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Confidence intervals for validation statistics 
with data truncation in genomic prediction
Matias Bermann1*  , Andres Legarra2, Alejandra Alvarez Munera1, Ignacy Misztal1 and Daniela Lourenco1 

Abstract 

Background Validation by data truncation is a common practice in genetic evaluations because of the interest 
in predicting the genetic merit of a set of young selection candidates. Two of the most used validation methods 
in genetic evaluations use a single data partition: predictivity or predictive ability (correlation between pre-adjusted 
phenotypes and estimated breeding values (EBV) divided by the square root of the heritability) and the linear regres-
sion (LR) method (comparison of “early” and “late” EBV). Both methods compare predictions with the whole dataset 
and a partial dataset that is obtained by removing the information related to a set of validation individuals. EBV 
obtained with the partial dataset are compared against adjusted phenotypes for the predictivity or EBV obtained 
with the whole dataset in the LR method. Confidence intervals for predictivity and the LR method can be obtained 
by replicating the validation for different samples (or folds), or bootstrapping. Analytical confidence intervals would 
be beneficial to avoid running several validations and to test the quality of the bootstrap intervals. However, analytical 
confidence intervals are unavailable for predictivity and the LR method.

Results We derived standard errors and Wald confidence intervals for the predictivity and statistics included in the LR 
method (bias, dispersion, ratio of accuracies, and reliability). The confidence intervals for the bias, dispersion, and reli-
ability depend on the relationships and prediction error variances and covariances across the individuals in the valida-
tion set. We developed approximations for large datasets that only need the reliabilities of the individuals in the vali-
dation set. The confidence intervals for the ratio of accuracies and predictivity were obtained through the Fisher 
transformation. We show the adequacy of both the analytical and approximated analytical confidence intervals 
and compare them versus bootstrap confidence intervals using two simulated examples. The analytical confidence 
intervals were closer to the simulated ones for both examples. Bootstrap confidence intervals tend to be nar-
rower than the simulated ones. The approximated analytical confidence intervals were similar to those obtained 
by bootstrapping.

Conclusions Estimating the sampling variation of predictivity and the statistics in the LR method without replication 
or bootstrap is possible for any dataset with the formulas presented in this study.

Background
Validation by data truncation has been proposed to vali-
date models for genetic and genomic predictions [1]. In 
recent years, its popularity has increased over model-
based statistics, such as the Akaike information criterion 
or likelihood ratio [2]. Widely used statistics for valida-
tion by data truncation are those included in the linear 
regression (LR) method, which compares sets of esti-
mated breeding values (EBV) [3], and predictivity [4], 
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the latter defined as the correlation between EBV and 
adjusted phenotypes, divided by the square root of the 
heritability. These validation statistics focus on the per-
formance of the model to predict breeding values. Vali-
dation using these methods was done in dairy [5] and 
beef [6] cattle, pigs [7], chickens [8], sheep [9], goats [10], 
fish [11], wheat [12], and trees [13], among others. For 
validation in dairy cattle, using weighted averages and 
deregressed evaluations could be more robust than the 
LR method or predictivity [14]. Overall, the validation 
methods covered in the present study provide measures 
of bias and accuracy of genomic predictions. Standard 
errors and confidence intervals of validation statistics can 
be obtained by k-fold cross-validation [2]. Many stud-
ies assessed the variation of the LR method statistics by 
replicating the validation (e.g., [15, 16]). However, in rou-
tine genetic evaluations, k-fold validation is not useful 
because of population structure [1], it does not account 
for the reduction in variance in the selected population 
[3], and the interest is in predicting the genetic merit of 
young individuals [3]. Therefore, validation by data trun-
cation is a common practice for routine genetic evalua-
tions in animal and plant breeding [17–23].

In an early stage of developing the LR method, Legarra 
and Reverter [24] proposed calculating confidence 
intervals for the dispersion of the predictions (slope 
of the regression of true on estimated breeding value) 
using classical regression theory (i.e., considering ûp as 
fixed) [25]. However, the random and correlated nature 
between ûp and ûw introduces a systematic underesti-
mation of the standard error of the dispersion. Thus, the 
estimated confidence intervals are narrower than the true 
ones.

Two methods are currently used to obtain standard 
errors and confidence intervals for validation by data 
truncation in genetic and genomic predictions. The first 
approach to assess the variation of validation statistics is 
to perform forward validations at several time points [18, 
20, 23]. This practice gives an idea of the variation of the 
validation statistics over time. However, it cannot predict 
the variation of any statistics for a specific time point, 
and it is necessary to correct the statistics because some 
time periods might be more represented than others 
[18]. In addition, this method is computationally expen-
sive for large datasets and involves complex manipula-
tions of the available dataset. The second approach uses 
bootstrapping (sampling with replacement of the valida-
tion individuals to create pseudo-replicates of the valida-
tion dataset [17, 19, 22, 26]). Bootstrapping is attractive 
since it is computationally inexpensive and only requires 
running the validation once. To our knowledge, only 
Mäntysaari and Koivula [17] tested the adequacy of boot-
strapping to obtain the variability of validation statistics 

for genomic selection, showing a good agreement with 
the first approach; however, this was only shown for one 
dairy cattle dataset. In addition, non-sampling-based, 
analytical confidence intervals for the LR method statis-
tics and predictivity have not been reported, although 
they are of interest on their own and could simplify the 
process of assessing the quality of validation statistics. 
Therefore, the objectives of this study were to derive 
standard errors and analytical confidence intervals for 
validation by data truncation statistics used in genetic 
and genomic evaluations, to benchmark against their 
simulated sampling distributions, and to compare them 
against confidence intervals obtained by bootstrapping.

