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ABSTRACT
In single-molecule orientation localization microscopy, valuable information about the orientation and longitudinal position of each
molecule is often encoded in the shape of the point spread function (PSF). Yet, this shape can be significantly affected by aberrations
and other imperfections in the imaging system, leading to an erroneous estimation of the measured parameters. A basic solution is to
model the aberrations as a scalar mask in the pupil plane that is characterized through phase retrieval algorithms. However, this approach
is not suitable for cases involving polarization-dependent aberrations, introduced either through unintentional anisotropy in the ele-
ments or by using birefringent masks for PSF shaping. Here, this problem is addressed by introducing a fully vectorial model in which
the polarization aberrations are represented via a spatially dependent Jones matrix, commonly used to describe polarization-dependent
elements. It is then shown that these aberrations can be characterized by a set of PSF measurements at varying focal planes and for var-
ious polarization projections. This PZ-stack of PSFs, which contains diversity in both phase and polarization projection, is used in a
phase retrieval algorithm based on nonlinear optimization to determine the aberrations. This methodology is demonstrated with numer-
ical simulations and experimental measurements. The PYPSFSTACK software developed for modeling and characterization is made freely
available.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179906

I. INTRODUCTION

Fluorescence microscopy is a widely used imaging modality
in biological research1 given its strong signal, selective labeling
within complex systems,2 and compatibility with super-resolution
methods.3 Moreover, this technique also allows access to the
sample’s structural properties,4,5 making it very useful for study-
ing biomechanics at the molecular level. For example, in single-
molecule orientation localization microscopy (SMOLM), 3D spa-
tial localization can reach a precision of a few nanometers while
simultaneously allowing the characterization of the molecule’s 3D
orientational behavior (e.g., mean orientation and degree of wob-
ble).5 Common SMOLM techniques include polarization chan-
nel splitting6–9 and point spread function (PSF) engineering,10–14

which can be used together or separately. The shape of the
PSF can change considerably with the emitter’s orientation and

longitudinal position, so it is crucial to take this into account to
enable a full estimation of the parameters13,15,16 and to avoid local-
ization biases.17 In that respect, PSF engineering techniques have
the aim of enhancing these shape changes. Nevertheless, any optical
aberration, polarization distortion, or misalignment in the imag-
ing system can affect the final shape of the PSFs and, thus, lead to
an inaccurate estimation of the parameters. In particular, polariza-
tion aberrations are delicate to correct as they require additional
adaptive strategies that account for the vectorial nature of light
propagation.18,19

A common solution to this problem is to perform a set of
calibration measurements20,21 and use them in a phase retrieval
optimization algorithm to determine the aberrations present in the
system. For this approach to work, it is important to have an accurate
model for light’s propagation from a known source to the camera
and to incorporate phase diversity, e.g., through measurements at
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varying focal planes, both to avoid falling into local minima and
to accelerate convergence.22 For single-molecule localization micro-
scopes, the standard approach is to measure the PSFs generated by
fluorescent nanobeads in varying focal planes and use this Z-stack
of images in a phase retrieval algorithm.23 Initial approaches relied
on scalar models, assuming a point source emitting a spherical
wavefront along with a scalar pupil representing the aberrations.
In this simplified case, Gerchberg–Saxton iterative algorithms24,25

can be used, thus reducing the complexity of the implementation.
However, these algorithms are less flexible since the pupil model
cannot be chosen freely, and they are not directly applicable to
full vectorial models that consider the dipolar emission pattern and
polarization distortions.20,21,26 A more flexible approach is offered
by casting the phase retrieval problem as a nonlinear optimization
routine where most parameters in the model can be found during
the optimization process, although this requires providing analytical
formulas for the gradients in these parameters, hence complicating
implementation.25 More accurate models that take into account the
vector nature of the emitted light have also been proposed.27,28 They
incorporate the effect of the interface between the medium embed-
ding the fluorescent particles and the coverslip, which causes extra
aberrations, polarization-dependent transmission, and supercritical
angle fluorescence (SAF) radiation.28–30 However, these approaches
assume a scalar mask to characterize all the remaining aberrations,
thus preventing them from correcting any residual polarization-
dependent effects. Moreover, the polarized components of the emit-
ted fields are eventually summed in order to model an unpolarized
measurement, which is not directly applicable to polarized PSFs in
SMOLM.

Recently, new SMOLM techniques have been proposed that
use birefringent elements either to efficiently encode the 3D orien-
tation and 3D localization information of the emitting dipole into
the shape of the two polarization components of the PSF10,12,13,31

or to understand the intensity and/or shape of their different polar-
ization projections.8,9,32 For such approaches, it is essential to take
into account the emission pattern of the dipole source, its interaction
with the interface between the embedded medium and coverslip, and
any polarization-dependent aberrations.33 To address these issues, a
model is used here where all vector aspects of the propagation of the
light emitted by the source to the back focal plane (BFP) are taken
into account and where the aberrations and polarization distortions
are represented by a birefringent distribution at the pupil plane
(BDPP) modeled with a spatially varying Jones matrix.34 It is shown
that in order to properly characterize this BDPP, it is necessary to

introduce polarization projection diversity, obtained by projecting
the PSFs onto various polarization states, in addition to the phase
diversity given by changing the location of the focal plane. The PSF
images generated with these two diversities form a PZ-stack that
is fed into a nonlinear optimization algorithm that allows retriev-
ing the unknown BDPP. This approach allows for the inclusion
of many parameters that are necessary for proper characterization,
such as photo-bleaching amplitudes, background illumination, or
diversity-dependent tilts. Accurate and computationally amenable
models for the light produced by fluorescent beads (commonly
used for calibration measurements) are also included. These mod-
els take into account the unpolarized nature of the emitted light
and the blurring due to bead size.35 The software package PYPSF-
STACK used for the modeling of PZ-stacks and the phase retrieval
process can be found in Ref. 36. The retrieval algorithm was imple-
mented with the neural network framework PYTORCH,37 which
greatly simplifies its implementation and flexibility due to the auto-
matic computation of all gradients and its integration with GPUs if
available. While the emphasis of this work is on the characterization
of BDPPs, both the theory and code are equally applicable to scalar-
only aberration pupil distributions, as shown in the supplementary
material.

