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ABSTRACT

Sparse keypoints based methods allow to match two images in an
efficient manner. However, even though they are sparse, not all gen-
erated keypoints are necessary. This uselessly increases the compu-
tational cost during the matching step and can even add uncertainty
when these keypoints are not discriminatory enough, thus leading
to imprecise, or even wrong, alignment. In this paper, we address
the important case where the alignment deals with the same scene
or the same type of object. This enables a preliminary learning of
optimal keypoints, in terms of efficiency and robustness. Our fully
unsupervised selection method is based on a statistical a contrario
test on a small set of training images to build without any supervi-
sion a dictionary of the most relevant points for the alignment. We
show the usefulness of the proposed method on two applications, the
stabilization of video surveillance sequences and the fast alignment
of industrial objects containing repeated patterns. Our experiments
demonstrate an acceleration of the method by 20 factor and signifi-
cant accuracy gain.

Index Terms— Keypoints, SIFT, a contrario detection, RANSAC,
image alignment

1. INTRODUCTION

Keypoint methods seek to detect points of interest in a scene. This
detection must be robust to changing viewpoints and transforma-
tions. Traditionally, keypoints are detected on well localized struc-
tures such as corners and blobs, and computed on the Laplacian of
the scale space of the image [1]. Each keypoint is associated a de-
scriptor acting as a comparison key. It can be matched to other de-
scriptors in other views of the same scene. The most notable key-
point and descriptor generator is the Scale Invariant Feature Trans-
form (SIFT) [1, 2], which has been followed by a flurry of variants
such as SURF, KAZE, AKAZE, ORB and BRISK, reviewed in [3].
A new category even uses deep learning to learn this task [4, 5].

A performance comparison of keypoint and descriptor genera-
tors can be found in several reviews [3, 6, 7], and the creation of
evaluation databases such as HPAtches [8]. The main comparison
criteria are the distinctiveness and repeatability of such descriptors.
The first criterion guarantees the uniqueness of the descriptor while
the second considers its robustness to perturbations.

In this article we fully reconsider these criteria in the particu-
lar but important case where the images to be compared are numer-
ous and correspond either to repeated views of a same scene (like
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in video surveillance), or successive snapshots of similar industrial
objects (for quality assessment purposes).

We propose to learn the most distinctive and repeatable keypoint-
descriptors pairs on each given scene or object, with the obvious goal
of speeding up video stabilization, or object registration.

The L2 distance is the most common choice to compare descrip-
tors, but any Lp metric can be used [2] and more sophisticated met-
rics have been proposed in [9, 10]. The classic SIFT matching cri-
terion has the drawback that it discards descriptors that happen to
repeat in the target image. This is a big limitation, particularly for
industrial parts that often have repetitive patterns. This question is
addressed in [10] through a statistical test that is not disturbed by the
presence of repetitive structures.

Once keypoints have been matched through a comparison of
their descriptors, the second step of image matching is to find the
underlying transformation between two images. This is universally
done by RANdom SAmple Consensus (RANSAC) [11], a method
to eliminate outliers by iterative random testing. Alternatives and
variants accelerating the method, or setting an automatic decision
threshold, are given in [12, 13].

The related video stabilization problem [14–19] is often handled
in the general case of a camera in motion. It aims at selecting the
right keypoints and accelerating their tracking. In the case of static
camera, the problem is to identify the background keypoints that can
be used reliably for fast background matching.

The focus on descriptors and descriptor matching is fully
changed by the assumption that we dispose of several images and
that “matching will be repeated many times”. Another issue that
requires reconsidering the “generic image matching procedure” is
the frequent occurrence in industrial control of objects with many
repeated patterns, where the descriptors might be distinctive in gen-
eral, but not in that particular scene. None of the generic image
matching methods listed above have that focus.

Our problem here is find a short cut that learns the most unique
and repeated keypoint and descriptors pairs in a given scene, so that
by their use RANSAC is trivialized and image matching becomes
extremely fast.

2. LEARNING A DICTIONARY FOR FAST AND ROBUST
ALIGNMENT

The major computational bottleneck when trying to align images
with sparse descriptor methods like SIFT [1] is caused by the num-
ber of keypoints that needs to be processed. Picking a random small
subset of reference keypoints is not an option, as many may repre-
sent regions of the image that repeat themselves, or that move (such
as a pedestrian in the case of a surveillance footage).