Methods
In the following section, we show the general model 
used to derive the formulas for the confidence intervals 
of the different validation statistics, and a useful result 
for the next derivations. Then, we derive the mathemati-
cal expression for each validation statistic and suggest 
approximations when it is not possible to obtain the 
exact expressions. Finally, we describe two simulations 
used for testing the adequacy of the presented confi-
dence intervals. The derivation is frequentist in nature 
and considers the sampling distribution of the statistics 
of either validation method, considering the sampling 
variation in the phenotypes. This is the framework used 
by many methods to derive confidence intervals and also 
by related methods such as bootstrap [27]. Indeed, Efron 
[28] showed that cross-validation methods with repli-
cates have frequentists interpretations.

Theory
For the sake of presentation, we assume a single-trait 
model with an additive genetic effect as the only ran-
dom effect, although the results extend to other types of 
models:

where y is the vector of phenotypes, b is the vector of 
fixed effects, u is the vector of additive genetic effects, e is 
the vector of errors, and X and Z are incidence matrices.

The validation methods in this study (LR method and 
predictivity) consist of splitting the data into a whole 
and a partial dataset, denoted with the subscripts w and 
p, respectively. The whole dataset has all the available 
phenotypes, whereas in the partial dataset the phe-
notypes after a given date have been removed. Then, 
validation methods compare EBV versus either EBV 
(method LR) obtained from the whole dataset, or pre-
corrected phenotypes present in the “whole” but not in 
the “partial” dataset (predictivity). The comparison is 
usually for a set of individuals, named “focal”; this can 

(1)y = Xb+ Zu + e,



Page 3 of 18Bermann et al. Genetics Selection Evolution           (2024) 56:18  

be e.g. bulls acquiring progeny records in the “whole” 
(but not in the partial dataset) or individual pigs 
acquiring, say, growth records in the “whole” (but not 
in the partial dataset).

Predicting u for the validation or testing set based 
on the whole data 

(
ûw

)
 requires solving the model 

in Eq.  (1). The prediction of u for the validation set 
based on the partial data 

(
ûp

)
 is obtained by remov-

ing the phenotypes of the individuals in the valida-
tion set before solving the model in Eq.  (1). As shown 
in Appendix I, if y is assumed to follow a multivariate 
normal distribution and the predictions are obtained by 
best linear unbiased prediction in absence of selection 
(i.e., under random mating and random culling) [29], 
the joint distribution of ûw and ûp is:

where G = Var(u) , C22
w  is the prediction error variance of 

ûw , and C22
p  is the prediction error variance of ûp . If the 

predictions are obtained from mixed model equations 
(MME), C22

w  and C22
p  are obtained as blocks of the inverse 

of the MME for the animal effect. Absence of selection 
is assumed for simplicity and because the variances in 
Eq.  (2) become complicated (and basically impossible 
in practice, as selection is not easily described algebrai-
cally) to obtain (see Appendix I), and this is a standard 
simplifying assumption in animal breeding applications – 
for instance, reliabilities are obtained from Eq.  (2) or an 
approximation. As shown in the Appendix I, the condi-
tional distribution of ûw given ûp is:

Note that Eqs. (2) and (3) also hold for a subvector of 
ûw and ûp . Thus, the following derivations hold for the 
entire vectors ûw and ûp (i.e., the population) as well as 
for a subvector of ûw and ûp (i.e., the estimated breed-
ing values of a subset of the population).

Bias
Legarra and Reverter [3] derived the estimate of the 
bias of predictions ( µwp ) as the difference between the 
averages of ûp and ûw . In matrix notation:

where n is the number of individuals in the testing set 
and 1 is a vector of ones. Because of the joint multivari-
ate normality of ûp and ûw , µwp is normally distributed 

(2)
[
ûw
ûp

]
∼ MVN

([
0
0

]
,

[
G− C22

w G− C22
p

G− C22
p G− C22

p

])
,

(3)ûw|ûp ∼ MVN
(
ûp,C

22
p − C22

w

)
.

(4)µwp = n−11
′(
ûp − ûw

)
,

(see p 92 in [25]). Therefore, a Wald confidence interval 
[30] for µwp can be constructed if its standard error is 
known. Taking the variance of Eq. (4):

The above equation is simply the difference of the aver-
ages of the prediction error variances of the predictions. 
Then, a confidence interval for µwp is:

where z1− α
2
 is the value of the standard normal distribu-

tion quantile function for the confidence level 1− α
2 . For 

large datasets, it is computationally unfeasible to obtain 
C22
p  and C22

w  . In that situation, we can simplify Eq.  (6), 
assuming that animals are non-inbred and mostly unre-
lated such that the off-diagonal elements of G , C22

w  , and 
C22
p  can be safely ignored. Thus, C22

p − C22
w ≈ Rw − Rp , 

where Rw and Rp are diagonal matrices of genomic (G)
EBV’s reliabilities in the whole and partial datasets, 
respectively. Letting σ 2

g  be the genetic variance, 

Var
(
µwp

)
≈ σ 2

g

n

(
relw − relp

)
 and an approximate confi-

dence interval for µwp is:

Dispersion
The regression coefficient of ûw on ûp (bwp) quantifies the 
dispersion of the predictions with partial data. If there 
is no under/over dispersion, the expected value of bwp is 
equal to 1. The mathematical expression for bwp is:

where cov and var are the sample covariance and vari-
ance, respectively, and S = I− n−111′ . A Wald confi-
dence interval for bwp can be constructed because bwp is 
asymptotically normal when the number of focal individ-
uals in the validation set increases (see p. 249 in [25]). By 
the law of the total variance (see p. 167 in [31]):

For the first term in the right-hand side, we have:

(5)
Var

(
µwp

)
= n−21

′
Var

(
ûp − ûw

)
1 = n−21

′(
C22
p − C22

w

)
1.

