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Abstract

Learning to detect automatic anomalies in production
plants remains a machine learning challenge. Since anoma-
lies by definition cannot be learned, their detection must
rely on a very accurate ”normality model”. To this aim, we
introduce here a global-to-local Gaussian model for neu-
ral network features, learned from a set of normal images.
This probabilistic model enables unsupervised anomaly de-
tection. A global Gaussian mixture model of the features is
first learned using all available features from normal data.
This global Gaussian mixture model is then localized by an
adaptation of the K-MLE algorithm, which learns a spatial
weight map for each Gaussian. These weights are then used
instead of the mixture weights to detect anomalies. This
method enables precise modeling of complex data, even
with limited data. Applied on WideResnet50-2 features, our
approach outperforms the previous state of the art on the
MVTec dataset, particularly on the object category. It is ro-
bust to perturbations that are frequent in production lines,
such as imperfect alignment, and is on par in terms of mem-
ory and computation time with the previous state of the art.

1. Introduction
Anomaly detection in images consists in finding images,

or image regions, that do not conform with the rest of the
data. This is an important problem in many industrial, med-
ical or biological applications. Anomaly detection is an ef-
fortless natural task for humans, who reach very good de-
tection rates using even a single reference. This explains
why quality control in production lines has historically been
left to human operators. Yet, automatizing the process
can accelerate, reduce the production cost, and smooth out
the performance variations caused by the operators’ fatigue
[37, 27]. The problem remains, however, a challenge for
computer vision, as there is no clear and straightforward
definition of normality in arbitrary data.

Unsupervised anomaly detection for industrial applica-
tions is receiving much attention lately, especially after the
publication of a new reference dataset by MvTec [3]. The
“unsupervised” requirement is challenging, but might lead
to a truly general solution. It is generally acknowledged that
anomaly detection is not a classic classification problem
[34]. Indeed, anomalies do not form well defined classes.
They can be rare or have no definite patterns. New types
of anomalies can actually appear later, but should be cor-
rectly handled based on past experience of normal data.
This makes annotating relevant data inherently impossible.
On the contrary, normal data are abundant and can be used
to create accurate models. This leads to consider anomaly
detection as an out-of-distribution detection problem.

In this work, we therefore focus on the modeling of nor-
mal data. We propose a global-local model that extends
Padim [12] and combines the flexibility of precise local
modeling with the robustness of a global Gaussian mixture
model. Our model emulates a Gaussian mixture at each po-
sition without suffering from the curse of dimensionality
when only few data are available. Thanks to the sparsity of
the model, it is as efficient as previously proposed simpler
models, and it achieves new state of the art on the MVTec
dataset [3].

2. Related work

Anomaly detection has been extensively reviewed in the
literature [15, 26, 33]. Methods can be classified into
three main categories: methods anterior to deep learning,
methods based on pre-trained networks and finally methods
purely based on neural networks.

Methods anterior to deep learning. They focus on mod-
eling normal data, also referred to as the background model.
Homogeneous and stochastic methods [14, 41, 38, 39] sup-
pose that the background model follows a known distribu-
tion. Center-surround methods [19, 18, 28] model anoma-
lies as local events contrasting their immediate surround-
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ings. Sparsity-based methods [24, 4, 7, 8] learn a sparse
dictionary representing normal data. Anomalies are defined
as data that don’t verify the sparsity condition. Non-local
methods [47, 11] assume that each image patch in nor-
mal data belongs to a dense cluster in the image’s patch
space. Anomalies instead occur far from their closest neigh-
bors. Anomalies are measured by clustering image patches,
which leads directly to a rarity measurement. The method
by Davy et al. [11] bridges the gap with methods using pre-
trained networks, as their method can be applied directly on
images patches or on neural network features.

