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Abstract

The evolving landscape of the delivery of multimedia content requires a deep understanding
of how the design of the bitrate ladder (for HTTP adaptive streaming) influences cost
and quality. This paper explores the use of Just Noticeable Differences (JND) to select
bitrate-resolution pairs for constructing a bitrate ladder with respect to the proportion of
satisfied user ratio (SUR). To expand the investigation to various codecs, first, a method is
explained that transfers the JND points obtained through subjective testing from one codec
(e.g., AVC) to other codecs (e.g., HEVC, VVC). This approach helps avoid the additional
costs associated with conducting subjective tests to obtain JND points for a wide range
of different codecs. To achieve this objective, we investigate the codec-agnostic nature of
various video quality metrics, followed by the transfer of JND between two codecs, taking
into account the most suitable codec-agnostic video quality metric. Secondly, we delve into
the analysis of the bitrate cost of a given bitrate ladder from a JND perspective, i.e., as a
function of the SUR. Among others, our experimental results demonstrate that to increase
the SUR from 75% to 90%, it is necessary to double the video bitrate.

1 Introduction

The usage of video streaming platforms such as YouTube, Netflix, Hulu or Ama-
zon Prime Video has become an integral part of our daily lives. In this context,
HTTP Adaptive Streaming (HAS) has become the dominant technique utilized for
both live and Video-on-Demand (VoD) streaming applications. HAS relies on Adap-
tive Bitrate (ABR) Streaming methods [1] which encode video content at multiple
bitrate-resolution pairs known as ”representations”. These different representations
are used to construct a so-called bitrate ladder [2], allowing a dynamic adjustment of
video quality that takes into account the available bandwidth of the viewer and the
type of device.

So far, the norm has been to utilize a fixed set of representations, such as the
HLS bitrate ladder [3] for all video content on a system or platform. However, such
a “one-size-fits-all” approach may not be optimal when provisioning a wider range of
video content types. For this reason, per-title encoding approaches were introduced,
which aim to create an individual, optimized bitrate ladder for each video content in
order to achieve higher Quality of Experience (QoE). In per-title encoding [4, 2, 5],
various encoding parameters (such as frame rate, resolution, etc.) are varied and



utilized by encoding content clips using all possible combinations of these parameters.
Subsequently, an optimized bitrate ladder is constructed by selecting representations
from a convex-hull based on the quality measurements of the encoded representations
(cf. Fig. 1). In terms of objective quality metrics, Video Multi-method Assessment
Fusion (VMAF) [6] is frequently used, due to its strong correlation with human-
perceived quality (QoE). Therefore, VMAF is often used to assess the quality of
representations and guide the bitrate laddering process [7].

A key step in constructing an optimized bitrate ladder is the careful selection of a
subset of representations from the convex-hull. This selection process has to consider
a broad range of factors, including available network bandwidth, device capabilities.
While some methods focus on selecting representations based on the probability of
clients requesting specific bitrate versions [8, 9], other approaches prioritize a selection
of representations that minimize perceptual similarity [10, 11]. These methods aim to
avoid including representations in the bitrate ladder that feature overly similar percep-
tual qualities, since such redundancy may lead to inefficient resource utilization. By
diversifying the quality levels of the representations, the bitrate ladder construction
aims to provide a wider range of viewing options and enhance the overall streaming
experience for users. Figure 6 shows an example of selecting bitrate-resolution pairs
from the convex-hull. In this example, selection is based on the optimal encoding
parameters for each bitrate, by focusing either on bitrate or quality. Figure 1a illus-
trates the selection process based on bitrate, similar to the approach described in [9].
In this method, the most frequently requested set of bitrates, i.e., {b1, b2, ....bn}, is
chosen from within the convex hull to construct the bitrate ladder. Figure 1b depicts
a quality-based selection process, specifically for VMAF, similar to the approaches
outlined in [10, 11]. These methodologies choose a set of quality values, denoted
as {v1, v2, . . . , vn} with the goal of having only small, barely noticeable perceptual
differences between consecutive representations. These approaches help to minimize
streaming costs by avoiding the inclusion of perceptually similar quality levels in the
bitrate ladder.

(a) (b)
Figure 1: Optimal representation selection along the convex hull based on (a) bitrate
or (b) quality (using VMAF metric).