(6)

CI100(1−α)

(
µwp

)
= µwp ± z1− α

2

√
n−21

′(
C22
p − C22

w

)
1,

(7)

CI100(1−α)

(
µwp

)
≈ µwp ± z1− α

2

√
σ 2
g

n

(
relw − relp

)
.

(8)bwp =
cov

(
ûw , ûp

)

var
(
ûp

) =
û
′
wSûp

û
′
pSûp

,

(9)Var
(
bwp

)
= E

[
Var

(
bwp|ûp

)]
+ Var

[
E
(
bwp|ûp

)]
.
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Using a first-order Taylor approximation:

By the expectation of quadratic forms [32] and the zero 
expectation of ûp and ûw , the numerator of the right-
hand side in Eq.  (11) is E

[
û
′
pS

(
C
22
p − C

22
w

)
Sûp

]

= tr

(
S

(
C
22
p − C

22
w

)
S

(
G− C

22
p

))
 . For the denominator, 

we have E

[(
û
′
pSûp

)2]
= Var

(
û
′
pSûp

)
+ E

[
û
′
pSûp

]2

= 2 tr

(
S

(
G− C

22
p

)
S

(
G− C

22
p

))
+ tr

(
S

(
G− C

22
p

))2  . 

Thus:

For the second term in the right-hand side of Eq. (9):

Therefore, the variance of bwp is:

and the Wald confidence interval for bwp is:

By making similar assumptions as for the estimator of the 
bias, G− C22

p ≈ Rp . Then, tr

(
S

(
C
22
p − C

22
w

)
S

(
G− C

22
p

))

≈ σ 4
g

∑n
i=1

(
relwi − relpi

)
relpi  , 

(10)E
�
Var

�
bwp|�up

��
= E




�u′
pSVar

�
�uw|�up

�
S �up

�
�u′
pS �up

�2



 = E




�u′
pS

�
C22
p − C22

w

�
S �up

�
�u′
pS �up

�2



.

(11)

E




�u′
pS

�
C22
p − C22

w

�
S �up

�
�u′
pS �up

�2



 ≈
E
�
�u′
pS

�
C22
p − C22

w

�
S �up

�

E

��
�u′
pS �up

�2� .

(12)E
[
Var

(
bwp|ûp

)]
≈

tr
(
S
(
C22
p − C22

w

)
S
(
G− C22

p

))

2 tr
(
S
(
G− C22

p

)
S
(
G− C22

p

))
+ tr

(
S
(
G− C22

p

))2 .

(13)

Var
[
E
(
bwp|ûp

)]
= Var

(
û
′
pSE

(
ûw|ûp

)

û
′
pS ûp

)

= Var

(
û
′
pS ûp

û
′
pS ûp

)
= 0.

(14)

Var
(
bwp

)
≈

tr

(
S

(
C
22
p − C

22
w

)
S

(
G− C

22
p

))

2 tr

(
S

(
G− C22

p

)
S

(
G− C22

p

))
+ tr

(
S

(
G− C22

p

))2 ,

(15)CI100(1−α)

(
bwp

)
= bwp ± z1− α

2

√√√√√√
tr
(
S
(
C22
p − C22

w

)
S
(
G− C22

p

))

2 tr
(
S
(
G− C22

p

)
S
(
G− C22

p

))
+ tr

(
S
(
G− C22

p

))2 .

tr
(
S
(
G− C22

p

)
S
(
G− C22

p

))
≈ σ 4

g

∑n
i=1rel

2
pi

 , and 

tr
(
S
(
G− C22

p

))2
≈ σ 4

g

(∑n
i=1relpi

)2 , which results in:

from which an approximate confidence interval for bwp 
can be constructed. Assuming that the increase in reliabil-
ity from the partial to the whole dataset is constant among 
the validation animals, relwirelpi

= c (which is always higher 
than 1). Then, an approximate confidence interval for bwp 
is:

(16)Var
(
bwp

)
≈

∑n
i=1

(
relwi − relpi

)
relpi

2
∑n

i=1rel
2
pi
+

(∑n
i=1relpi

)2 ,

Ratio of accuracies
The Pearson correlation coefficient between ûp and ûw (
ρwp

)
 has an expected value equal to the ratio of accuracies 

obtained with the partial and the whole dataset. The for-
mula for ρwp is:

(17)

CI100(1−α)

(
bwp

)
≈ bwp ± z1− α

2

√√√√√
(c − 1)

(
Var

(
relp

)
+ rel

2

p

)

2

(
Var

(
relp

)
+ rel

2

p

)
+ nrel

2

p

.