Using pre-trained networks. These methods use neural
networks to integrate semantic information into the detec-
tion process. SPADE [10] creates a feature base from a
pre-trained neural network with the reference images and
uses the L2 norm between the features of an image and
its kNN of the reference base as a score. It involves fea-
tures at different layers to perform a multi-scale analysis.
PatchCore [30] improves on this method by a adding a core-
set subsampling and a preprocessing to the feature library.
MahaAD [29] models each layer as a single global Gaus-
sian model. Anomalies are then detected by computing
and thresholding the Mahalanobis distance to this Gaussian.
PaDim [12] extends MahaAD [29] by learning a Gaussian
model per position instead of globally.

Deep learning based. Using a variational auto-encoder
(VAE), [40] learn a representation of normal data. In order
to localize the anomaly, the Grad-cam attention technique
[36] is used: when the image is not an anomaly the atten-
tion should be uniform over the entire image, this changes
when the image contains an anomaly. A weakly supervised
version is also proposed. In [20], anomalies are found based
on the distribution of the gradients. Liu et al. [23] proposes
a similar type of attention technique to detect and localize
the anomaly. In [32], a deep neural network is trained by
minimizing the volume of a hypersphere that encloses the
network representations of the data. Yi and Yoon [42] sug-
gest to use the patches of the image instead. The anomaly
score is merely the distance between the encoded patch and
its nearest neighbor. A P-style network is trained in [46].
It learns to produce a structure information from the image.
The authors show that this information usually contains the
anomaly and also helps during training when reconstructing
the image. Li et al. [21] use a neural architecture search to
find better deep learning architectures. DRÆM [44] learns
both a reconstruction model and a discriminative model us-
ing simulated anomalies. Finally, newest methods [31, 16]
are based on normalizing flows. Normalizing flows are in-
vertible neural networks that learn a model that transforms
data into a simpler, usually Gaussian, distribution.

3. Global-local Gaussian modeling of neural
network features for anomaly detection

With Padim [12], Defard et al. proposed to learn a single
multivariate Gaussian per pixel in a neural network feature
space. Although they proposed to reduce the dimension of
the features using PCA or random selection, the problem is
that the dimension is still too large for most use cases. In-
deed, the proposed dimension d = 100 or d = 550 would
still require at least that many samples to estimate a non-
constrained covariance matrix. This is not always possible
in the MVTec dataset [3]. Moreover, precious information
is arguably lost by dimension reduction. Another limitation
of this model is the use of a single Gaussian at a given posi-
tion. Indeed, such a model might be too restrictive since it
cannot model multimodal distributions.

Inspired from image denoising, we suggest taking advan-
tage of object redundancy to learn a more accurate and more
expressive model than a single Gaussian, even under data
constraints. Indeed, to mitigate the lack of data, non-local
methods such as [6] take advantage of the redundancy, also
called self-similarity, in natural images to estimate mod-
els of clean data. This is why we propose the global-local
model summarized in Figure 1 which we introduce next.

3.1. Learning a robust global model

Zoran and Weiss [48] have shown that a Gaussian mix-
ture can faithfully represent the entire space of patches from
natural images. In this work, we develop the use of a Gaus-
sian mixture as global model for the set of features extracted
from a neural network applied to a set of sample images. In
the following, Θ = (πk, µk,Σk)k=1,···K is used to refer to
a Gaussian mixture model with K components such that for
a given k, (µk,Σk) define a Gaussian with mean µk and co-
variance Σk. The weight of this Gaussian inside the model
is represented by πk.

Traditionally, Gaussian mixtures are learned using the
expectation-maximization algorithm (EM). Unfortunately,
this algorithm becomes very slow when applied with many
Gaussians to high dimensional samples. This is why we
chose the alternative algorithm K-MLE [25], which works
for mixtures of exponential laws. This algorithm is analo-
gous to K-means and generalizes by using the properties of
exponential laws. It is faster because it assigns each sam-
ple ui to a single Gaussian with index zi and therefore does
not involve all the samples in the computation of every pa-
rameter. This leads to a memory complexity of O(N) for
K-MLE instead of O(KN) for EM. Given a set of data
(ui)i=1,··· ,N in dimension d, its iterative attribution steps
write

zt+1
i = argmin

k∈J1,KK
(ui−µt

k)
TΣt

k
−1

(ui−µt
k)+log |Σt

k|+2 log πt
k.

