also been used to detect anomalies in
medical images [26, 27].

3. PRE-PROCESSING: OBJECT NORMALIZATION

. Comparison to the state of the art in terms of AU-
The first step of our pipeline is the normalization of the

data. We start by a classic geometric normalization of the ob-
ject’s position followed by a normalization of its color space,
then proceed with a neural normalization of the variability.

Color and illumination normalization. Variations in ex-
posure of the normal objects can result in a high color vari-
ability. The goal of the color normalization is to mitigate this
high color variability. Let u1 and u2 two images with H1

and H2 their respective cumulative histograms. In order to

Fig. 3. Effect of normalization (left: before, right: after) on
the pill class of the MvTech dataset [8]. The normalization
removes all ”normal” red marks while keeping the anomalies.

Fig. 4. Three sorts of normalization from rigid to flexible.
From left to right: image without normalization, image after
normalization using all whole images, using whole nearest
images, finally using nearest patches.

bring the colors of two images in a common dynamics, De-
lon [28, 29] suggests to specify the cumulative histograms of
both images onto the harmonic mean of the two cumulative
histograms Hmid = ( 12 (H

−1
1 +H−12 ))−1. We extend this to

N images (ui) with respective cumulative histograms Hi by
setting Hmid = ( 1

N

∑N
i=1H

−1
i )−1.

Position normalization. Aligning correctly the objects al-
lows for an easier comparison but also helps separating them
from the background. We use here global affine alignment
using the inverse compositional algorithm [30].

Variability normalization. Rigid objects can have con-
spicuous variable textures that can mask the real anoma-
lies. This can be seen in Fig. 2. This variability must
therefore be recognized as ”normal” and eliminated be-
fore looking for anomalies. This variability is a “noise”
that is different for each set. To avoid modeling it explic-
itly, we use the self-supervised Noise2noise [31] denois-
ing network. This network f trains on pairs of realizations



Fig. 5. Evolution of the score for the sra score with ε ∈
[10−5, 1], the black curve is the average of AUROC of every
objects at each ε

Ours
SPADE

[25]
ITEA
[23]

AE
[32]

AESC
[24]

Bottle 97.4 97.2 94 98 98
Capsule 95.7 89.7 68 74 74
Hazelnut 96.9 88.1 86 90 94
Metal nut 81.6 71.0 67 57 73
Pill 91.7 80.1 79 76 84
Screw 97.1 66.7 100 68 74
Toothbrush 98.3 88.7 100 93 100
Zipper 94.1 96.6 80 90 94

Average 94.1 84.7 84.2 80.7 86.3

Table 1. Comparison to the state of the art in terms of AU-
ROC.

of the same image (x1i , x
2
i ), using the self-supervised loss

L =
∑

(x1
i ,x

2
i )
‖f(x1i ) − x2i ‖1. To create the pairs, we can

pick any two images of our dataset of ”normal” examples.
For some examples, using any two images might be too dras-
tic, particularly if the objects vary too much in shape. In such
cases we use either only the nearest image neighbors, or the
nearest patch neighbors, thus allowing for some deformation.
As shown in Fig. 4, training the network with patches instead
of whole images allows to keep fine detail and to keep the
anomaly, while making the image more self-similar. Fig. 3
illustrates how the normalization removes the random red
marks on the pills.

4. DETECTION USING SELF-SIMILARITY

Detection in a residual after background subtraction. For
the final decision, we adapt the detection in the residual pro-
posed in [21]. A ”self-similar” background for each image
is computed by a version of non-local means [33]. For each
patch p of the query image u, the background is estimated as

p̂ = 1
N

∑
q∈QK qe

− 1
2

‖p−q‖22
h2 whereN =

∑
q∈QK e

− 1
2

‖p−q‖22
h2 ,

QK is the set of nearest neighbors and h the similarity param-
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without 89.2 92.1 49.4 87.8 95.9 90.8 89.0 96.3 94.8
with 97.4 95.7 81.6 91.7 97.1 98.3 94.1 99.8 99.9

Table 2. Impact of the variability normalization on the AU-
ROC. With the exception of the screw class, our variability
normalization improves the detection by up to 30%.

eter. The denoised patches p̂s are then aggregated to create
the model û. The residual is given by r(u) = u − û. It
should contain only residual noise and the anomalies, charac-
terized as the patches that show no similarity to other patches
in the database. Once r(u) has been estimated and a number
of false alarms ε has been fixed, one can calculate the thresh-
old γε on the residual that, assuming r(u) follows a centered
normal law. This guarantees an upper bound on the num-
ber of false alarms, namely P

(∣∣∣ r(u)−E[r(u)]σr(u)

∣∣∣ ≥ γε) = ε
N i.e.