(18)ρwp =
cov

(
ûw , ûp

)
√
var

(
ûw

)
var

(
ûp

) .
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In principle, a confidence interval can be obtained that 
involves explicitly elements in Eq. (2); however, this yielded 
inelegant expressions that were unusable in practice (see 
Appendix II). We propose to use a confidence interval for 
ρwp using the Fisher transformation [25] and (see p. 261 in 
[29]). The inverse hyperbolic tangent of a correlation coef-
ficient r 

(
tanh−1

(r) = 1
2 log

(
1+r
1−r

))
 follows approximately 

a normal distribution with a standard error equal to 1√
n−3

 
assuming that the samples are identically and indepen-
dently distributed (which is not the case for genetic evalua-
tions). Thus:

To obtain a confidence interval for ρwp , we apply the 
hyperbolic tangent and get:

where tanh(x) = e2x−1
e2x+1

.
This can be computed for any dataset size but note that 

this confidence interval is not symmetric around ρwp.

Reliability
The reliability of the EBV is defined as the square of the 
correlation between the true and estimated breeding val-
ues. Legarra and Reverter [3] and Macedo et al. [29] pro-
posed that the reliability be estimated as the ratio 

(19)

CI100(1−α)

(
tanh−1

(
ρwp

))
= tanh−1

(
ρwp

)
± z1− α

2

1
√
n− 3

.

(20)

CI100(1−α)

(
ρwp

)
= tanh

(
tanh−1

(
ρwp

)
± z1− α

2

1
√
n− 3

)
,

between the sample covariance of ûp and ûw and the 
genetic variance of the validation set 

(
σ 2
gi

)
 . This variance 

must account for selection and can be approximated 
using averages of additive relationships among validation 
animals, which accounts for e.g. few families of large sib-
ships, or calculated with the method of Sorensen et  al. 
[33] which correctly accounts for selection. We will 
assume this variance as known. The estimator of the reli-
ability has the following expression:

Although ρ2
covwp

 is not normally distributed, we assume 
that, for large sample sizes, its distribution is approxi-
mately normal. Taking the variance of ρ2

covwp
 gives:

As in Eq. (9), we apply the law of total variance for the 
numerator of the right-hand side in Eq. (22):

Following similar arguments as for Eqs. (10) and (11), 
the first term is equal to tr

(
S
(
C22
p − C22

w

)
S
(
G− C22

p

))
 , 

whereas the second term is equal to 
2 tr

(
S
(
G− C22

p

)
S
(
G− C22

p

))
 . Therefore:

Finally, a confidence interval for ρ2
covwp

 is constructed 
as:

(21)ρ2
covwp

=
û
′
wS ûp

nσ 2
gi

.

(22)Var
(
ρ2
covwp

)
=

Var
(
û
′
wS ûp

)

(
nσ 2

gi

)2 .

(23)
Var

(
û
′
wS ûp

)
= E

[
Var

(
û
′
wS ûp|ûp

)]
+ Var

(
E
[
û
′
wS ûp|ûp

])
.

(24)Var
(
ρ2
covwp

)
=

tr
(
S
(
C22
p − C22

w

)
S
(
G− C22

p

))
+ 2 tr

(
S
(
G− C22

p

)
S
(
G− C22

p

))

(
nσ 2

gi

)2 .

(25)
CI100(1−α)

(
ρ2
covwp

)
= ρ2

covwp
± z1− α

2

√
tr
(
S
(
C22
p − C22

w

)
S
(
G− C22

p

))
+ 2 tr

(
S
(
G− C22

p

)
S
(
G− C22

p

))

nσ 2
gi

.
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Following the same assumptions as for the bias and dis-
persion parameter leads to 
Var

(
ρ2
covwp

)
≈ σ

4
g(

nσ 2
gi

)2
∑n

i=1

(
relwi + relpi

)
relpi . Assuming 

that the increase in reliability from the partial to the whole 
dataset is constant among the validation animals, that is, 
relwi
relpi

= c , gives Var
(
ρ2
covwp

)
≈ (1+c)σ4g

nσ 4
gi

(
Var

(
relp

)
+ rel

2
p

)
 . 

Thus, an approximate confidence interval for ρ2
covwp

 is:

Predictivity
The ratio between the correlation of ûp and the phenotypes 
of the validation set adjusted for fixed effects 

(
y∗
)
 and the 

square root of the heritability (h) is an estimate of the cor-
relation between estimated and true breeding values [4]. 
This statistic is sometimes called predictivity 

(
ρy∗,ûp

)
 and 

has the following mathematical expression:

As with the ratio of accuracies, the Fisher transformation 
can be used to obtain the following confidence interval for 
ρy∗,ûp:

This can be computed for any dataset size.

Simulations
We tested the adequacy of our analytical [(Eqs. (6), (15), 
(20), (25), and (28)] and approximated analytical [Eqs. (7), 
(17), and (26)] confidence intervals using two simulated 
examples. In both, we obtained the empirical distribution 
of the validation statistics by replicating the simulation. 
Then, we compared the standard error and 95% confidence 
interval of that sampling distribution (i.e., True) versus 
confidence intervals obtained with the formulas presented 
in the previous section (i.e., Analytical or Approximated), 
and by bootstrapping. The confidence intervals with boot-
strap were obtained by sampling with replacement of the 
validation set, replicated 10,000 times.

Example 1 The first dataset was created using a pub-
licly available pedigree created by Yutaka Masuda 
(https:// github. com/ masud ay/ data/ blob/ master/ tutor 
ial/ rawfi les/ rawped). The pedigree had 11 generations 

(26)
CI100(1−α)

(
ρ2
covwp

)
≈ ρ2

covwp
± z1− α

2

√√√√ (1+ c)σ4g

nσ 4
gi

(
Var

(
relp

)
+ rel

2
p

)
.

