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ABSTRACT:

The storage and management of stockpiles of materials is a fundamental process in large scale activities such as mining, civil
engineering, and in the management of waste landfill sites. Following the evolution of stocks has always been important, and
advancements in remote sensing technology are not only facilitating this, but also making it possible in near real-time. Nowadays,
this monitoring appears to be performed almost exclusively using UAV based techniques. This paper proposes to apply a simple
Shape-from-Shading method on low resolution satellite images provided by PlanetScope to monitor the evolution of the volume of
stockpiles. The proposed Shape-from-Shading formulation makes it possible to handle occluding objects in the scene. The loss in
accuracy due to the low resolution of PlanetScope images is well compensated by the daily revisit frequency and by the fact that
spaceborne acquisitions require no human supervision. With satellites it is also easy to follow simultaneously several stocking sites
all over the world. We test our method on two coal storage sites and demonstrate that the stockpiles are well detected.

1. INTRODUCTION

The storage and management of stockpiles of materials is a fun-
damental process in large scale activities such as civil engineer-
ing, mining and extraction, and in the management of waste
landfill sites. The ability to follow in real time the evolution
of stocks is more and more important today. For instance, fol-
lowing the evolution of coal stocks over two years in European
ports allowed to monitor the switch from coal to gas as coun-
tries seek to reduce their carbon footprint to combat climate
change (Hodges, 2019). On a more mundane level, knowing
the evolution of coal stocks on a day-to-day basis makes it pos-
sible to anticipate the evolution of prices.

Continuous monitoring of stockpile volumes of goods is typ-
ically conducted manually using topographic surveying tech-
niques (Fawzy, 2015). However, such methods have limita-
tions regarding safety and access to the sites. Current trends
to estimate these volumes use remote sensing tools such as
airborne lidar scanners (Zhao, 2016), stereo-photogrammetry
from planes and UAVs (He et al., 2019, Fawzy, 2015, Uysal
et al., 2015, Raeva et al., 2016, Tucci et al., 2019, Salim et
al., 2017), and even photogrammetry from satellite imagery
(Schmidt et al., 2015, Demirel et al., 2011, Ge et al., 2007,
Salim et al., 2017).

All these techniques are more precise, faster, safer and cheaper
than the manual surveying measurements undertaken until a
few years ago. The sheer number of commercial actors propos-
ing UAV-based solutions proves the popularity of these meth-
ods. However, they fall short when the goal is to survey a
large number of stocking areas around the world with a high
frequency.

Satellite images have the advantage over UAV-based imagery
that they require no supervision and can have a high revisit time.
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(a) Input image (b) Normalised (greyscale) image

(c) Stereo reconstruction (d) Our reconstruction

Figure 1. Stockpile monitoring with Shape-from-Shading. (a)
shows the input PlanetScope image (3m pixel resolution), (b) the
ROI after normalisation, (c) stereo reconstruction from SkySat

imagery (0.8m resolution) and (d) output of the proposed
method using Shape-from-Shading.

They also allow surveillance in areas of difficult access. As with
UAV imagery it is possible to acquire stereo pairs/triplets from
high resolution satellites to recover 3D surface models (Facci-
olo et al., 2017, de Franchis et al., 2014). These techniques
could be used to monitor the evolution of stockpiles with satis-
fying results. High resolution satellite stereo imagery is how-
ever expensive, which limits the applicability of this approach
for continuous monitoring.

New micro-satellite constellations enable unprecedented sys-
tematic monitoring applications thanks to their wide cover-
age and short revisit capabilities. The PlanetScope constella-
tion (Planet Team, 2017), for instance, provides daily global
coverage at a resolution of 3.5m. These types of products are
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not adapted to do stereo reconstruction, nevertheless the stock-
piles are clearly visible in the images.

As the goal of this work is to study the evolution of stocks,
micro-satellites provide a good trade-off between accuracy and
revisit time. Thus, in this paper we propose to use Shape-from-
Shading techniques (Horn, Brooks, 1986) on these lower resol-
ution Planetscope images. This provides a much cheaper monit-
oring solution. Although the recovered shapes are less accurate
than the ones acquired by stereo, the information they provide
is enough to study the overall dynamics of the stocking sites (as
illustrated in Fig.1). The use of mixed boundary conditions, as
opposed to pure Dirichlet conditions, allows us to handle parts
of the image that do not comply with the Lambertian model. We
demonstrate on two sites that this technique allows us to auto-
matically monitor stockpiles. We also include a validation of
our volume computation using stereo-based methods on some
of the dates.