II. POINT-SPREAD FUNCTION OF A DIPOLAR SOURCE
A. Field at the back-focal plane

In order to properly characterize a given system, one must
first derive an accurate model. Here, the situation depicted in
Fig. 1 is considered: the incoherent light emitted by a fluorescent
bead is collected by an immersion microscope objective with a
high numerical aperture (NA). The bead is assumed to be placed
at an axial position z0 from the interface between its embedding
medium with refractive index ni and the coverslip assumed to
have the same refractive index n f as that of the immersion liq-
uid. (Because the bead is behind this interface, z0 < 0.) The index
mismatch between these media introduces extra aberrations (see
the supplementary material, Secs. SI and SII, for more details) and
polarization-dependent transmission following the Fresnel coeffi-
cients. It also allows the coupling of evanescent components emitted
by the bead when n f > ni, leading to SAF radiation, which can make
up a significant portion of the light detected by the camera.30,38–40

All of these effects can be encapsulated into the Green tensor for a
dipolar source at the BFP of the microscope objective, which can be
written as29,41–43

FIG. 1. Schematic of the experimental setup for the collection and shaping of the emission by a source. (a) Position of the fluorescent nanobead of radius Rb, embedded in
a medium of refractive index ni , with respect to the interface created by the coverslip and the immersion liquid of the microscope objective, with refractive index n f , and the
focal plane located at z f , z f < 0 (z f > 0) if the focal plane is in the medium with refractive index ni (n f). (b) Schematic of the collection arm composed of a microscope
objective (MO), followed by a birefringent mask (BM), and a polarization analyzer (PA) at the back focal plane (BFP). The light at the BFP is then focused onto the camera by
the tube lens (TL) of focal length ftl .
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G(u) = D(�)(u)S(u)g(u), (1)

where

S(u) = exp
�������ikn f �z0�

������
ni

n f

�
1 − �nf u

ni
�2 − α

�
1 − u2

������
�������,

D(�)(u) = exp�ikn f �
�

1 − u2�,

(2)

and g is a 2 × 3 matrix (see the supplementary material, Sec. SI, for
the explicit form) that includes the effect of the Fresnel coefficients
for the interface and depends only on the normalized pupil coor-
dinates at the BFP, u = (ux, uy), whose maximum value is limited
by the NA through �u�max = NA�n f , and k = 2π�λ, with λ being the
wavelength of the emitted light. (Note that the definition of u dif-
fers from that in Ref. 35 by a factor of n f .) For simplicity, it was
assumed that the source is centered on the optical axis. The posi-
tion of the focal plane z f shown in Fig. 1 requires specifying two
parameters: z f = � − α�z0�, where α is a dimensionless parameter fix-
ing the position chosen for the reference focal plane (RFP) and � is
the position of the focal plane with respect to the RFP. The para-
meter α is generally taken to be the one producing the best focus
when � = 0, although its definition is not unique (one option being
the one that minimizes the wavefront error44). As detailed in the
supplementary material, minimizing the root-mean-square (rms)
spot size with fourth-order corrections for the wavefront difference
between the SAF and defocus produces the simple expression,

α = n3
r�32n2

r + 11�
24n4

r + 16n2
r + 3

(3)

with nr = n f �ni, which gives satisfactory results for both water/oil(nr = 1.1391) and air/oil (nr = 1.515) interfaces. This value is taken
as the default in this work, but it can be changed to match other
experimental configurations. In the supplementary material, Sec.
SII, we include other possible criteria for defining the best focus
plane in our scenario: index matching between the objective immer-
sion liquid and the coverslip. For situations in which this is not the
case and the coverslip has to be considered as a parallel slab of a
finite thickness, expressions for the best focal plane can be found
in Ref. 44.

B. Birefringence distribution at the pupil plane
As mentioned in the introduction, the goal of this work is to

characterize any residual aberrations and polarization-dependent
effects due to stress and/or interfaces, the use of masks aimed at
tailoring the PSF, or a combination thereof. These residual effects
produce a birefringent distribution at the BFP, shown as a mask in
Fig. 1, which can be represented by a 2 × 2 space-dependent Jones
matrix,34

JM(u) = ei2πW(u)���
q0(u) + iq3(u) q2(u) + iq1(u)
−q2(u) + iq1(u) q0(u) − iq3(u)

���, (4)

where W represents a scalar aberration function, and the scalar
pupil functions qj are real. This matrix can be made unitary by
enforcing the condition ∑ j q2

j = 1, and otherwise, it can include

apodization effects. The birefringence distribution JM can be used to
represent both a mask introduced to shape the PSFs, such as a stress-
engineered optic (SEO)13,45,46 or a q-plate,12,47,48 and the scalar and
polarization aberrations of the system. (The simplest case of a scalar
mask corresponds to q0 = 1, q1 = q2 = q3 = 0.) This Jones matrix acts
on the Green tensor of the dipolar source at the BFP, and the result
is then propagated to the image plane via

GIP(ρ̃) =� JM(u) ⋅G(u) exp�−ik
n f ρ̃
M
⋅ u�d2u, (5)

where ρ̃ denotes the transverse position at the image plane, and M
is the total magnification of the system. Note that for setups using a
relay system, the coordinates of G should be flipped, u→ −u.