The removal of similar quality bitrate-resolution pairs from the bitrate ladder is
rooted in the understanding that the human visual system (HVS) has well-known
limitations in detecting minor distortions in videos [12, 13, 14], attributed to various



psychological and physiological mechanisms. The key point is that the HVS can
differentiate only a few discrete-scale distortion levels within a wide range of quality
levels. The minimum visual difference that can be perceived by the HVS of each
individual is defined as the Just Noticeable Difference (JND). In video coding, the
1st JND marks where a viewer notices quality degradation from an uncompressed
reference. The 2nd JND indicates further noticeable quality drop using the 1st JND
as a reference. The 3rd JND represents an additional decline in quality, with the
2nd JND as its reference. To account for variations in HVS between viewers, a
metric called Satisfied User Ratio (SUR) was defined, representing the proportion of
the population that could distinguish a given distortion level [12, 15, 16]. The 1st

SUR(p%), for example, shows the p% of viewers who see the first JND level as good
as uncompressed video.

Figure 2 presents an example of an SUR curve based on the VMAF metric. Ob-
viously, as the number of satisfied individuals p increases (equating a decreasing
audience share that is actually capable of perceiving the distortion between the ref-
erence and degraded video), the VMAF value shows a corresponding increase. This
observation implies that to satisfy a larger number of individuals, the VMAF score
of the encoded video should be improved, signifying that the quality of the encoded
video should more closely match that of the reference video.

Figure 2: SUR curve example for the VMAF proxy.

For example, consider VMAFSUR(75%), which signifies that 75% of viewers can-
not detect any distortion between the reference video and the encoded video when
the VMAF score reaches this level. To cater to a larger audience and meet higher
quality standards, where 95% of viewers should not perceive any differences between
the reference video and the encoded video, we would refer to the VMAF score as
VMAFSUR(95%). In this context, it is important to note that VMAFSUR(75%) would be
less than VMAFSUR(95%), indicating a higher level of satisfaction in the latter case.

Figure 3 illustrates how various values of p can influence the selection of bitrate-
resolution pairs. As the ratio of satisfied individuals, represented by p, increases,
the chosen bitrates for the bitrate ladder also increase. In this paper, our goals are
two-fold:

(i) Our objective is to quantify the relationship between the percentage of satisfied
individuals p and the overall bitrate of the selected representations for the bitrate
ladder:



Figure 3: A growing percentage of satisfied users (%p) requires a bitrate ladder with
a broader range of bitrate values.

n∑
i=1

bi = f(p) (1)

(ii) To accommodate different codecs, we propose a mapping scheme for SUR(p%)
across various codecs. To achieve this, we initially assess the codec-dependent nature
of different Video Quality Metrics (VQMs) by analyzing a subjective test results.
Subsequently, we employ the most codec-agnostic VQM to map SUR(p%) to other
codecs. This approach eliminates the necessity for conducting subjective tests for
different video codecs. Figure 4 illustrates the mapping of the corresponding QP
values for SUR(p%) from AVC to VVC.

Figure 4: Mapping of the corresponding QP values from AVC to VVC.

2 Expanding JND Datasets to other Codecs

Carrying out a subjective test is both time-consuming and expensive. This is partic-
ularly true for JND subjective tests, as they involve the identification of JNDs within
a large set of quality levels [13, 14]. VideoSet [12] is the most extensive JND dataset
conducted on the AVC codec to determine the JND values for the QP proxy. The
dataset comprises 220 source video sequences with a duration of 5 seconds, featuring
frame rates of either 24 fps or 30 fps. These sequences were encoded at different res-
olutions using the constant quantization parameter (CQP) rate control mode of the



AVC, with QPs ranging from 0 to 51. The subjective evaluation of JND of individuals
was conducted across multiple universities.

VideoSet currently supports only AVC and to address the need for JND datasets
for more advanced codecs like HEVC and VVC, we aim to explore alternatives that
do not require an extensive subjective testing process. Our objective is to extend the
applicability of JND datasets to other codecs based on VideoSet, originally designed
for AVC, while minimizing the need for additional subjective testing efforts. In Fig-
ure 4, we show the process of mapping the QP from subjective test results of AVC
to VVC, all without the need for additional subjective tests. This mapping lever-
ages Video Quality Metrics (VQMs) as proxies, operating under the assumption that
widely adopted metrics like VMAF provide consistent scores for the same perceptual
quality across different codecs for a given video. In the following section, we sub-
stantiate this assumption through a comprehensive analysis of existing cross-codec
subjective datasets.

2.1 Codec-Agnostic Video Quality Metric (VQM)

We examine the per-content codec-agnostic features of various Video Quality Met-
rics (VQMs) by leveraging the subjective test results from the Waterloo IVC 4K
dataset [17]. The Waterloo IVC 4K dataset includes subjective tests conducted on
various video codecs, such as AVC, HEVC, VP9, and AV1. We proceed to com-
pute widely used VQMs, including VMAF, PSNR, SSIM, and MS-SSIM, for all the
encoded videos. Taking the mean opinion score (MOS) as the ground truth of per-
ceptual quality, for a VQM to demonstrate codec independence, it should yield the
same VQM score for the same MOS across different codecs.