We assume that we dispose of a learning set of N images of
a scene, representative of the future images we want to align, and
moderately large (about 20 in our experimental setup). These im-
ages may for example be samples of industrial parts that we want to
register for anomaly detection, or the N first frames of a surveillance
video. Our goal is to align quickly all future images of the scene to
one of them, e.g. to the first one. To this aim, we want to learn a
small dictionary of the most robust and distinctive keypoints from
the N sample images, thus ensuring fast and robust matching. With
such keypoints, the improvement is twofold: fewer keypoints will be
used during the matching step, and the RANSAC step is made trivial
by using the most distinctive keypoints.

Our selection method proceeds as follows. We start by com-
puting the keypoints and their respective descriptors by any classic
method like SIFT. For each image Ii, i from 1 to N , this generates a
list of Li keypoints. These keypoints are characterized by their po-
sitions xi,j and descriptors di,j for j in {1, . . . , Li}. We then align
the remaining N−1 images onto the reference image using standard
keypoint matching procedure, followed by RANSAC process. For
the matching, we use the adaptive threshold, defined by the a con-
trario descriptor matching method from Rabin et al. [10]. Indeed,
the SIFT relative threshold (obtained by comparing the distance be-
tween a matched descriptor to its best matching candidate with the
distance to second closest descriptor [2]) does not authorize multiple
matching. Similarly, we apply an a contrario RANSAC [20, 21] to
estimate the transformation between two images, thus avoiding the
use of fixed distance thresholds. This step allows us to project all x
onto the reference image so that their spatial positions can be com-
pared. We will assume that x corresponds to the projected position
in the following.

Finally, we apply exactly the same matching procedure to all
remaining image pairs.

Connection Graph. The matching of keypoints can be modeled
as a graph (V,E), with V the set of vertices and E the set of
edges, where the vertices v are the keypoints, i.e. (xi,j ,di,j) for
i ∈ {1, . . . , N} and j ∈ {1, . . . , Li}, and the edges represent
successful matches, i.e. e = (v1, v2) if and only if there is a match,
not necessarily verified by RANSAC, between the two keypoints
represented by v1 and v2. For simplicity, we drop vertices v with
fewer than the average number of verified matches.

To create relevant groups of keypoints, we associate all key-
points that are at a distance smaller than δ to a given seed keypoint.
Consider now a group of points at a given position. Such a group
of points can be expressed as a subgraph (V ′, E′) of (V,E) with its
internal connectivity, i.e. edges from V ′ to V ′ (this corresponds to
E′), and its external connectivity, i.e. edges from V ′ to V \ V ′.

For a given group of points, modeled by its subgraph (V ′, E′),
we define its number of internal connections nin = |E′| and its
number of external connections

nout =
∣∣{e = (v1, v2) | v1 ∈ V ′ or v2 ∈ V ′} \ E′∣∣ .

The goal is now to select the most useful groups of points,
namely those that correspond to a single image feature that matches
in most images and that is as unambiguous as possible, namely does
not match to other positions in the targets.

Once a subgraph (V ′, E′) has been selected, we estimate a tem-
plate ṽ = (x̃, d̃) representative of the keypoints in the group by
taking the element-wise median of its coordinates and descriptors.
This is the keypoint that will be saved in the dictionary.

A contrario point selection. As indicated, we want to select the
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Fig. 1. Distribution of points of interest validated by the a contrario
test. The top figure is the distribution of groups of points in terms
of internal and external connectivity. The bottom figure shows the
location of the keypoints in the dictionary onto the reference image.
The blue marks correspond to groups that do not pass the statistical
test on the number of internal connections and the reds correspond to
groups that do not pass the statistical test on the number of external
connections. The greens are those that passed both tests and are
included in the dictionary.

most useful groups of points for our dictionary based on a connec-
tivity criterion. Firstly, its internal connectivity should be as large as
possible. This means that matching keypoints are often found at this
position in the training images. Hence, a new image will have a high
probability of having a keypoint matching with this group (this is the
repeatability criterion). Secondly, its external connectivity should be
as small as possible (this is the distinctiveness criterion). Indeed,
groups of keypoints with high number of external connections are
likely to be on repetitive structures and therefore may lure RANSAC
into false or partial alignments.