For a fully polarized dipole oriented along the unit vector
�̂ = (�x, �y, �z), the electric field distribution at the image plane is
given by

EIP(u) = GIP(ρ̃) ⋅ �̂. (6)

Therefore, the three columns of the Green tensor represent the field
distribution at the pupil plane produced by a dipole along each of the
three coordinate axes. Since the information about the orientation
of the dipole is encoded into the components of the Green tensor, in
order to retrieve the dipole’s orientation from the shape of the PSF,
it is necessary to spatially separate its projections into two appropri-
ately chosen orthogonal polarization states, such as horizontal and
vertical linear or left and right circular. These polarization projec-
tions can be represented by two matrices, P1 and P2, thus for a fully
polarized dipole, the PSF pair is given by

IIP,j(ρ̃) = �Pj ⋅GIP(ρ̃) ⋅ �̂�2 (7)

with j = 1, 2. For unpolarized emitters such as fluorescent beads used
for characterization, the PSFs are given by the incoherent sum of the
components of the final Green tensor, which amounts to the inco-
herent sum of the dipoles oriented along the three coordinate axes.
In this case, the pair of PSFs is given by

IIP,j(ρ̃) = �Pj ⋅GIP(ρ̃)�2. (8)

Note that if no polarization projection is used, the PSF is given by
the sum of the pair of PSFs IIP,1 and IIP,2.

III. FORWARD MODEL FOR CHARACTERIZING A
BIREFRINGENT DISTRIBUTION AT THE PUPIL PLANE
A. Polarization aberrations

The goal of this work is to provide a method for determin-
ing from a set of calibration PSFs the system’s BDPP, represented
by a Jones matrix of the form in Eq. (4). The various functions
in this expression must first be expanded in terms of a basis,
whose expansion coefficients are then determined through non-
linear optimization. Common basis choices for optimization are
the Zernike polynomials49 and a direct pixel representation,28 both
of which result in comparable speeds since they employ the same
number of discrete Fourier transforms, the most costly operation
even when implemented through the fast Fourier transform (FFT)
algorithm.
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In what follows, a decomposition in the Zernike polynomial
basis is used given that its elements are easy to interpret and allow
an accurate description with fewer parameters (although examples
using the pixel-based approach are shown in the supplementary
material, Sec. SVI). The components of the Jones matrix are then
decomposed as

W(u) = ′�
l

c(W)l Zl(u�umax), (9a)

qj(u) =�
l

c( j)
l Zl(u�umax), (9b)

where j = 0, . . . , 3, and a single index notation was used for the
basis elements Zl (e.g., the Fringe notation50). Note that ∑′ in
the expression for W indicates that the terms corresponding to
piston and defocus are excluded. The piston term would simply
add a global phase that is unimportant and cannot be determined
from intensity measurements, while the defocus term would be
redundant with the more accurate defocus parameter � in Eq. (1),
which is also included as an optimization parameter. In addition,
note that any misalignment of the PSFs with respect to the opti-
cal axis is corrected by the scalar tilts present in W. The number
of Zernike polynomials included in the decomposition depends
on the expected spatial dependence of the BDPP. In this work,
we found that the first 15 polynomials are usually sufficient, even
when retrieving discontinuous BDPPs such as a q-plate (see Fig. 3).
It should also be mentioned that the smooth description pro-
vided by the Zernike model works despite fast variations due to
SAF radiation since these are already included in the propagation
model. This Zernike expansion is inspired by the Nijboer–Zernike
theory, where a scalar mask would be separated into real and
imaginary parts before decomposing them in terms of Zernike
polynomials.51–53

B. Phase and polarization diversity
It is common practice in phase retrieval algorithms for opti-

cal microscopes to assume access to a stack of intensity images
for varying focal distances �ζ from the location of the best focus
(a Z-stack). The phase diversity provided by the varying focal dis-
tances is taken into account by the phase factor D(�ζ)(u) defined
in Eq. (2) within the Green tensor in Eq. (1). This additional
information, referred to as phase diversity, helps the algorithm con-
verge to an appropriate solution without falling into local minima,
as well as discriminate between vortices with opposite topological
charges.

While a Z-stack is sufficient to determine scalar masks and
aberrations, it is not so for BDPPs since it does not discriminate
between the true J and its unitary transformations JU = U ⋅ J, where
U is a constant unitary matrix, as exemplified in Sec. V A. Therefore,
it is necessary to include information about the polarization depen-
dence of the PSFs used for the retrieval. This additional information
is obtained by introducing a polarization analyzer after the birefrin-
gent mask (see Fig. 1), composed of a combination of waveplates
and polarizers where at least one element rotates to generate various
polarization projections of the output. This polarization diversity is
modeled by a set of constant Jones matrices P(p) that are applied to

the Green tensor at the BFP along with the defocus terms for the
phase diversity in order to generate a PZ-stack of Green tensors,

G(ζ,p)
BFP (u) = D(ζ)(u)P(p) ⋅ JM(u) ⋅G0(u). (10)

It is important to notice that the constant matrices P(p) cannot be
unitary since they would then have no effect on the shape of the
PSFs. The simplest nonunitary matrix to implement is a projec-
tion matrix obtained by placing a linear polarizer at the end of the
waveplate sequence.