(1)
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Figure 1. Proposed pipeline for unsupervised anomaly detection. After alignment on a reference, all images of the class are given to a pre-
trained network where features at different level are extracted. This creates an embedding of each image. A global-local model comprised
of a global Gaussian mixture and a local weight map is then trained from these features. During testing, the probability of appearance of a
feature at a specific position is estimated using the global-local model. A global score and a decision are derived from the probability map.

Then, considering the sets Ct+1
k = {ui|zi = k}, the algo-

rithm separately computes the empirical parameters of each
Gaussian cluster by

πt+1
k =

|Ct+1
k |
N

, µt+1
k =

∑
u∈Ct+1

k
u

|Ck|
(2)

and Σt+1
k =

∑
u∈Ct+1

k
(u− µt+1

k )(u− µt+1
k )T

|Ct+1
k |

. (3)

Gaussians with no samples are dropped.
We observed that this algorithm yielded less blurry

Gaussians than EM. The intuition is that, since EM per-
forms weighted averages where all Gaussians intervene for
each sample, all samples (even those further away from a
specific Gaussian) contribute to the estimation. This good
property per se is an obstacle when modeling the tail of the
distribution. Indeed, there are inherently few data available
to model the tail. Thus, in EM, the Gaussians, and espe-
cially their covariance matrices, are easily led to overfit the
data on the tail, thus frustrating outlier detection. Tradition-
ally, covariance matrices are estimated using the sample co-
variance estimator, which maximizes the likelihood. How-
ever, for a large dimension d and a small number of samples
N , this estimator is very unstable and tends to overestimate
large eigenvalues and to underestimate small ones. The pro-
duced covariance may also be degenerate. This tradition-

ally leads to adding ϵId with ϵ > 0 to the estimated covari-
ance to ensure its positive-definiteness. This regularization,
however, is not sufficient to stabilize the covariances when
N ≪ d. Hence, we opted for a shrinkage regularizer [9]
which takes the form of a convex combination of the em-
pirical covariance of the samples Ŝ and of the average of its
eigenvalues multiplied by the identity F̂ = Tr(Ŝ)

d Id. The
convex coefficient ρ is chosen to minimize the expectation
of the MSE between the theoretical covariance Σ and the
regularized estimator Σ̂:

min
ρ

E
[
∥Σ− Σ̂∥2F

]
such that Σ̂ = (1− ρ)Ŝ + ρF̂ . (4)

The optimal solution of the problem is the oracle ρo. How-
ever, it requires the knowledge of the theoretical covariance
Σ being estimated,

ρo =
E
[
(Σ− Ŝ)(F̂ − Ŝ)

]
E
[
∥Σ̂− F̂∥2F

] (5)

=
(1− 2

d ) Tr(Σ
2) + Tr2(Σ)

(N + 1− 2
d ) Tr(Σ

2) + (1− N
d ) Tr

2(Σ)
. (6)

We use the Oracle Approximating Shrinkage (OAS) [9] es-
timator which is better in terms of MSE when N ≪ d. This
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iterative estimator is defined by

ρj =

(
1− 2

d

)
Tr(Σ̂jŜ) + Tr2(Σ̂j)(

N + 1− 2
d

)
Tr(Σ̂jŜ) +

(
1− N

d

)
Tr2(Σ̂j)

, (7)

Σ̂j = (1− ρj)Ŝ + ρjF̂ . (8)

and is shown to converge to an equivalent ρOAS defined by

ρOAS = min

 (
1− 2

d

)
Tr(Ŝ2) + Tr2(Ŝ)(

N + 1− 2
d

) [
Tr(Ŝ2)− Tr2(Ŝ)

d

] , 1
 .

(9)

3.2. Back to a local model

At this stage, the Gaussian mixture model is global, and
the probability of appearance of each feature does not de-
pend on its position. This simplification is excessive. Obvi-
ously, a feature can be normal at a position and anomalous
at another. This is why we propose a method to add back
localization information to the model, by taking advantage
of a preliminary alignment of the tested objects.