The decision thresholds for these two criteria are defined using a
contrario detection models [22]. Consider the background stochas-
tic model where keypoint matching is assumed to be uniformly ran-



dom, i.e. matching occurred purely by chance and is therefore inde-
pendent from the keypoints’ positions in the images. In that model,
the number of internal connections Nin of a subgraph (V ′, E′) cor-
responding to a group of keypoints presented previously is a bino-
mial variable of parameters (|V ′|(|V ′|−1)/2, pin). The probability
pin = n̄ver/(N − 1) corresponds to the probability that the link be-
tween two points have been verified at least in one direction, with
n̄ver the mean number of verified links per point.

Given a subgraph of keypoints as above, we therefore evaluate
the probability that it could happen just by chance as P(Nin ⩾ nin).
The number of tests that are being made is the total number of tested
groups of aligned keypoints, i.e. Ntest = |V |. By the Bonferroni
correction, we can therefore ensure that the expected number of false
alarms for our subgraph is smaller than ε by imposing

NtestP(Nin ⩾ nin) ⩽ ε. (1)

This means that to pass the test, the number of false alarm (NFA)
of the group of keypoints has to be lower than ε. The probability in
(1) can be bounded from above using the Hoeffding approximation
alongside the success ratio rin = 2nin/(N(N − 1)) so that

2

N(N − 1)
log P(Nin ⩾nin) ⩽ −rin log

rin
pin

− (1− rin) log
1− rin
1− pin

. (2)

Defining the success ratio using N , the number of images i.e. the
optimal number of points in a group, instead of |V ′|, the actual num-
ber of points in the group, favors larger groups since it considers the
N − |V ′| missing points as matching failure.

The case of external connection is very similar. We use the same
a contrario model defined previously. The only difference is that in-
stead of minimizing the number of external connections, we maxi-
mize the number of “non connections” Nout so that

NtestP(Nout ⩾ (|V | − |V ′|)|V ′| − nout) ⩽ ε. (3)

This allows us to use Hoeffding’s upper bound similarly to the inter-
nal connections case.

We remarked that the number of external connections is also a
good indicator to guide RANSAC tests. A point with a high number
of external connections is likely to be on a repetitive structure in the
image and therefore may propose false or partial alignments. For a
more optimal matching, we order RANSAC tests according to the
number of external connections found while building the dictionary.
The lowest external connectivity is tested first, then the second low-
est is tested in second and so on. Given that RANSAC uses multiple
keypoints to estimate an alignment, dictionary tuples are ordered by
the product of their number of external connections.

3. EXPERIMENTS

We compared the proposed method on two types of applications,
namely industrial part alignment and surveillance video stabiliza-
tion. In both cases, being fast and robust is crucial. Indeed, both
applications require to be real time to be deployed in practice and
need to be robust to potential changes (either potential anomalies
when tracking industrial parts or scene changes such as pedestrians
for video surveillance). Moreover, alignment is a crucial step for
downstream tasks such as anomaly detection for industrial parts [23]
or change detection [24].

For video surveillance stabilization, we use the “Camera jitter”
category of the change detection database CDNET 2014 [25]. It

illustrates the case when the camera is fixed a non-perfectly rigid
stand such as a lamppost in windy condition or next to a busy road.
For the case of industrial parts alignment, we created our own data
set comprised of seven models of buttons. One of these is shown in
Figure 1. We acquired, in industrial like conditions, between 50 and
150 images for each model. We chose these objects because they
contain many repetitive patterns and as such might trap methods that
are not robust enough into non-optimal alignments.

For all experiments, we used N = 20 images to build the dic-
tionary and a false alarm threshold ε = 10−2 to be conservative.
Figure 1 shows the connectivity of each group of keypoints. The
groups in the upper left corner of the figure, in green, are the best be-
cause they have a high internal connectivity and a low external con-
nectivity, this means that they are both robust and distinctive. This
figure shows that the two statistical tests allow us to isolate groups
of keypoints with a strong inner connectivity and a weak outer one.
The location of these keypoints is consistent with our expectation:
they are located on singular regions of the object. For example even
though the writing “JEANS” is repeated twice, its interaction with
the central star is unique and this is where the majority of the points
have been selected.