This PZ-stack of Green tensors is then propagated to the image
plane via

G(ζ,p)
IP (ρ) =� G(ζ,p)

BFP (u) exp�−ik
n f ρ
M
⋅ u�d2u (11)

and its components are added incoherently (modeling an unpolar-
ized source) to obtain a PZ-stack of PSFs,

I(ζ,p)
IP (ρ) = �G(ζ,p)

IP �2 = �
i=x,y
�

j=x,y,z
�G(ζ,p)

IP,i j (ρ)�2, (12)

such as the one shown in Fig. 2. The polarization projections P1 and
P2 used to extract the orientation information can also be used to
define the polarization diversity, as discussed in Sec. V. It is worth
noting that while experimentally the polarization diversity happens
at the BFP, computationally it is better to perform it at the image
plane in order to avoid the computation of unnecessary FFTs. How-
ever, as discussed in Sec. VI, there are some situations in which
it must be implemented at the BFP.

C. Modeling the measured PSFs
Before comparing the PZ-stack computed by the model pre-

sented thus far with the one measured experimentally, it is necessary
to account for other effects. First, depending on the size of the flu-
orescent bead, it might be necessary to include a blurring effect.
As shown in Ref. 35, the exact three-dimensional blurring corre-
sponds to a superposition of two-dimensional convolutions between
the PSFs generated by point sources located along the longitudinal
diameter of the bead with a kernel that weights more heavily the con-
tributions near the center of the bead and vanishes for those at the
poles. This exact blurring cannot be rewritten as a three-dimensional
convolution due to the lack of translation invariance along the axis
of propagation, but it can be approximated through a semi-analytic
method based on a Taylor expansion. By keeping the first term of
the expansion, we obtain a two-dimensional blurring model based
on a two-dimensional convolution of the PSFs. If instead we keep
two terms in the expansion, we get a model for the blurring along
both the transverse and longitudinal directions, which is computed
via two-dimensional convolutions of the PSFs and their second-
derivatives with respect to the bead’s axial position, thus giving a
three-dimensional blurring model. Both of these approximate mod-
els are computationally more efficient than the exact one and have
been implemented in PYPSFSTACK. Moreover, they can be used dur-
ing the BDPP retrieval process, as shown in Sec. V B, albeit at a
computational cost due to the need for supplementary Fourier trans-
forms. Nonetheless, they allow for the analytic computation of the
gradients, hence significantly limiting the computational slowdown;
using readily available functions to blur images, on the other hand,
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FIG. 2. PZ-stack for an unpolarized emitter shaped with an SEO element and modeled with PYPSFSTACK. Only the PSFs at the initial, middle, and final values of the defocus
parameter �ζ used for the phase diversity in the retrieval of the BDPP shown in Fig. 3 are shown. For each �ζ , we show the PSFs for all polarization projections of diversity.
This polarization diversity is generated by a rotating quarter wave plate followed by a projection onto linear horizontal or vertical polarization states.

such as the one used in Ref. 28 with a Gaussian kernel, would require
the gradients to be computed via finite differences.

The other two effects that must be considered are the pho-
tobleaching of the fluorescent beads and background illumination.
Photobleaching causes the number of photons emitted by the bead
to diminish with time. Its effect can be taken into account by imple-
menting an overall amplitude factor a(p,ζ) that depends on both the
phase and polarization diversities. Background illumination is then
added incoherently to the photobleached PSF stack. The simplest
model is to assume that the background illumination is determined
by a constant term b(p,ζ) that depends on the phase and polariza-
tion diversities. Extra terms for a spatially dependent background
can be added if needed.54 The modeled PZ-stack to be compared to
the experimental measurements is then given by

I(ζ,p)
tot (ρ) = a(p,ζ)B�I(ζ,p)

IP (ρ); Rb� + b(p,ζ), (13)

where B denotes the blurring operation that depends on the bead
radius. In the supplementary material, Sec. SIII, we include a short
derivation of the blurring operation when beads are modeled as solid
spheres, following Ref. 35.

D. Assessing the accuracy with a cost function
The last piece of the forward model to be considered is the

choice of cost function used to tune the parameters so that the
modeled PSFs, I(ζ,p)

tot , best fit the measured ones, I(ζ,p)
exp . In the

absence of noise, any choice of a cost function that has a mini-
mum when the two quantities are the same should provide the same
result. However, noise is always present in experimental measure-
ments and, thus, must be taken into account. In single molecule
fluorescent microscopy, one is normally limited by shot noise fol-
lowing a Poisson distribution, in which case the log-likelihood cost
function,55

C = −�
ζ,p
� w(ρ)�I(ζ,p)

exp (ρ) log �I(ζ,p)
tot (ρ)� − I(ζ,p)

tot (ρ)�d2ρ (14)

should be used. Here, w denotes a binary window function used to
represent the region considered for optimization due to the smaller
size of the experimental data and/or to exclude bad pixels from the
camera. Another common option for the cost function is the sum
of differences squared, which is appropriate when the noise follows
a Gaussian distribution. Both of these options are implemented in
PYPSFSTACK. Note that for the choice of the cost function to be
consistent, the values of I(ζ,p)

exp must actually follow the assumed dis-
tribution. This means that the images should not be denoised and
that the offset of the camera should be removed.