The rest of the paper is organised as follows. In Section 2 we
review the problem and the literature on shape-from-shading.
In Section 3 we present the proposed method. Experiments are
shown in Section 4 and we conclude in Section 5

2. SHAPE FROM SHADING

The Shape-from-Shading (SFS) problem consists in recovering
the three-dimensional shape of a surface from one image of that
surface. One of the main interests of this problem is that the
input data are minimal as a single image is used. This is an im-
portant difference with other three-dimensional reconstruction
methods such as stereo.

This problem was first formulated by Horn (Horn, 1970) as
finding the solution of a nonlinear first-order Partial Differential
Equation (PDE) called the brightness equation

I(x, y) = R(n(x, y)). (1)

Under the assumption of orthographic projection, the visible
part of a scene is, up to a scale factor, a graph z = h(x, y)
where (x, y) is an image point. The unit normal n can be easily
expressed as

n(x) =
1√

1 + |∇h|2
(−∂h
∂x
,−∂h

∂y
, 1). (2)

The light source is assumed to be at infinity with a unit direction
vector d = (α, β, γ). For a Lambertian surface of uniform
albedo A,

R(n(x, y)) = Ad · n(x, y). (3)

Assuming an albedo equal to 1, (1) can be written

I(x, y)
√

1 + |∇h|2 − γ = −α∂h
∂x
− β ∂h

∂y
. (4)

This equation can be generalised to consider perspective pro-
jections (Lee, Kuo, 1994), a light source no longer at infinity
but at the centre of projection (Prados, Faugeras, 2005) or non
Lambertian scene (Bakshi, Yang, 1994). It has been proved in
(Belhumeur et al., 1999) that when the lighting direction and
the albedo of the surface are unknown, the same image can be
obtained by a continuous family of surfaces.

A large number of numerical methods has been proposed for
solving the Shape-from-Shading problem since its introduction

in the 70s. Two review papers (Zhang et al., 1999, Durou et
al., 2008) have extensively described these methods. They have
classified them into three main classes: the methods of resol-
ution of PDEs, the optimisation methods and the methods ap-
proximating the brightness equation.

The first class contains characteristic strips expansion and ap-
proximation of viscosity solutions. The use of photogrammetric
cues for 3D reconstruction was first proposed in (Van Diggelen,
1951) and was later developed in (Horn, 1975). This method
has been essentially used for the theoretical study of the num-
ber of solutions of class C2 of the eikonal equation that cor-
responds to a frontal light source at infinity. The notion of ”vis-
cosity solutions” is a more recent approach introduced in (Rouy,
Tourin, 1992). Several algorithms have been proposed to com-
pute these solutions, among which finite difference numerical
methods (Rouy, Tourin, 1992, Lions et al., 1993) and Markov
Chain approximation (Oliensis, Dupuis, 1993).

The optimisation methods are based on the variational formu-
lations. They differ in the choice of the unknown, the regular-
isation term of the functional and the method of minimisation.
A major reference for this class of methods is (Horn, Brooks,
1986). The method we use in our experiments belongs to this
class.

Finally the third class covers the local methods and the linear
methods. Local methods compute the normal at each point of
the image independently of the other points. They usually as-
sume the surface to be locally spherical (Hayakawa et al., 1994)
or cylindrical (Wildey, 1986). Linear methods make a global
(Kozera, Klette, 2000) or a local (Tsai, Shah, 1994) linear ap-
proximation of the reflectance function (3). A more detailed
description of these different classes of methods can be found
in the surveys previously mentioned.