We have already seen that it is not possible to learn a spe-
cific Gaussian mixture per position due to lack of data. This
would anyway lead to exceedingly big and slow models.
Another option could be to learn a local mixture in a win-
dow instead of a specific position. However, this raises the
impractical issue of fixing the size of the window and a vari-
able number K of Gaussians at each position, depending
on whether the image contains varying details or is merely
uniform at the considered position. To avoid an excessively
local analysis, we therefore opted to keep the (global) pa-
rameters (µk,Σk) but to deduce position dependent mixing
weights πk(x) from the Gaussian mixture.

We chose to adapt the K-MLE algorithm to learn the lo-
cal weight map while keeping covariances matrices fixed.
Let um(x) denote the feature sample vector of image m at
position x, this yields

zt+1
m (x) = argmin

k∈J1,NK
(um(x)− µk)

TΣ−1
k (um(x)− µk)

+ log |Σk|+ 2 log πt
k(x), (10)

Ct+1
k (x) = {um(x)|zt+1

m (x) = k, ∀m}, (11)

πt+1
k (x) =

|Ct+1
k (x)|
N

. (12)

To obtain more samples per position and reduce the number
of false alarms caused by small deformations or slight posi-
tional variations of the objects, we perform the computation
of the weights at x by using the samples in a small circle of
radius r centered at x.

This local weight map has two interesting properties.
Firstly, it models each position with a different mixture. The
second one is that it turns out to be mostly sparse. This is

because K-MLE uses only relevant samples to estimate the
weights instead of using all available samples like with EM.
The advantage of this sparsity is a faster probability infer-
ence.

3.3. Anomaly detection with a global-local model

Traditionally, samples are assigned to the closest Gaus-
sian to detect anomalies. The Mahalanobis distance to this
Gaussian is then measured. However, this attribution im-
plies ignoring the interactions between Gaussians. Yet,
multivariate Gaussians in a mixture can have strong interac-
tion and local maxima differing from the Gaussian centers.
It therefore seems more appropriate to consider the mixture
as a whole when analyzing a new sample.

Using the global-local model, we compute a probabil-
ity for each feature vector of an image using the mixture,
thus forming a probability map. State-of-the-art methods
generally score the image using the worst value (i.e. the
smallest probability) from this map but we found that the
q-quantile is more robust with respect to false alarms. The
proposed method can also be made multi-scale by taking
features at different layers of a network. For this, we fitted
a Gaussian mixture to each selected layer. We then aggre-
gated the probability maps by taking their product, which
corresponds to assuming independence of the layers.

4. Experiments
4.1. Implementation and training details

Similarly to previous methods such as [29] and [12],
we use a pre-trained network to extract the features.
Classification and segmentation networks trained on Ima-
geNet [13] or Coco [22] are indeed able to learn univer-
sal features containing relevant semantic information for
the task of anomaly detection. We selected Resnet18 [17]
and WideResenet50-2 [43] as backbone for the experiments
shown in this Section. We use the implementation pro-
posed by Zhang [45], as it was shown to be more robust
than traditional versions. All sample images were resized
to 256 × 256 before applying the network. The features
used to learn the model were extracted from three different
layers of these networks. The layers, referred to as layers
1, 2 or 3 in the following, correspond to the layers follow-
ing respectively the first, second and third pooling inside the
network. They extract relevant features at different scales.