IV. IMPLEMENTING THE NONLINEAR OPTIMIZATION
The goal of the nonlinear optimization routine is to find the

set of optimization parameters in the forward model that minimizes
the cost function, assessing the differences between the measured
and modeled PZ-stacks. This is achieved by supplying an optimiza-
tion algorithm, such as Adam56 or L-BFGS,57 with a function that
uses all the current values of the parameters to compute the for-
ward model all the way to the value of the cost function. In addition,
one should supply the optimization algorithm with another func-
tion that performs a backward computation to obtain the gradients
of the cost function with respect to all the optimization parameters.
These gradients are used to change the parameter values until a
minimum is reached. The gradient computation is straightforward
but tedious and can be achieved by following the rules outlined in
Ref. 58. However, an advantage of implementing nonlinear opti-
mization with the neural network framework PYTORCH is that only
the forward model must be implemented explicitly since the back-
ward model for computing the gradients of the various parameters
is computed automatically. This framework also offers the most
common optimization algorithms.

The implementation using PYTORCH greatly simplifies the vec-
torial phase retrieval algorithm, as shown in Algorithm 1. First, the
system parameters and the initial values for the optimization para-
meters are used to initialize the forward model used to compute
the estimated PSFs and evaluate the current value of the cost func-
tion. For all the examples presented in this work, the BDPP was
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ALGORITHM 1. Vectorial phase retrieval.

Input

θsys system parameters (ni, n f , λ, z0, α, Rb, NA, M, pcam, N)
θ(0)opt initial optimization parameters (�, c(W)l , c( j)

l , Rb, a(p,ζ), b(p,ζ))
I(ζ,p)

exp measured PSFs
�ζ Nz defocuses for phase diversity
P(p) Np Jones matrices for polarization diversity
B blurring model
η learning rate
N iter number of iterations

Output

JM Jones matrix at the pupil plane

Procedure

1: Initialize model with θsys, θ(0)opt , and B
2: for n← 1 to N iter do
3: Compute forward model � See Algorithm 2
4: Compute gradients � Uses automatic differentiation
5: Update optimization parameters � Takes a step size of η using the gradients
6: end for

initialized as the identity matrix, i.e., c(0)0 = 1 and c(W)l = c( j)
l for all

j, l ≠ 0. However, this can be changed if there is prior knowledge
about the BDPP. After initialization, the phase retrieval algorithm
enters a for loop in which the forward model is used to compute

the cost function using the current values of the parameters. Then,
automatic differentiation is called for to obtain the gradients. Finally,
the hyperparameters of the chosen optimization algorithm and the
values of the gradients are used to update the values for all the

ALGORITHM 2. Implementation of the forward model.

Input

θsys system parameters (ni, n f , λ, z0, α, NA, M, pcam, N)
I(ζ,p)

exp measured PSFs
@ Green tensor
�ζ Nz defocuses for phase diversity
P(p) Np Jones matrices for polarization diversity
B blurring model
θopt optimization parameters (�, c(W)l , c( j)

l , Rb, a(p,ζ), b(p,ζ))

Procedure Forward model

1: G(`)← D(�)(`)S(`)g(`) � Compute Green tensor
2: GJ(`)← J�`; c(W)l , c( j)

l � ⋅G(`) � Apply birefringent mask to Green tensor
3: G(ζ)(`)← D(�ζ)(`)GJ(`) � Apply phase diversity
4: G(ζ)IP (`)← FFT�G(ζ)(`)� � Propagate to image plane
5: G(ζ,p)

IP (`)← P(p) ⋅G(ζ)IP (`) � Apply polarization diversity
6: I(ζ,p)(`)← ∑i∑ j �G(ζ,p)

IP,i j (`)�2 � Compute intensity
7: I(ζ,p)

blur (`)← B�I(ζ,p)
IP (`), Rb� � Apply blurring

8: I(ζ,p)
tot (`)← a(p,ζ)I(ζ,p)

blur (`) + b(p,ζ) � Photobleaching and background illumination
9: C← −∑`,ζ,p w(`)�I(ζ,p)

exp (`) ln �I(ζ,p)
tot (`)� − I(ζ,p)

tot (`)� � Compute cost function

Return C
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optimization parameters. This process is iterated N iter times, after
which the process is completed. Note that other criteria can be
used to terminate the process; for example, the process could be
terminated when the change in the cost function falls below a set
limit. All the results presented in this work were obtained using the
Adam optimizer since it is more robust than simple gradient descent
and faster and less memory intensive than L-BFGS. While this
optimization algorithm has several parameters that can be tuned,
in practice, it was found that choosing the appropriate learning
rate was sufficient to obtain satisfactory solutions. The convergence
was assessed by analyzing the evolution of the cost function. A
more detailed explanation can be found in the examples in the
repository.36

To implement the forward model, all calculations are per-
formed numerically using FFTs, requiring all spatial quantities to
be sampled consistently with the camera’s pixel pitch pcam, so that
the size at the BFP is fixed to Lpupil = λM�(pcamn f ). The total size
at the BFP is divided into N ×N points used for the computation,
and the resulting two-dimensional sampling is labeled with the lexi-
cographic index `, which takes over all spatial dependence in terms
of u and ρ, for instance, G0(u)→ G0(`). All the parameters and
steps necessary to compute the forward model are summarized in
Algorithm 2.