(27)ρy∗,ûp =
1

h

cov
(
y∗, ûp

)
√
var

(
y∗
)
var

(
ûp

) .

(28)

CI100(1−α)

(
ρy∗,ûp

)
=

1

h
tanh

(
hatanh

(
ρy∗,ûp

)
± z1− α

2

1
√
n− 3

)
.

without selection (i.e., random mating and random cull-
ing) and 4641 individuals. Single-trait models with gener-
ation as a fixed effect (b) and additive genetic effect (u) as 
a random effect were simulated for different heritabilities (
h2
)
 and proportions (prop) of animals with phenotypes 

in the population. In total, a grid of 81 scenarios corre-
sponding to h2 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 
and prop = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} was 
evaluated. Each scenario was replicated 50 times by 

sampling the vector of phenotypes from a multivari-
ate normal distribution with mean Xb (b is fixed across 
replicates) and variance ZAZ′σ 2

a + Iσ 2
e  , where A is 

the numerator relationship matrix [34], σ 2
a = 1 and 

σ 2
e = 1

h2
− 1 . The validation set was composed of phe-

notyped animals from the most recent generation. The 
number of animals in the validation set was constant 
among heritabilities, and for each propi was equal to 44, 
74, 119, 149, 188, 234, 274, 318, and 362, respectively. All 
the computations were done in Julia [35].

Example 2 For the second example, we replicated the 
simulation of Vitezica et al. [36], which consists of a dairy 
cattle selection scheme with single-step genomic best 
linear unbiased predictor [37–39]. In each replicate, the 
partial dataset was created by removing the phenotypes 

Table 1 Mean squared differences between estimated and true 
variance, lower bound of the 95% confidence interval (lCI), and 
upper bound of the 95% confidence interval (uCI), averaged over 
all levels of heritability and proportion of animals with records for 
the different validation statistics for Example 1

Var lCI uCI

Bias Analytical 4.07E−08 8.88E−04 1.07E−03

Approximated 1.03E−05 3.71E−03 5.39E−03

Bootstrap 1.38E−05 2.64E−03 4.04E−03

Dispersion Analytical 4.27E−05 4.07E−02 7.92E−02

Approximated 1.58E−04 4.89E−02 7.05E−02

Bootstrap 2.34E−04 6.71E−02 8.01E−02

Ratio of accuracies Analytical – 1.38E−02 8.41E−03

Bootstrap 3.46E−05 1.64E−02 9.95E−03

Predictivity Analytical – 4.01E−02 4.02E−02

Bootstrap 2.39E−04 5.58E−02 3.42E−02

Reliability Analytical 1.74E−06 1.39E−03 5.81E−03

Approximated 2.74E−05 5.81E−03 1.66E−02

Bootstrap 3.48E−05 4.58E−03 2.46E−02

https://github.com/masuday/data/blob/master/tutorial/rawfiles/rawped
https://github.com/masuday/data/blob/master/tutorial/rawfiles/rawped
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Fig. 1 Comparison between the true (T), analytical (An), approximated (Ap), and bootstrap (B) standard error and confidence interval 
for the estimator of the bias over different combinations of heritability 

(
h2
)
 and proportion of animals with records (p) for Example 1. The length 

of the box indicates the magnitude of the standard error with respect to the mean of the bias over the replicates. The length of the whiskers 
indicates the length of the 95% confidence interval
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of the cows in the most recent generation. Two validation 
sets were created: the cows for which the phenotypes 
were removed and the sires of those cows. The number of 
cows in the validation set was equal to 1300, whereas the 

number of bulls was 200. The simulation was replicated 
30 times. Estimated breeding values and exact prediction 
error variances were obtained with the BLUPF90 + soft-
ware [40]. Prediction error variances were obtained using 
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Fig. 2 Comparison between the true (T), analytical (An), approximated (Ap), and bootstrap (B) standard error and confidence interval 
for the estimator of the dispersion over different combinations of heritability 

(
h2
)
 and proportion of animals with records (p) for Example 1. 

The length of the box indicates the magnitude of the standard error with respect to the mean of the dispersion over the replicates. The length 
of the whiskers indicates the length of the 95% confidence interval
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Fig. 3 Comparison between the true (T), analytical (An), and bootstrap (B) standard  error1 and confidence interval for the estimator of the ratio 
of accuracies over different combinations of heritability 

(
h2
)
 and proportion of animals with records (p) for Example 1. The length of the box 

indicates the magnitude of the standard error with respect to the mean. The length of the whiskers indicates the length of the 95% confidence 
interval. 1Standard errors were not available for the analytical confidence interval
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Fig. 4 Comparison between the true (T), analytical (An), and bootstrap (B) standard  error1 and confidence interval for the predictivity over different 
combinations of heritability 

(
h2
)
 and proportion of animals with records (p) for Example 1. The length of the box indicates the magnitude 

of the standard error with respect to the mean. The length of the whiskers indicates the length of the 95% confidence interval. 1Standard errors 
were not available for the analytical confidence interval
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Fig. 5 Comparison between the true (T), analytical (An), approximated (Ap), and bootstrap (B) standard error and confidence interval 
for the estimator of the reliability over different combinations of heritability 

(
h2
)
 and proportion of animals with records (p) for Example 1. The 

length of the box indicates the magnitude of the standard error with respect to the mean. The length of the whiskers indicates the length 
of the 95% confidence interval
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sparse inversion techniques, which calculates the ele-
ments in the inverse corresponding to the non-zero ele-
ments of the original matrix [41, 42]. All the other analy-
ses were done using Julia [35].