The training of the global mixture model was initialized
with K = 1000 Gaussians. However, the final model was
usually comprised of fewer Gaussians. As mentioned in
Section 3.1, the OAS regularization leads to the removal of
many Gaussians. We stopped the training when the relative
variation of log likelihood between two iterations was less
than 10−6, or if the number of iterations exceeded 100. We
used the same stopping conditions when training the local
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Backbone
Mixture
training

Local
weighting

Layers
used

OAS
Shrink

Memory
(GB)

Computation
time (s) AUROC

1 2 3

ResNet18 K-MLE ✓ ✓ ✓ ✓ 0.25 1.07 96.1
ResNet18 K-MLE ✓ ✓ ✓ ✓ ✓ 0.28 0.29 98.1

WideResnet50 K-MLE ✓ ✓ ✓ ✓ 0.75 0.34 97.1
WideResnet50 K-MLE ✓ ✓ ✓ ✓ 2.90 0.43 98.9
WideResnet50 K-MLE ✓ ✓ ✓ ✓ 2.50 0.44 98.5
WideResnet50 EM ✓ ✓ ✓ ✓ ✓ 3.48 1.65 98.9
WideResnet50 K-MLE ✓ ✓ ✓ ✓ 3.01 3.33 97.0
WideResnet50 K-MLE ✓ ✓ ✓ ✓ 5.24 0.92 98.1
WideResnet50 K-MLE ✓ ✓ ✓ ✓ ✓ 3.04 0.61 99.1

Table 1. Ablative study of the main parameters of the proposed model. The other parameters are discussed in Section 4.2. Memory
consumption and computation time are averaged over all MVTec objects. Reported times do not include the alignment (about 0.2s).
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Figure 2. Sparsity of the learned local weight map on
WideResNet50-2 features for layers 1, 2 and 3. On average, only a
few Gaussians from the global model are necessary to model well
a given position. This observation does not apply to textures.

weight map; empirically it never takes more than 10 itera-
tions. The training of the global model generally also con-
verged before the maximum iteration number was reached.
Training the global methods takes between 20min to 2h de-
pending on the layer and the object. We also point out that
training a model with EM is more than 2.5 times slower than
with K-MLE in the same conditions.

We show in Figure 3 an example of weight and lo-
cal sparsity map learned on features from layer 1 of
WideResnet50-2. The general structure of the object can be
recognized both on the weight map and on the local sparsity
map. Similar observations can be done on other objects and
on some texture maps of the MVTec dataset. This confirms
that each Gaussian describes a particular structural element
of the image that can be found at several different positions.
Conversely, the local sparsity map highlights the fact that
there can be more than one relevant Gaussian per position.

For all objects of the MVTec dataset, we chose a single
reference that is used to align all images from this category.
As in [2], we aligned images using [5]. Contrary to the ob-
jects of the dataset, the textures were not aligned. This is
because this could create boundary issues when the aligned

texture stretches out of the boundary of the reference. It is
also difficult to define what a proper alignment would mean
for a texture anyway. We must avoid false detections out-
side the objects. Indeed, the background was not annotated
for possible anomalies, and false detections caused by net-
work boundary effects could occur. To that aim, we applied
a crude masking to the output of the model. This means
that anomalies were detected only in relevant areas. For the
objects, our masks correspond roughly to the area occupied
by the object (an example is shown in Figure 1). For the
textures, we removed a margin of 1/16th of the size of the
image from each anomaly map. A radius r = 1 was used
for the blur parameter of the weight map and we used the
0.5%-quantile to score anomalies. See the supplementary
material for a study on the influence of the quantile.

4.2. Ablation study

We present in Table 1 an ablative study of most method
parameters. We first looked at the backbone pre-trained
network. Overall, we found out that Wide-ResNet50-2
performed better than ResNet18 by 1% but produced a
larger model, requiring about ten times more memory and
longer computation time. Indeed, WideResNet50-2 features
have a larger dimension for each respective layer. Taking
that into account, our model using a ResNet18 backbone
brings a good compromise between performance and effi-
ciency. We also compared with various combinations of
WideResnet50-2 layers. There is no gain taking only 1+2
and 2+3 compared to ResNet18. The performances using
layers 2+3 are almost the same as using 1+2+3, but the
weight of the model is almost the same because the covari-
ances of the last layer occupy the majority of the model’s
space. However, removing the first layer also removes
its probability calculations, which decreases the inference
time. Nevertheless, using all three layers (1+2+3) yielded
the best results. It also shows that the model trained using
K-MLE is more efficient than the one trained with EM.
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Figure 3. Example of a local weight map for capsule with WideResnet50-2 layer 1. From left to right: an image of the capsule, the local
weight map corresponding to a single Gaussian and the number of non-zero weights per position for a Gaussian mixture with K = 458.