V. NUMERICAL EXPERIMENTS
A. Polarization diversity vs more phase diversity

To exemplify the implementation of the phase retrieval algo-
rithm and, in particular, the need for polarization diversity to
properly characterize a BDPP, we consider the retrieval of two masks

used recently for estimating the position and orientation of single
emitters: an SEO45,46 with

JM = cos� cu
2
����

1 0

0 1

��� + i sin� cu
2
����

cos ϕ − sin ϕ

− sin ϕ − cos ϕ

��� (15)

and the parameter c = 1.25π, and a q-plate with unit topological
charge,12,47,48 also known as a vortex waveplate, with

JM = ���
i cos 2ϕ i sin 2ϕ

i sin 2ϕ −i cos 2ϕ

���, (16)

both of which are shown in Fig. 3. Following the strategy outlined
thus far, PYPSFSTACK is used to model a PZ-stack for each BDPP,
such as the one shown in Fig. 2 for the SEO. For the phase diversity,
images are taken from −250 to 250 nm of the RFP with a step size
of 50 nm. For the polarization diversity, a quarter wave plate (QWP)
is rotated from 0 to 3π�8 with a step of π�8 and is followed by a
Wollaston prism that projects the output onto horizontal and ver-
tical linear polarizations. This choice is inspired by the setup used
in Ref. 13, where the SEO is followed by a QWP and a Wollaston
prism to project the PSF into left and right circular polarizations. It
is also assumed that 10 000 photons arrive on average at the cam-
era to form the PSFs, to which an additional 50 photons per pixel
are added as background. Noise following a Poisson distribution is
incorporated. Note that the choice of diversity follows the results
presented in the supplementary material, Sec. SV, where the accu-
racy of the retrieval is studied as a function of measured photons for

FIG. 3. BDPP retrieval with and without polarization diversity. (First row) Elements of the Jones matrix for the ground truth and the retrieved BDPP with and without polarization
diversity for (left) an SEO and (right) a q-plate. In addition, shown are the PSFs generated by point dipoles (second to fourth row) oriented along each of the three Cartesian
axes and (last row) an unpolarized dipole, all for each of the standard projectors used for each type of birefringent window. For the SEO, the PSFs are projected onto left- and
right-circular polarizations, while for the q-plate they are projected onto linear horizontal and vertical polarizations. In addition, given are the correlation between the retrieved
and true BDPP, as well as the rms error between the retrieved and true PSFs generated by point dipoles along each of the three Cartesian axes and an unpolarized dipole.
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various combinations of phase and polarization diversity. For sim-
plicity, we consider a small fluorescent bead with Rb = 10 nm so that
spatial blurring is negligible. Nonetheless, the exact blurring model
introduced in Ref. 35 was used to compute the PZ-stacks for test-
ing the BDPP retrieval algorithm. Moreover, a random error of the
order of 20 nm was introduced to the distance between the bead
and the coverslip, and one of the order of 25 nm to the location
of the RFP. The algorithm was run on a desktop computer with an
AMD Ryzen 9 3900X 12-Core central processing unit (CPU) and a
NVIDIA GeForce RTX 2080 graphics processing unit (GPU). Using
a pupil sampling of 128 × 128 points, the full retrieval routine con-
sisting of 200 iterations took only a few seconds (see Table I for more
details).

The results of the procedure are shown in Fig. 3, where the
Jones matrix for the ground truth is compared to the ones retrieved
from the PZ-stacks. This figure also shows the PSFs formed by
dipoles oriented along the three Cartesian axes and by an unpo-
larized dipole (constructed as an incoherent mixture of the three
orthogonal dipoles). The PSFs shown are modeled using the stan-
dard projectors P1 and P2 [Eqs. (7) and (8)] for each birefringent
mask, for the SEO, the output is projected onto the left and right
circular polarizations, while for the q-plate, the output is projected
onto the horizontal and vertical polarizations. To assess the accuracy
of the retrieval, both the correlation between the retrieved and true
BDPPs as well as the root-mean square (rms) error, �rms, between
the retrieved and true PSFs are shown in Fig. 3. For the SEO, the
retrieved BDPP and the corresponding PSFs are almost indistin-
guishable from those corresponding to the ground truth. However,
for the q-plate, there are appreciable differences between the original
and retrieved BDPPs. The deviation at the center is due to the chosen
model, since the Zernike polynomials struggle to reproduce the sin-
gularity at the center of the q-plate. In general, this type of singularity
does not arise as an aberration but rather by design of the mask, so
that it can be incorporated as prior information. For instance, on top
of the Zernike decomposition, a q-plate could be added to the model
with its center and orientation as optimization parameters. Another
noticeable difference in the case of the q-plate is that the phase
between the two rows of the Jones matrix is not correct. This error
happens only for birefringent masks that generate rotationally sym-
metric PSFs for unpolarized emitters for all polarization projections.
For these masks, the algorithm cannot determine the global phase
between the rows of the corresponding Jones matrix. This problem
can be solved by placing the device that introduces the polarization

TABLE I. Runtime per iteration for a pupil sampling of 128 × 128 points, 11 phase
diversities, and eight polarization diversities for different blurring models, with and
without the diversity-dependent tilts mentioned in Sec. VI.