γε =
√
2erfc−1

(
ε
N

)
.

Search for similar patches. The anomaly detector requires
a search for similar patches in an anomaly-free database,
which is a costly process. However, since the images
have already been normalized in position thanks to the pre-
processing, the search can be localized in a much smaller
local region around the position of the reference patch. On
top of that, we limit the search to the K images that are the
most similar to the query image. This leads to a quick patch
search. As a a backup strategy when no similar patch is found
locally, we use partition trees to search more globally.

Multi-scale detection. The previous processing must be
applied at multiple scales to capture all anomaly sizes. To
combine the residuals rss, we define a multiscale residual
rMS by rMS(u) =

∏
s∈S r

s(u). Multiplying the residuals
allows us to inhibit detections that happens in a single scale
while giving more weight otherwise. We also use binary ac-
tivation maps bs for each scale defined as bs(u, ε) = 1 if
fs(u) >= γsε , 0 otherwise, where fs is the normalized resid-
ual such that fs(u) =

∣∣∣ rs(u)−E[rs(u)]σrs(u)

∣∣∣. The binary anomaly
maps are merged by requesting detection at more than Nv
scales. Thus we set bMS(u, ε) = 1 if

∑
s∈S b

s(u, ε) ≥ Nv , 0
otherwise.

Scoring. From the binary anomaly maps, a normality
score can be computed for each object. It is then sufficient
to set a threshold to classify objects as abnormal. For that
we propose sra that sums the absolute value of the resid-
uals of the activated pixels in the binary map sra(u, ε) =∑
bMS(u, ε)|rMS(u)|. Using this metric, a small anomalous

area with a large residual will be better represented.



5. EXPERIMENTS

Experimental settings. In this section, we compare our
method to other state-of-the-art methods on the MvTech
dataset [8]. As mentioned previously, our focus will be on
the rigid objects of the dataset. We also show the impact of
the proposed variability normalization pre-processing and
detection maps that localize the detection for a few examples.

In all following experiments, we used s = 3 scales. The
basic scale’s dimension was in the range [300, 512]. It did
not vary within the same object but from one to another de-
pending on the computation time. The scaling factor η was
0.5 and the size of a patch 8 × 8. Candidates patches were
searched in a 20× 20 window around the position of the ref-
erence patch in the Ks = 5 ∗ (s + 1) closest images in the
database. The examined patches overlap by half. The last pa-
rameter to fix is the NFA threshold ε. As mentioned in [4],
this parameter implies a control on false positives: setting for
example ε = 10−2 means that we should expect 1 false alarm
every 100 images. Since there are about 200 test images per
class, this means that the optimal ε should be about 10−2.3.
We verified this hypothesis by looking at the evolution of the
AUROC for ε in [10−5, 0]. This is shown in Fig. 5 for each
rigid object of the MvTech dataset as well as for the average.
We can see that the value of ε that maximizes the average AU-
ROC is 10−2.2. This is the value of ε that will be chosen for
the rest of this section.

Comparison to state of the art. We compared our method
with ITAE [23], AESC [24] and SPADE [25]. The proposed
method achieves state-of-the-art results as shown as it can be
seen in Table 1, it outperforms the state of the art by about
10% on average. Moreover, when our method does worse
than another method, it only do so by less than 3%.

Impact of the variability normalization. We can see in Ta-
ble 2 that this normalization improves the results in terms of
AUROC for most classes (more than 30% for the metal nut
class). This improvement is because the variability normal-
ization makes the images easily comparable to the dataset.
Since the images are easier to compare, the self-similarity
based detector works better. We also show that this normal-
ization might be helpful on some classes of the MvTec dataset
(namely leather and wood) even though we only focus on
rigid object in this paper.

Examples of anomaly segmentation. As seen in Section 4,
the method computes binary anomaly maps bMS used for the
detection. These maps can also be visualized to localize the
anomaly inside detected images. We show a few examples
of these localization maps as well as some residuals in Fig. 6.
The color of the binary map corresponds to the channel where
the anomaly has been detected.

6. CONCLUSION

We devised an unsupervised anomaly detection method based
on a variability normalization using a self-supervised neural
network followed by an a contrario detection in the residual

reconstruction. The variability normalization, which goal
is to remove both the variability of the objects processed
(e.g. random texture) and the variation in the acquisition
process (e.g. different light reflections), is trained using a
noise to noise [31] training process which is completely self-
supervised and therefore can be done for each class of objects
without modification. Since the method is completely self-
supervised and only requires a few anomaly-free examples,
the method is designed for rigid industrial object classes for
which a moderately sized set of normal examples is available.
We have also showed that, while being simple, this detection
pipeline is both generic and powerful enough to outperform
the current state of the art.
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