We also measured the impact of our localization step
compared to simply using a global Gaussian mixture model.
The localization has two benefits: one is in terms of perfor-
mance and the other in terms of efficiency. We observed a
difference of about 2% in the AUROC between the global
model and our global-local model. This shows that localiz-
ing the information leads to better discrimination of anoma-
lies from normal data. Logically indeed, a feature can be
normal at a given spatial position while being anomalous at
another. In terms of efficiency, the localization reduces the
computation time by three to four at a very small memory
cost. The small memory cost comes from the local weight
maps, with a storage space proportional to the size of the
image times the number of Gaussians that need to be stored.
This map is actually sparse, because there are only few non-
zero weights per location. This means that to evaluate the
probability at a given location, it is not necessary to use
all Gaussians of the model. Since estimating a probability
from a Gaussian is the model’s bottleneck, this reduction in
the number of Gaussians being considered for each sample
leads to a significant speedup. We illustrate this sparsity in
Figure 2. It shows that about 10% only of the Gaussians are
used for a given position on average. This observation does
not apply to textures, where the same features can be found
anywhere in the image with the same probability. Therefore
we expect our model to slightly under-perform on these.

We then studied the stability of the training process when
varying the random initialization. Doing this did not change
the order of magnitude of the number K of learned Gaus-
sians of a given object for a specific layer. The final number
of Gaussians seems to match with the complexity of the ob-
ject. Textures (except for grid), pill or zipper have all a low
number of Gaussians, while bottle, likely due to its variabil-
ity, requires a higher number. Figure 4 shows the decay of
the weights πk of the global model trained on the features
of layer 1 of WideResnet50-2 for all classes of the MVTec
dataset. With the exception of grid, all models converge to
a smaller number of Gaussians than the initial K = 1000.
We then verified that the number of initial Gaussians was
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cable, K = 492
capsule, K = 458
carpet, K = 432
grid, K = 912
hazelnut, K = 451
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Metal_nut, K = 448
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transistor, K = 479
wood, K = 379
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Figure 4. Decay of the global weights πk in the global mixtures for
the first layer (d = 256) of WideResNet50-2. The dot indicates
the Gaussian from which πk < (d+ 1)/|Ck|. From that point the
Gaussians’ covariance matrices are degenerate. The exact number
of Gaussians kept for each class is indicated in the top right. See
the decays corresponding to the other layers in the supplementary
material.

not limiting the modeling power of our method by learning
a model initialized with K = 2000 on the grid class. This
model converged to K = 1506 Gaussians, so more than the
initial model allowed for, but this increase did not translate
into better detection: the larger model yielded an AUROC
of 98.8% compared the 98.7% of the original model.

We studied the impact of the OAS regularization. With-
out it, we observed that the number of Gaussians remained
close to the initial number, thus requiring longer computa-
tion times and more memory. Moreover, as can be seen in
Table 1, the performance dropped by 1%. This leads us to
believe that the proposed regularization, which depends on
d and |Ct

k|, avoids overfitting and generalizes better.
We present additional ablation studies, such as more

studies on the impact of the initial K, the impact of the
alignment step on MVtech and the histogram of likelihood
using either EM or K-MLE to train the mixture.
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Backbone EfficientNet ResNet-18 WideResNet-50-2 Other

MahaAD
[29]

PaDim
[12]

PaDim
[12]

CFlow-ad
[16]

Ours PaDim
[12]

CFlow-ad
[16]

Ours DRAEM
[44]

CS-Flow
[31]

Carpet 93.7 - 98.4 98.2 97.6 98.4 98.7 99.0 97.0 99.0
Grid 100 - 89.8 99.0 98.2 89.8 99.6 98.7 99.9 100
Leather 100 - 98.8 100 100 98.8 100 100 100 100
Tile 99.6 - 95.9 98.4 98.8 95.9 99.9 99.6 99.6 100
Wood 99.3 - 99.0 98.6 97.1 99.0 99.1 98.9 99.1 100