Model

Time per iteration

CPU (ms) GPU (ms)

No blurring and no tilts 45 9.6
2D blurring and no tilts 110 13.7
3D blurring and no tilts 273 21.4
No blurring and with tilts 222 16.7
2D blurring and with tilts 287 20.6

diversity before the birefringent mask. Even when this solution is not
used, the correlation (when neglecting the phase difference between
the rows) is quite high, and the reproduced PSFs for any dipole
orientation are again indistinguishable from the true ones. There-
fore, these differences are inconsequential for the purposes of single
molecule fluorescence microscopy. In addition, the error introduced
for z0 and α has no impact on the retrieval as long as the defocus � is
included as an optimization parameter. Similar results using a pixel-
based model are shown in the supplementary material, Sec. VI, as is a
comparison of the convergence of the cost function between the two
models.

For comparison, the retrieval of the same birefringent mask is
also performed without using polarization diversity. To make this
comparison consistent and fair, the number of photons reaching
the camera and those in the background illumination is doubled
since there is no polarization separation. Moreover, the phase diver-
sity images are now taken from −250 to 250 nm of the RFP with
a reduced step size of 5 nm, so that the total number of PSFs
used is larger than in the previous case. The results are shown in
Fig. 3, where the algorithm is seen to fail to retrieve the appro-
priate BDPP, and thus, it cannot generate the correct PSFs when
they are projected onto a given polarization state. These results
show the need for polarization diversity when characterizing a
BDPP. A more detailed comparison between the scalar and vec-
tor models is provided in the supplementary material, Sec. IV.
Note that the runtime is much longer due to the increase in
the number of FFTs required. (This runtime should be compara-
ble with that of a model that includes tilts but no blurring; see
Table I.)

B. Incorporating blurring due to size
to the birefringent distribution retrieval

As an additional test of the present implementation, the
retrieval of a BDPP from a highly blurred PZ-stack such as the
one shown in Fig. 4 is considered. Using the SEO as an exam-
ple, a PZ-stack is constructed as in Sec. III B and III C with
the significant difference of increasing the radius of the nanobead,
which is chosen randomly from a uniform distribution between
150 and 170 nm. Here again, the distance to the coverslip is
taken to be equal to the radius of the bead. As shown in Fig. 4,
this bead size causes a significant blur in the resulting PSFs. The
blurred PSFs were computed with the exact blurring presented in
Ref. 35, but this approach turned out to be computationally expen-
sive and not necessary for the retrieval procedure, as shown in what
follows.

A first attempt to retrieve the BDPP is performed by com-
pletely neglecting the blurring effect. However, as shown in Fig. 4,
this approach fails to retrieve the appropriate BDPP, showing that
bead size effects cannot be neglected in this case. Next, as dis-
cussed in the supplementary material, Sec. SIII, the two approximate
models presented in Ref. 35 were used for the retrieval, where
the radius of the bead is used as an optimization parameter for
the blurring with an initial value of 150 nm. The first of these
approaches is a 2D convolution with a kernel given by a spherical
Bessel function. This approach produces a satisfactory result, whose
retrieved BDPP has a correlation of 98.6% with the ground truth.
The second is the semi-analytic model described in Sec. III C for
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FIG. 4. BDPP retrieval from highly blurred PSFs. Comparison of PSFs for an SEO at the reference focal plane (�ζ = 0) for the same polarization diversities as those shown
in Fig. 2 for (first row) a point source and (second row) a fluorescent bead with a radius Rb = 150 nm. (Third row) Elements of the Jones matrix for the ground truth and the
retrieved BDPPs without blurring, with a two-dimensional blurring model, and a three-dimensional semi-analytic blurring model.

reproducing the effects of the three-dimensional blurring, based on
a Taylor expansion around the center of the bead. In this case, a
BDPP indistinguishable from the true one is again retrieved with a
slightly better correlation of 99.5%. As shown in Table I, both blur-
ring models significantly increase the time per iteration due to the
required supplementary Fourier transforms. This increase is par-
ticularly important for the 3D blurring model, which requires the
computation of the first and second derivatives of the Green tensor
with respect to the bead’s axial position, hence tripling the num-
ber of Fourier transforms in addition to two convolutions at the
image plane. Therefore, the small gain provided by the 3D model
might not justify the extra computational resources needed for it.
Nonetheless, both models are able to perform the full retrieval in
well under a minute with the CPU and in a few seconds with
the GPU.

VI. CHARACTERIZATION FROM EXPERIMENTAL DATA
After validating the proposed retrieval procedure on simu-

lated data, we apply it to retrieve a BDPP distribution from a
PZ-stack measured experimentally. We use a sparse sample of flu-
orescent nanobeads with a diameter of 20 nm (orange carboxylate-
modified FluoSpheres), immobilized on the surface of a poly-L-
lysine-coated coverslip, and embedded in water. The sample is
mounted on a XYZ piezo stage (Physik Instrumente) and is excited
by a continuous wave laser emitting at 561 nm (Oxxius L4Cc)
in a wide-field illumination configuration using an oil immersion
objective lens (APO TIRF ×100, NA = 1.49, Nikon). The emitted

fluorescence is collected by the same objective lens and then passes
through two multiband dichroics (Semrock, R405/488/561/635-
t1-25x36) and a fluorescence filter (Semrock, 605/40). A tele-
scopic relay system (composed of two achromatic doublets with
f = 250 mm so that the magnification is unity) is used to access
the BFP of the objective. The different polarization projections are
taken by using a QWP (AQWP05M-600, Thorlabs) placed on a
rotating mount (Newport, PR50CC), followed by a quartz Wollaston
polarizing 2.2○ beamsplitter (Edmunds, 68-820). The final images
are measured using an ORCA Fusion-Digital CMOS C14440-20
UP (1024 × 1024 pixels, 6.5 × 6.5 �m2 pixel size, Hamamatsu).
PZ-stacks were acquired with a step size of 50 nm and a rotation
step for the QWP of 30○. Figure 5 shows part of the experimental
PZ-stack.