Table 1. Comparison of industrial parts alignment using either di-
rectly the keypoints of the first image of the set (im) or the learned
dictionary (dict) in terms of RMSE, matching+RANSAC compu-
tation time and number of alignment tests in RANSAC (Niter ,
see eq 4). Tests were performed with four different versions of
RANSAC, (R1) RANSAC with an error threshold of 3 pixels and
an inlier threshold of 10%, (R2) AC-RANSAC, (R3) AC-RANSAC
with an error threshold of 3, (R4) AC-RANSAC with an error thresh-
old of 3 and a norm difference threshold of 3 (unique scale prior).

RANSAC
Ref R1 R2 R3 R4

RMSE im 37.3 72.1 33.5 29.9
dict 25.8 38.2 26.0 25.3

time (in ms) im 115.9 108.8 115.9 113.9
dict 6.2 6.2 6.3 6.4

Niter
im 99.9 11.2 81.1 42.3
dict 5.3 2.9 5.4 3.9

We compare the proposed alignment scheme to the classic
SIFT+RANSAC combo in Table 1 for RMSE after alignment, com-
putation time and number of iterations of RANSAC. The number
of iterations Niter of RANSAC, defined by Moisan et al. [21],
corresponds to

Niter =


log β

log

(
1− ninlier(ninlier−1)

n2
pts

)
 . (4)

It is defined by the accepted failure rate β, here fixed at 10−2, and
the number of points ninlier that verifies the best model among the
npts total points. This shows that the selection of the right key-
points allowed to trivialize RANSAC, the number of tests performed
being very low. We also show in Table 1 that the outcome does
not depend on the type of RANSAC used. Overall, the proposed
method achieves a much better alignment for a fraction of about
5% of the cost of SIFT+RANSAC. We also looked into the order
to do RANSAC tests, either randomly like it is usually done or in



Fig. 2. Stabilization of a video using either SIFT with respect to the reference frame (center) or the dictionary (right). The results are shown in
terms of average of the aligned frames. The blue keypoints correspond to graphs that do not pass the statistical test on the number of internal
connections and the red correspond to graphs that do not pass the statistical test on the number of external connections. The greens are those
that passed both tests and are included in the dictionary.

increasing order of the number of external connections like we pro-
posed. We found out that the proposed order is slightly better since
it increases the robustness of the alignment for the same number of
computations.
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Fig. 3. Results on industrial parts alignment (left) and surveillance
video stabilization (right). We compare SIFT [2], SuperPoint [4] and
R2D2 [5] with either a reference image or a reference dictionary.
Keypoints based methods are also compared with Inverse composi-
tional [26] (the number next to the square indicates the number of
initializations, see text for details). Note that deep learning meth-
ods [4, 5] did not work on the buttons dataset.

We also compared the performance with other methods in
Figure 3. In particular, we compare the performance (in terms
of quality vs computation time) of SIFT [2], SuperPoint [4] and
R2D2 [5], three different keypoints based methods. Contrary to
SIFT, SuperPoint and R2D2 produce keypoints using deep neural
networks. Note that these deep learning methods did not work on
the industrial parts as they produced keypoints that did not match

with each other. We also compared with the Inverse Compositional
algorithm [26, 27], a pixel-wise image registration method that op-
timizes the RMSE between the warped source and the target. Since
this method is sensitive to initialization, we provide results with
different numbers of initialization. For a given number of initial-
ization k, we compute the alignment using Inverse Compositional
for all rotated images using an angle 2lπ/k for l from 1 to k. The
reported RMSE corresponds to the best RMSE found after all these
alignments. Its poor performance on the video surveillance data can
be explained by the large number of outliers between the images
(such as, for example, pedestrians or passing cars). This shows that
this method is not robust enough for this type of application. On the
contrary, the proposed method is both faster and produces a better
alignment than all other methods.

Figure 2 shows two examples of video surveillance alignment
using the average of the aligned sequence. For the first example, the
average frame of the sequence computed using the dictionary has
much more details, such as the lines on the ground, compared to the
average frame computed with only SIFT+RANSAC.

4. CONCLUSION

We proposed a method to learn the most efficient keypoints for the
alignment of images of a scene or of an object, without excluding
the use of keypoints with repeated descriptors in the object or in the
scene. The method is fully generic and can be plugged to any key-
point based alignment algorithm. The dictionary learning only re-
quires about 20 sample images. Our experiments prove a systematic
speed up of a factor of about 20 with respect to a generic matching
procedure. This is explained by the reduced size of the dictionary
and by the fact that RANSAC is nearly trivialized by the choice of
the descriptors.
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