Results
Table 1 shows the average squared difference between the 
estimated and true values of the variance and 95% con-
fidence interval bounds for Example 1. Average squared 
differences grouped by different prop and h2 are reported 
(see Additional file  1: Tables S1 and S2). The analytical 
confidence intervals and variances were closer to the true 
simulated values than those obtained by bootstrapping. 
The confidence intervals obtained by bootstrapping were 
very similar to the approximated analytical confidence 
intervals.

The same patterns can be observed in Figs.  1, 2, 3, 4 
and 5, which compare the simulated against estimated 
standard errors and confidence intervals for a combi-
nation of three heritabilities (low, medium, and high) 
and three proportions of animals with phenotypes (low, 
medium, and high). For the bias (Fig. 1), the estimation 

of the confidence intervals was less accurate with low 
prop . Within each prop , the approximated and bootstrap 
standard errors and confidence intervals tend to overesti-
mate the simulated ones as the heritability increases.

The situation was the opposite for the dispersion 
parameter (Fig.  2). In this case, the approximated and 
bootstrap confidence intervals were too narrow for 
high prop with respect to the true confidence intervals 
obtained from the simulated data. These results suggest 
that bootstrapping does not consider properly the com-
plex covariance structure between ûp and ûw.

The confidence intervals for the ratio of accuracies 
were slightly underestimated for the bootstrap method.

The same was observed for the predictivity. However, 
the variance among replicates was very high for scenarios 
with low prop or low h2 . In such cases, the confidence 
intervals for the predictivity would cover a large portion 
of its range, making inference based on the predictivity 
statistic inaccurate.

For reliability (Fig.  5), the analytical confidence inter-
vals were very close to the simulated ones. The approxi-
mated analytical and the bootstrap confidence intervals 
were systematically narrower than the simulated ones. 
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Fig. 6 Comparison between the true (T), analytical (An), approximated (Ap), and bootstrap (B) standard error and confidence interval 
for the estimator of the bias, dispersion, ratio of  accuracies1, and reliability for the bulls in Example 2. The length of the box indicates the magnitude 
of the standard error with respect to the mean. The length of the whiskers indicates the length of the 95% confidence interval. 1Standard errors 
were not available for the analytical confidence interval
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In addition, the simulated confidence intervals were not 
symmetric around the mean, as the lower bound was 
closer to the mean than the upper bound. This could 
indicate that approximate normality is not appropriate.

Results for Example 2 are shown in Fig. 6 for bulls and 
Fig.  7 for cows. The analytical confidence intervals for 
reliabilities in cows were closer to the simulated ones than 
those for bulls. For bulls, the results were overall more 
variable and showed that the analytical confidence inter-
vals for all the statistics were biased, probably because 
bulls were highly selected. This violates the assumption 
of absence of selection and can affect the expressions 
involving G . In addition, this issue could have been gen-
erated by the sparse inversion [41, 42] implemented in 
BLUPF90 + , which calculates in an exact manner the 
elements of C22

w  and C22
p  corresponding to the non-zero 

pattern of the MME and ignores the rest of the elements, 
which have their values set to zero before sparse inver-
sion. However, these elements, which are not needed for 
reliabilities or restricted maximum likelihood (REML), 
are needed to obtain confidence intervals analytically, 
e.g., in [15]. For instance, the prediction error covariance 
of two unrelated bulls with daughters in the same herd. 
Another reason could be that the amount of information 
removed for the validation bulls was not sufficient, which 
is shown by a high ρwp . Under high ρwp , the gain in accu-
racy from the partial to the whole dataset will be minimal 
to null, and the standard errors of the validation statistics 
will tend to zero because C22

p ≈ C22
w  . Similar to the results 

from Example 1, the bootstrap confidence intervals were 
narrower than the simulated ones.

Discussion
The aim of this study was to derive standard errors and 
analytical confidence intervals for the LR method and 
predictivity. For the estimators of the bias, dispersion, 
and reliability from the LR method, we calculated their 
standard errors and built Wald confidence intervals 
assuming that the estimators are asymptotically normally 
distributed. Unlike [24], we used the marginal (uncondi-
tional) distribution of the estimators to account for the 
randomness of ûp and the dependence between ûp and 
ûw . Not accounting for the randomness of ûp results in 
an underestimation of the standard errors of the valida-
tion statistics; hence, resulting in narrower confidence 
intervals. The resulting standard errors and confidence 
intervals are functions of the relationships between the 
individuals in the validation set and their prediction error 
(co)variances in the whole and partial datasets.

For the estimator of the ratio of accuracies from the 
LR method and the predictivity, we used the Fisher 
transformation to obtain a confidence interval of those 

correlation coefficients. Although this method is straight-
forward, it assumes that all the samples are identically 
and independently distributed, which is not true when 
performing validation by data truncation in genetic eval-
uations. Looking for better formulas that account for het-
erogeneity in variances and dependence among samples 
will involve complicated expressions (see Appendix II). In 
addition, Krishnamoorthy and Xia [43] and Gnambs [44] 
showed that Fisher’s transformation worked well with a 
large number of observations regardless of whether its 
assumptions were violated. Also, unlike the standard 
errors for bias, dispersion, and reliability, which depend 
only on the model [see Eqs. (5), (14), and (24)], the vari-
ances for the ratio of accuracies and predictivity depend 
directly on the values of the statistics themselves.