Before launching the retrieval on the experimental PZ-stack, it
should be noted that there are several factors that lead to the intro-
duction of a diversity-dependent phase tilt at the BFP. First, the use
of a Wollaston prism to spatially separate the two polarization com-
ponents onto different sections of the camera might make it difficult
to have the same center for the PSFs for each polarization compo-
nent. Second, any slight wedge on the rotating QWP introduces a
tilt that rotates with it. Finally, any slight misalignment between the
stage moving the sample and the optical axis defined by the micro-
scope objective leads to a defocus-dependent tilt. Therefore, it is best
to introduce in the forward model outlined in Sec. IV extra opti-
mization parameters to independently adjust these tilts at the BFP
for each combination of diversities. In particular, steps 4 and 5 in
Algorithm 2 should be reversed in order to apply the polarization
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FIG. 5. BDPP retrieval from experimental data, taken from fluorescent nanobeads of diameter 20 nm. (First row) Measured and (second row) retrieved PZ-stacks, where only
the PSFs at the initial, middle, and final values of the defocus parameter � used for the phase diversity are shown, for all polarization projections comprising the polarization
diversity. (Last row) The retrieved elements of the Jones matrix for the BDPP and its decomposition into a misaligned SEO element, and scalar and polarization aberrations.

diversity before propagating to the image plane, and the follow-
ing additional step should be added after applying the polarization
diversity:

4b. Apply a phase tilt T(`) = exp�i2πt(ζ,p) ⋅ `� to each diversity.

Optimization parameters: t(ζ,p) = (t(ζ,p)
x , t(ζ,p)

y ).
The downside of including these extra parameters is that the

number of FFTs needed for each iteration increases by a factor equal
to the number of polarization projection steps (see Table I). How-
ever, the total run time remains quite manageable even if the 2D
blurring model is used.

All the optimization parameters for the retrieval procedure
were used, except for the bead radius (for the blurring), since it can
be neglected due to the small bead size (Rb = 10 nm). The results of
the retrieval process are shown in Fig. 5, where the strong agree-
ment between the measured PZ-stack and the one modeled with
the retrieved BDPP (see the supplementary material, Sec. SVIII, for
a full comparison) can be appreciated. Moreover, the presence of
the SEO is visible in the retrieved BDPP. In this case, since it is
known that there is an SEO at the BFP, it is worth trying to separate
the total retrieved BDPP into a misaligned ideal SEO and a BDPP
containing the scalar and polarization aberrations of the system. It
should be noted that scalar tilts and defocus are not shown as part
of the scalar aberrations. From this decomposition, it can be seen
that the largest birefringent contribution comes from the SEO, but
the aberrations are not negligible and must be taken into account

(see the supplementary material, Sec. SVIII, for more details). Note
also that the polarization aberrations show larger variations than
the scalar ones, which are almost flat, showing the need to con-
sider polarization aberrations when using polarization-dependent
systems. Given that for retrieval from experimental data, the ground
truth is not known a priori, the same retrieval was performed for
other beads within the field of view to corroborate the results.
The retrieved BDPPs are indeed highly correlated with the one
shown in Fig. 5 (see the supplementary material, Sec. SVIII, for full
details).

VII. CONCLUSIONS
A methodology and phase retrieval algorithm were presented

for the characterization of birefringent distributions at the pupil
plane (BDPP) from stacks of PSFs. In particular, it was shown that,
for polarization-dependent systems, aberrations should be modeled
as a BDPP encoding both scalar and polarization deviations from
the ideal system, and that the use of polarization diversity is essential
for its proper characterization. The software program PYPSFSTACK
created and used for the modeling and retrieval presented in this
work is freely available. In particular, the BDPP retrieval imple-
mentation based on PYTORCH makes this software flexible and
customizable. This is shown in this work by incorporating sev-
eral optimization parameters apart from those used to describe the
BDPP, as well as the blurring models presented in Ref. 35. Even when
considering these extra parameters and models, the runtime remains
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manageable. In addition, this software can also be used for the
retrieval of scalar BDPPs, as shown in the supplementary material
in Sec. SVII for a mask known as the tetrapod.59

While it was assumed that the sources used for the characteriza-
tion were unpolarized, the retrieval model and algorithm presented
here can be easily adapted to sources that are dipolar, partially
polarized, or with a fixed orientation, such as molecules fixed on a
surface14 or in DNA origami.60,61 Similarly, this model can also be
used to find optimal scalar or BDPPs minimizing a particular combi-
nation of the Cramèr–Rao bounds for the parameters to be extracted
from the shape of the PSFs. Finally, note that there are some mod-
ifications that could be implemented in the retrieval algorithm that
might allow faster convergence, such as the use of stochastic gradi-
ent descent, where only a given set of measurements is used during
each iteration or spectral initialization.62

SUPPLEMENTARY MATERIAL

See the supplementary material for the exact expression of the
Green tensor, an analysis of the various criteria used to define the
position for the best focus, the blurring models, a detailed compar-
ison between the scalar and vector models, the effect of noise and
the number of measurements composing the diversitiy in the per-
formance of the retrieval, examples using a pixel-based model for
the retrieval of birefringent masks, the retrieval of a scalar mask, and
further corroboration of the retrieval from experimental data.
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