Textures 98.5 99.0 96.4 98.8 98.4 96.4 99.5 99.2 99.1 99.8

Bottle 99.0 - 99.6 100 100 99.6 100 100 99.2 99.8
Cable 96.3 - 85.5 97.6 99.6 92.2 97.6 99.8 91.8 97.1
Capsule 91.4 - 87.0 93.2 95.5 91.5 97.7 97.8 98.5 98.6
Hazelnut 98.2 - 84.1 99.9 99.8 93.3 100 99.8 100 99.3
Metal nut 98.8 - 97.4 98.5 99.1 99.2 99.3 99.4 98.7 99.7
Pill 99.1 - 86.9 93.0 96.9 94.4 96.8 96.3 98.9 99.1
Screw 100 - 74.5 85.9 90.0 84.4 91.9 97.9 93.9 99.6
Toothbrush 97.4 - 94.7 99.9 100 97.2 99.7 100 100 99.1
Transistor 94.5 - 92.5 93.0 99.8 97.8 95.2 99.6 93.1 97.6
Zipper 94.1 - 74.1 96.2 99.1 90.9 98.5 99.9 100 91.9

Objects 96.9 97.2 87.6 95.7 98.0 94.1 97.7 99.0 97.4 98.2

All 97.4 97.9 90.5 96.7 98.1 95.5 98.3 99.1 98.0 98.7

Table 2. Comparison of state-of-the-art methods on MVtec using AUROC. Detailed results for PaDim with EfficientNet are not available.

PaDim [12] Ours DRAEM [44]

AUROC 95.0 98.0 99.0

Table 3. Comparison of state-of-the-art methods on DAGM [1] us-
ing AUROC.

4.3. Comparison with the state of the art

We present the results of the comparison of our method
with the state of the art on the MVTec dataset [3] in Ta-
ble 2. Results are evaluated with the area under ROC curve
(AUROC) metric. Using a WideResNet-50 backbone, our
method improves the state of the art by 0.4%. While it trails
slightly on the textures, which was to be expected as ex-
plained in Section 4.2, it performs particularly well on the
object category with an improvement of 0.8% over the pre-
vious best method. The table also shows that the ResNet-18
variant of our model is very competitive while being much
more lightweight. It is a good option when memory and/or
computational power are limited. We also present results on
DAGM [1] in Table 3.

While the goal of our model is to detect the anomaly at
image level, it is possible to estimate rough heat maps from
the probabilities estimated from our model. We compare
their quality to other methods in Table 6. While CFlow-
ad [16] remains the best method, our proposed method is
still second with competitive performance. A few heat maps
for the different classes of the MVTec dataset are shown in
Figure 5. See the supplementary material for more heat map
examples. We also compared the memory requirement and
computation times with PaDim [12] in Table 5. Overall,
our method, while performing a much finer modeling, is
competitive both in terms of memory and computation time,
especially when using ResNet18. Note that the size of our

MVTec
MahaAD

[29]
PaDim

[12]
CFlow-ad

[16]
DRAEM

[44]
Ours

normal 92.8 94.0 99.0 97.3 98.9

Random 73.8 82.7 93.3 94.6 97.7

Diff. ↓ 19.0 11.3 5.7 2.4 1.2

Table 4. Comparison of state-of-the-art methods on a randomized
version of MVtec using the AUROC metric. The smaller the per-
formance gap between normal and randomized versions, the better.

PaDim Ours CFlow-ad DRAEM CS-Flow

Memory (GB) 3.8 3.04 0.64 0.36 1.03
Comp. time (s) 0.63 0.61 0.98 0.94 0.39

Table 5. Computation time and memory requirement comparison
on an Intel Core i7-10700K CPU. Memory is estimated based
on the number of parameters saved by each model after training.
WideResNet-50-2 is used for PaDim, CFlow-ad and our method.

model doesn’t depend on the size of the input image (with
the exception of the negligible local weight map).