Although confidence intervals for predictivity can be 
obtained with Fisher’s transformation, comparing differ-
ent models based on those confidence intervals is 
improper because it does not consider the dependency 
between the statistics. A bootstrap method to account for 
this was proposed by [24], but parametric methods exist. 
In other words, the methods presented in this study 
explain how to obtain confidence intervals for ρy∗,ûp but 
they do not assess the null (H0) hypothesis 
ρy∗,ûp(A) = ρy∗,ûp(B) , where A and B denote different 
methods or models for prediction. A proper test in this 
situation is the Williams test [45], which uses the statistic 

T =
(
ρy∗,ûp(A) − ρy∗,ûp(B)

)

√√√√
(n−1)

(
1+ρûp(A),ûp(B)

)

2

(
n−1

n−3

)
|R|+

(
ρ
y∗ ,ûp(A)+ρ

y∗ ,ûp(B)
2

)2((
1−ρûp(A),ûp(B)

))3  to com-

pare correlations ρy∗,ûp(A) and ρy∗,ûp(B) , where ρûp(A),ûp(B) 
is the correlation between EBV calculated with methods 
A and B , and 
|R| =

(
1− ρy∗,ûp(A) − ρy∗,ûp(B) − ρûp(A),ûp(B)

)

+2

(
ρy∗,ûp(A)ρy∗,ûp(B)ρûp(A),ûp(B)

)
 . Statistic T  follows 

approximately a t distribution with n− 3 degrees of free-
dom. Indeed, this test has already been used but not in 
the context of the LR method [46].

According to the results of our study, analytical confi-
dence intervals should be preferred over bootstrap confi-
dence intervals. However, the analytical confidence 
intervals for the bias, dispersion, and reliability are com-
putationally expensive to obtain in large datasets because 
they need the prediction error variances and covariances 
for the validation animals in the whole and partial data-
sets. Alternatives for large-scale genetic evaluations 
could be to approximate C22

w  and C22
p  with Markov chain 

Monte Carlo methods [47]. In this study, the approxima-
tions that we propose assume 

(
C22
p − C22

w

)
 and 

(
G− C22

p

)
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to be diagonal. In such a case, C22
w  and C22

p  can be 
obtained from the (G)EBV reliabilities reported in the 
evaluation, which corresponds to, for instance, the infor-
mation that is used in Interbulls’ tests [48, 49]. The 
robustness of the diagonal assumption depends on the 
data. For not-very-related individuals with high reliabili-
ties, the assumption holds. More complex scenarios, for 
instance, families with half-sibs and low to medium relia-
bilities will require further inspections due to a block 
structure of 

(
C22
p − C22

w

)
 and 

(
G− C22

p

)
 . Assuming that 

the increase in reliability from partial to whole data (c) is 
constant among animals leads to an expression where 
only relp or relw are required. This could be attractive in 
cases where performing validation by data truncation is 
not possible (e.g., when phenotypes could not be shared 
or relp might not be available) or when adding a source of 
information or calculating the reliability is not possible 
( relw might not be available). The assumption of a con-
stant increase in reliability, using the average increase of 
the reliability for the calculations, was shown to be robust 
in this study in spite of the range of c , which ranged up to 
(1.86-8.91) for some scenarios in Example 1. In our simu-
lations, the approximated analytical confidence intervals 
were similar to those obtained by bootstrapping.

In many scenarios in both examples, the bootstrap 
confidence intervals were narrower than the simulated 
ones. In other words, bootstrapping was “too optimistic” 
regardless of the variation of the empirical distribution 
of the validation statistic. The reason could be the cor-
related data structure shown by populations under arti-
ficial selection. Bickel et al. [50] reviewed situations and 
presented scenarios where classical bootstrap fails. In 
such a case, they proposed sampling with replacement 
using fewer observations than the total number. In addi-
tion, this could increase the efficiency of bootstrapping. 
The number of observations to sample would depend on 
the data and could be calibrated with the analytical con-
fidence intervals in case they are too expensive to obtain 
for routine evaluations.

The additive genetic variance and the accuracy of the 
EBV change when selection occurs [51, 52]. To our 
knowledge, the interaction between predictivity and 
selection has not been studied. That statistic depends on 
the square root of the heritability. Thus, if the estimate of 
the heritability under selection is biased, the predictivity 
could also be biased. In case the model and genetic 
parameters are correct, the predictivity could be biased if 
selected animals are chosen for the validation set. Simu-
lation studies reported that the LR method worked well 
when the model used to estimate breeding values 

matches the true data-generating process [14, 29]. 
According to these results, one could infer that the LR 
method would estimate the bias, dispersion, and accu-
racy properly in the presence of selection if it is correctly 
taken into account in the model with, for instance, the 
method of Henderson [53, 54]. However, this is rarely 
used in genetic evaluations, and selection is often ignored 
in the estimation of breeding values. In such a case, the 
LR method can estimate the direction of the bias but not 
its magnitude if the model is incorrect but reasonably 
robust [29]. The LR method cannot estimate the bias 
when the model is seriously mis-specified, which in the 
case of [29] was when a simulated environmental trend 
was ignored in the model. Macedo et al. [29] found that 
the dispersion and accuracy were well estimated in all 
scenarios. However, Himmelbauer et  al. [14] found that 
the LR method performed well for males but not for 
females in dairy cattle selection schemes. In addition, 
they reported that the estimator of the reliability depends 
heavily on how the additive genetic variance for the vali-
dation set is calculated. The confidence intervals derived 
in this study can be affected by selection in two ways: (i) 
by the bias of the validation statistics and (ii) by the effect 
of selection on the standard error of the dispersion and 
reliability estimators. The first way affects the location of 
the confidence interval, and given a biased estimator, it is 
not possible to correct. The second way affects the confi-
dence interval length because the additive relationships 
in the validation group change due to selection [53, 54]. 
Specifically, the affected term is 

(
G− C22

p

)
 , which is the 

variance of ûp . According to Henderson [53, 54], the vari-
ance of ûp is reduced under selection. However, the effect 
on the standard error of the estimators of the dispersion 
and reliability is hard to assess because the variance of ûp 
is involved in convoluted algebraic operations.