To quantitatively evaluate the codec-independent performance of various VQMs,
we employ a MOS-VQM regression analysis for each VQM. For a given video encoded
with codec c ∈ C at a VQM set of Qc = [q1c , q

2
c , ..., q

n
c ], we represent the MOS of its

encoded versions as Mc = [m1
c ,m

2
c , ...,m

n
c ].

The regression analysis aims to predict MOS values based on VQM scores for
videos encoded using various codecs. Consequently, our goal is to identify the optimal
VQM and its associated regression model that minimizes the mean absolute error
(MAE) across all codecs:

MAE =
1

N

∑
c∈C

n∑
i=1

∣∣f(qic)−mi
c

∣∣ , (2)

where f is obtained from:

min
f

∥f(Qc1)−Mc1∥
2
2 . (3)

This states that for the best fit of the model f , MAE between the predicted
MOS values f(Qc) and the actual MOS values Mc over all codecs in set C should be
minimal.

Given that subjective tests within the VideoSet dataset were performed on AVC
only, our analysis selects AVC as c1 from the codec set C = {AVC, HEVC, VP9, AV1}



(a) SRC#1: PSNR (b) SRC#1: SSIM (c) SRC#1: MSSSIM (d) SRC#1: VMAF

(e) SRC#4: PSNR (f) SRC#4: SSIM (g) SRC#4: MSSSIM (h) SRC#4: VMAF

Figure 5: Relationships between MOS and different VQMs for SRC#1,4 in Waterloo
IVC 4K datasets for different codecs

provided by the Waterloo IVC 4K dataset. For each content in the Waterloo IVC
4K dataset, we fit a regression model as per Equation (3), using the MOS scores
associated with AVC encoded videos and their corresponding VQM scores. Figure 5
presents the plots of VQM versus MOS for two different content from the Waterloo
IVC 4K dataset, using PSNR, SSIM, MS-SSIM, and VMAF as VQM. The fitted lines
are derived from the VQM-MOS data of versions encoded with AVC using a linear
regression model.

Table 1 summarizes the MAE values for the selected VQMs using the linear re-
gression model. MAE measures the absolute difference between the predicted MOS
values on the fitted line with AVC MOS-VQM points and the actual human-rated
MOS scores. Lower MAE values indicate the codec-independence of the metric. The
results indicate that, using linear regression, VMAF achieves the lowest MAE, at
4.51%, across all codecs, demonstrating its codec independence. This denotes that
VMAF consistently estimates the MOS with a marginal error of 4.51% regardless of
the codec used.

2.2 Generate Cross-Codec JND Datasets

We encoded the 220 source video of VideoSet with HEVC and VVC using the following
configurations:

• HEVC: The x265 HEVC video encoder version 3.4, integrated with FFMPEG
(libx265), was employed using its default settings (medium preset).

• VVC: The VVenC VVC encoder version 1.9.1 was operated using the ‘faster’
preset and default settings.

VideoSet is based on videos that are encoded with AVC with QP ranging from 0
to 51. For a given content m in VideoSet, assuming that there are N reliable subjects’



Table 1: MAE between MOS of different codecs and the curve fitted on the AVC
codec on Waterloo dataset using linear regression model.

Codec PSNR SSIM MS-SSIM VMAF

AVC 2.86 6.28 5.73 3.62
HEVC 5.99 7.83 7.38 5.41
VP9 10.60 8.50 7.72 5.86
AV1 12.98 11.52 10.20 6.60

Average 8.11 8.53 7.76 4.51

JND annotations, the JND of a subject “n” is denoted by jAV C,m
n . JND of N subjects

can be denoted by JAV C,m as

JAVC,m = [jAVC,m
1 , jAVC,m

2 , ..., jAVC,m
N ] (4)

For the same content m for another codec, taking VVC as example, the JND anno-
tations of subject “n” can be computed by Equation (5).

jVVC,m
n = argmin

i∈{1,2,...63}

∣∣VQM(QPAVC(j
AVC,m
n ))− VQM(QPVVC(i))

∣∣ , (5)

where QPc(x) is the video encoded with QP of x with codec c. This equation is
based on the codec agnostic features of different VQMs which has been validated in
Section 2.1.