4.4. Robustness

A major limitation of the MVTec dataset is that almost
all objects are perfectly aligned and with fixed lighting con-
ditions, which is not realistic in a production line. In or-
der to measure the robustness to pose perturbations, we
produced a randomized version of MVTec, similar to Rd-
MVTec from [12], where we added a small position jitter
and a random rotation. For this experiment, we only kept
objects that were not close to the boundary of their im-
age so as to avoid boundary effects caused by the rotation-
translation correction. We therefore only processed bottle,
cable, capsule, hazelnut, metal nut, pill and screw. We then
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Figure 5. Examples of heat maps obtained with the multi-scale probabilities on WideResnet50-2. These heat maps give a good idea of the
localization of the detected defects even though this localization is imprecise.

PaDim [12] CFlow-ad [16] Ours DRAEM [44]

Carpet 99.1 99.2 97.8 95.5
Grid 97.3 99.0 99.7 99.7
Leather 99.2 99.7 99.8 98.6
Tile 94.1 98.0 96.1 99.2
Wood 94.9 96.6 95.8 96.4

Textures 96.9 98.6 97.8 97.9

Bottle 98.3 99.0 96.9 99.1
Cable 96.7 97.6 98.6 94.7
Capsule 98.5 99.0 98.7 94.3
Hazelnut 98.2 98.9 98.2 99.7
Metal nut 97.2 98.6 96.2 99.5
Pill 95.7 98.9 96.2 97.6
Screw 98.5 98.6 99.9 97.6
Toothbrush 98.8 98.9 98.9 98.1
Transistor 97.5 98.0 96.5 90.9
Zipper 98.5 99.1 99.1 98.8

Objects 97.8 98.7 97.9 97.0

All 97.5 98.6 97.9 97.3

Table 6. Comparison of state-of-the-art methods on pixel level on
MVtec using the AUROC metric.

retrained several state-of-the-art methods, namely [29, 12,
44, 16], and compare their performance with GLAD on this
dataset in Table 4. We averaged the results for five different
randomized versions of the dataset. While most methods
suffer from these perturbations, GLAD and DRAEM [44]
both show a good robustness.

5. Discussion
We have introduced GLAD, a global-local Gaussian

model of neural network features for unsupervised anomaly
detection. Our model is comprised of a global Gaussian
mixture learned on features from a pre-trained neural net-
work and of a local weight map. The global model is
learned on all normal features, thus producing a precise and
non-degenerate model of these features. A local weight

map is then learned using the global model, and indicates
which Gaussian is relevant to model the samples at a given
position. In that way we model each position with a non-
degenerate Gaussian mixture model, even when few normal
data are available. The model puts in evidence a spatial
specialization of each Gaussian and, conversely, the advan-
tage of having more than one Gaussian to model the set of
samples at each position. The weight map, being sparse for
each object, enables faster computations. With this global-
local model, we improved the state of the art on the MVTec
dataset while still being competitive in terms of efficiency.

Despite improving the state of the art, our model strug-
gles with textures. Due to our inability to align them on
a reference without causing boundary effects, the proposed
localization becomes useless. Thus, our model remains in
that case equivalent to a mere Gaussian mixture model. Be-
cause of their repetitive pattern, we should anticipate that a
localization in frequency might be preferable to the spatial
localization used in our current model. We plan to study
this extension in future work. Another major limitation of
the proposed model is its inability to evolve once learned.
For example, when a small update is made to the prod-
uct tracked, it is required to learn an entirely new model
even though the previous model was almost entirely cor-
rect. To amend for this limitation, we plan to train and up-
date a Gaussian mixture model online as described in [35].
Doing so would also arguably speed up the current train-
ing step or at least enable the use of the model even before
convergence. Finally, GLAD needs to be improved to pro-
duce a better segmentation of the anomaly. While a coarse
localization is often enough, several methods in the liter-
ature produce more precise segmentation masks, despite
their worse performance at image level.
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