3. OUR METHOD

In order to apply our method we first remove the useless images
containing clouds or that are too blurry (Anger et al., 2019).
Detecting clouds in images from pushbroom satellites can be
achieved by exploiting the parallax effect on the different chan-
nels (Dagobert et al., 2019a). However, this method is not ad-
apted to our input images as PlanetScope satellites do not use
pushbroom sensors. But, since we are in possession of a time
series of the same scene it is possible to use the algorithm pro-
posed in (Dagobert et al., 2019b). Its approach exploits the re-
dundancy of information acquired during revisits. On the other
hand, the input images are not perfectly aligned. We therefore
align them with the phase correlation method described in (Lep-
rince et al., 2007) and studied in detail in (Rais, 2016). Once
the images are aligned, we delineate the coal storage areas. This
has to be done manually but only once for each site.

3.1 Continuous Shape-from-Shading Formulation

Like most shape-from-shading methods we assume a Lamber-
tian scene, an orthographic view and a far light source. The
metadata of the satellite image provide the azimuth φ and elev-
ation θ of the sun from which the light direction d = (α, β, γ)
can be computed: 

α = sinφ cos θ

β = cosφ cos θ

γ = sin θ.

(5)



The goal is to find a digital elevation model h(x, y) compat-
ible with the observed data. As data, we have the orthoim-
age I(x, y), a domain of interest Ω and a boundary condition
for h given on the boundary ∂Ω of the domain. For the sake
of simplicity—and because it suits our concrete application—
we will always assume homogeneous Dirichlet boundary condi-
tions (h = 0 on ∂Ω); however, the techniques described below
can be easily adapted to a boundary condition with arbitrary
values. Furthermore, we also allow a Neumann-type bound-
ary condition on a small part Γ ( Ω of the boundary, that
is∇h · n = 0, where n is the normal vector to ∂Ω.

The shape-from-shading equation for a Lambertian model with
albedo A and constant ambient light B has the following form

I = A
−αhx − βhy + γ√

1 + h2
x + h2

y

+B on Ω

h = 0 on ∂Ω \ Γ
∂h
∂n

= 0 on Γ.

(6)

This is a nonlinear first-order equation that can be studied by the
method of characteristics. In the general case it has no unique
solution, or it may even fail to have a solution at all, and further
conditions are required. Here we propose a particular simplific-
ation of this equation that is suitable for our application.

3.2 Linearised Shape-from-Shading

The proposed method relies on the following two assumptions:

1. The sun is low in the horizon (strictly lower than 45◦);

2. The entire terrain is lit by the sun (no shadows).

Notice that these assumptions taken together imply that the
maximal slope of the terrain is 45◦. These assumptions are
of course not valid in general, but they are quite realistic for
the application to heliosynchronous images of loose material
stockpiles (whose angle of repose is always smaller than 45◦,
attained for wet sand). These assumptions allow for a great sim-
plification of our equation, leading to the linearised solver. The
first consequence of the assumptions is that the typical “inver-
sion ambiguity” of shape-from-shading models is not possible:
you cannot invert the whole terrain profile of a solution and ob-
tain another solution like when sun is very high. The second
consequence, regarding small slopes, is that we can assume
that ‖∇h‖ � 1 so that

√
1 + h2

x + h2
y ≈ 1, which turns the

nonlinear equation into a, mostly trivial, linear equation. The
proposed technique, described below for the discrete case, con-
sists in solving this linear equation and then iteratively refine
the solution by solving a sequence of analogous linear prob-
lems that approach the non-linear one.

Setting
√

1 + h2
x + h2

y = 1, the shape from shading equa-
tion (6) becomes linear. After arranging the terms we get the
following problem:

~α · ∇h = f on Ω

h = 0 on Ω \ Γ

n · ∇h = 0 on Γ,

(7)

where ~α = (α, β) is the projected direction of the sun and f =
(I −B)/A− γ is the new data term.

(a) f with 1
|Ω|

∫
Ω f = 0 (b) output with 1

|Ω|
∫
Ω f = 0

(c) output with 1
|Ω|

∫
Ω f = +2 (d) output with 1

|Ω|
∫
Ω f = −2

Figure 2. The output of the shape-from-shading is robust to
changes to the mean of f . The mean normalised image is shown
in (a) and the resulting surface in (b). In (c) and (d) we modified

this mean to observe that it results in a slight slope on the
reconstructed surface. Although some differences can be

observed along the boundaries of the bands the stockpiles are
barely impacted.