Conclusions
We derived analytical standard errors and confidence 
intervals for predictivity and the LR method statistics of 
bias, dispersion, ratio of accuracies, and reliability. Based 
on the examples shown in this study, the analytical confi-
dence intervals were more accurate than the confidence 
intervals obtained by bootstrapping. We also developed 
approximated analytical confidence intervals for situ-
ations where the analytical ones are not feasible due to 
computational limitations. This study provided a frame-
work for proper validation by data truncation statistical 
inference applied to genetic evaluation when replication 
is not possible.
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Appendix I
This is essentially a rewriting of properties shown by sev-
eral authors [53–56], some of them difficult to find, that 
we put together here for readers’ convenience. The full 
model is:

Assuming u ∼ MVN(0,G) , e ∼ MVN(0,R) , and 
cov(u, e) = 0 gives y ∼ MVN(Xb,V = ZGZ′ + R) . The 
best linear unbiased prediction of u is obtained as 
ûw = Cwy =

(
GZ

′
V
−1 −GZ

′
V
−1

X
(
X
′
V
−1

X
)−

X
′
V
−1

)
y  . 

The partial model (the model without the phenotypes of 
the validation set) is:

In this case, the best linear unbiased prediction of u is 
obtained as 
ûp = Cpy =

[ (
GZ

′
pV

−1
p −GZ

′
pV

−1
p Xp

(
X
′
pV

−1
p Xp

)−
X
′
pV

−1
p

)
0

]

[
yp

yw−p

]
 . Then:

By affine transformation of y (see p. 92 in [25]):

which results in [3, 55]:

To account for selection, [29] showed that G should be 
replaced by G∗ = G− BuH0B

′
u [53], where Bu represents 

the selection process and H0 represents the decrease in 
variance under selection. However, information about 
the selection process to write down matrices Bu and H0 
is unknown, except for idealized settings. For this rea-
son and for simplicity, absence of selection is assumed to 
result in Eq. (33). Then, by multivariate normality, ûw|ûp 
follows a multivariate normality distribution with mean:

and variance:

(29)y = Xb+ Zu + e.

(30)yp = Xpbp + Zpu + ep.

(31)
[
ûw
ûp

]
=

[
Cw

Cp

]
y.

(32)

[
ûw
ûp

]
∼ MVN

([
E[Cwy]
E
[
Cpy

]
]
,

[
CwVC

′
w CwVC

′
p

CpVC
′
w CpVC

′
p

])
,

(33)
[
ûw
ûp

]
∼ MVN

([
0
0

]
,

[
G− C22

w G− C22
p

G− C22
p G− C22

p

])
.

(34)

E
[
ûw|ûp

]

= Cov
(
ûw , ûp

)
Var

(
ûp

)−1(
ûp − E

[
ûw

])

=
(
G− C

22

p

)(
G− C

22

p

)−1

ûp = ûp,

Thus,

Appendix II
Let r = σ12√

σ 2
1 σ

2
2

 be a Pearson sample correlation coeffi-

cient. Using a first-order Taylor approximation, its vari-
ance is:

Applying Eq. (37) to the estimator of the ratio of accu-
racies 

(
ρwp

)
 (Eq. 18) we have:

Recalling that Var
(
û
′
pSûp

)
= 2 tr
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, it can proved using (see p. 66 [32]) 

that Cov
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′
pSûw
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 . Then, 

Eq. (38) results in:

(35)
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(38)

Var

�
�u′wS �up�

�up ′S �up�u′wS �uw

�

=



 �u′wS �up�
�u′pS �up�u′wS �uw




2



Var

�
�u′pS �up

�

4

�
�u′pS �up

�2 +
Var

�
�u′wS �uw

�

4
�
�u′wS �uw

�2

+
Var

�
�u′wS �up

�
�
�u′wS �up

�2 +
Cov

�
�u′pS �up, �u′wS �uw

�

2�u′pS �up�u′wS �uw

−
Cov

�
�u′pS �up, �u′wS �up

�

�u′pS �up�u′wS �up
−

Cov
�
�u′wS �up, �u′wS �uw

�

�u′wS �up�u′wS �uw



.



Page 16 of 18Bermann et al. Genetics Selection Evolution           (2024) 56:18 

Then, applying Eq. (37) to the predictive ability 
ρy∗,ûp =

1
h

cov(y∗,ûp)√
var(y∗)var(ûp)

 (Eq. 27) we have:

The joint distribution of ûp and y∗ is [3]:

where K = G+ R − XC11X , with R = Var(e) and C11 the 
block of the generalized inverse of the mixed model 
equations pertaining to the fixed effects. After algebra, 
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Sûp

)
= Var

(
û
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Eq. (37) results in:
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