3 Bitrate as a Function of Satisfied User Ratio (SUR)

The main objective of the study is to determine the additional bitrate expense re-
quired to improve user satisfaction when using various codecs. Accordingly, our initial
step involves plotting the average bitrate for videos encoded at QPs corresponding
to the SUR(p%) pertinent to different JND levels as a function of the user satisfac-
tion ratio, i.e., p. Figure 6a shows the average bitrates required to satisfy a certain
user ratio using the AVC codec, as gathered directly from VideoSet. It has been
observed that achieving higher user satisfaction—whereby a greater percentage of
users cannot detect any distortion between the reference video and the compressed
version—necessitates a greater bitrate. However, the required increase in bitrate to
maintain user satisfaction exhibits an exponential trend. For example, to ensure that
75% of users cannot discern any difference at the 1st JND level, videos need to be
encoded at an approximate average of 5Mbps. If p is increased to 90%, the approx-
imate average required bitrate escalates to 10Mbps, which represents a significant
increase. Figure 6b illustrates the increase in bitrate compared to the preceding sat-
isfaction level for each given satisfaction ratio, p. It has also been noted that for the
1st JND, the increase in bitrate corresponding to an increase in the satisfaction ratio
p is greater than that for the 2nd JND, and the increases for the 2nd JND are in turn
higher than those for the 3rd JND.



(a) (b)

Figure 6: Relationships between bitrate and SUR threshold for VideoSet AVC 1080p
on 1st, 2nd and 3rd JND. (a) Average bitrate for different SUR thr. (b) Bitrate increase
for every 5% SUR thr. increase

3.1 Cross-Codec Comparison on SUR

After generating the new JND datasets for HEVC and VVC as described in Sec-
tion 2.2, we conducted similar analyses to compare them with AVC. We normalized
the average bitrate of HEVC and VVC at SUR(p%) by dividing them with the cor-
responding bitrate of AVC as shown in Equation (6).

Bitratenormalized(SUR
c
p%) = Bitrate(SURc

p%)
/
Bitrate(SURAVC

p% ) (6)

The results are shown in Figure 7a. It can be observed that, akin to AVC, the
average bitrate required to satisfy a given percentage of users (p%) increases with
the p% value. However, the bitrate demand is comparatively lower for HEVC and
VVC, as the relative bitrate is less than 1. An increase in relative bitrate can also
be noted, suggesting that the efficiency advantages of HEVC and VVC over AVC are
more pronounced at lower p% values, with this advantage diminishing as p% rises.
The enhanced coding efficiency of HEVC and VVC in comparison to AVC accounts
for the notable gains in bitrate. Figure 7b demonstrates the quantified relationship
between VMAF scores and bitrates for the video SRC#1 encoded using different
codecs. Additionally, it outlines the associated SUR at a 75% satisfaction level for
the 1st, 2nd, and 3rd perceptual JND thresholds. The data clearly indicates that
at identical JND levels, HEVC and VVC achieve the designated quality with lower
bitrate requirements than AVC, confirming the superior performance of the former
codecs.

3.2 Impact of Video Quality Metric

In Section 2.1, we established that VMAF exhibits the highest level of codec-agnostic
properties compared to other VQMs. To assess the robustness of our JND mapping
methodology across various codecs, we employ multiple VQMs to determine the JND
points. This multi-metric approach enables us to understand the extent to which
a VQM affects the mapping. Figure 8 shows the relative bitrate for the HEVC



(a) (b)

Figure 7: (a) The normalized average bitrate of HEVC anc VVT at various SUR(p%)s.
(b) VMAF vs bitrate curves for video SRC# 1 encoded with AVC, HEVC, and VVC.

codec’s JND points using different VQMs for mapping. It has been observed that,
aside from VMAF, other VQMs yield similar results for the 1st JND, however, with a
significant margin of error compared to VMAF. However, for the 2nd and 3rd JNDs, the
similarity between the results diminishes. This highlights the importance of choosing
the appropriate VQM for accurate mapping.

(a) (b) (c)

Figure 8: Comparative mapping results to HEVC videos using different VQMs.

4 Conclusion

In this study, we conducted an evaluation of the codec-agnostic characteristics of
various video quality metrics. Our findings indicate that VMAF exhibits superior
robustness across different codecs, meaning that an equivalent VMAF score for dif-
ferent codecs correlates with a comparable Mean Opinion Score (MOS) for those
codecs. Utilizing VMAF, we mapped Just Noticeable Difference (JND) points from
the AVC codec within the VideoSet dataset to the HEVC and VVC codecs, based
on the premise that equivalent VMAF scores for two codecs correlate to the same
perceptual video quality. Subsequently, we assessed the bitrate investment necessary
to achieve an increased number of satisfied users across different codecs. Our ob-
servations reveal an exponential trend, suggesting that satisfying a larger proportion
of users who cannot detect the quality differences between a reference video and its
encoded counterpart necessitates a steep increase in bitrate.
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