The shape-from-shading equation is based on the assumption
that the intensity depends only on the surface normal, illumin-
ance and albedo, with the albedo often put to one when un-
known. For our input images we can see that the intensity is
also strongly dependent on the atmospheric conditions as seen
in the top left columns of Figures 4 and 5.

From (1) and (3) we have

I =
1√

1 + |∇h|2
(−α∂h

∂x
− β ∂h

∂y
+ γ). (8)

Introducing the variable f(I, h, γ) = I
√

1 + |∇h|2 − γ we
rewrite it as

f(I, h, γ) = −α∂h
∂x
− β ∂h

∂y
. (9)

Note that for any point on an horizontal surface we have |∇h| =
0, thus f(I, h, γ) = 0. By assuming the ground to be horizontal
and the stockpiles to be more or less regular, enforcing a zero
mean for f ensures the integrability condition. Figure 2 shows
that the reconstruction is robust to changes of the mean. If the
values corresponding to the ground in f are zero the ground
appears flat in the output image. If this doesn’t hold true the
SFS will reconstruct the ground as a slope. This is visible only
when comparing the values along the sides of the lanes of stored
coal.

While we do not give any proof of the convergence or sound-
ness of this simplified procedure for larger slopes (when the ap-
proximation ‖∇h‖ << 1 does not hold), the experiments show
that it consistently produces surfaces of a reasonable shape, and
quantitatively comparable to those obtained by stereo methods.

3.3 Study of the one-dimensional case

The linearised equation (7) is a first-order linear equation on a
compact domain. In general, these equations never have a solu-



tion unless the data satisfies a strict integrability condition. As
we explain below, the integrability condition can be enforced
by applying an affine contrast change to the input image. Any
first-order PDE can be rewritten as a family of independent
ODE along curves that cover the domain, called characteristic
curves of the equation. In our case, the characteristic curves are
straight line segments in the direction of the sun. Along each
of these curves, the ODE to solve has the following form (we
consider first the homogeneous boundary condition):{

u′(x) = f(x) x ∈ [a, b]

u(x) = 0 x ∈ {a, b},

where f(x) is the intensity at the position x and u(x) is the
height profile to be found. In general, this equation has no
solution that satisfies both boundary conditions, as can be seen
by integrating on the whole domain [a, b], which gives

∫ b
a
f =∫ b

a
u′ = u(b)−u(a) = 0, so the integral of f on [a, b] must van-

ish for this equation to have a solution. The condition
∫ b
a
f = 0

is the integrability condition required on the input data. The
solution is then found trivially since the equation is directly in-
tegrable: u(x) =

∫ x
a
f .

The fact that the image intensities are known up to an arbitrary
contrast change comes in handy: we can change f so that it
satisfies the integrability condition.

The general case (in 1D) is thus given by an equation of the
following form

u′(x) = Rf(x) + S x ∈ [a, b]

u(a) = p

u(b) = q,

where R and S are constants that we can chose so that the in-
tegrability condition holds. The equation is directly integrable
and the solution is

u(x) = R

∫ x

a

f + S(x− a) + p.

Notice that u(a) = p is automatically satisfied, and the con-
dition u(b) = q is written as q = R

∫ b
a
f + S(b − a), which

determines the unique possible value of B:

S =
q − p
b− a −R

1

b− a

∫ b

a

f.

The value of R 6= 0 is thus arbitrary, as it amounts to fixing
the (unknown) albedo of the surface. We can set it to 1 for
simplicity.

To solve the linearized problem we use a variational approach
with the regularisation term proposed in (Brooks, Horn, 1985).
This leads to minimising an energy of the following form

E(h) =

∫
Ω

‖~α · ∇h− f‖2 + λ

∫
Ω

‖∇h|2 . (10)

The Euler-Lagrange equation of this quadratic functional is

D2(h)(~α, ~α) + λ∆h = ~α · ∇f (11)

The termD2(h)(~α, ~α) is the second-derivative of h in the direc-
tion ~α, which does not “see” variations of h perpendicular to ~α.

(a) Input image (contrast stretched) (b) Cranes not removed

(c) Dirichlet conditions (d) Neumann conditions

Figure 3. The necessity of mixed boundary conditions. The
cranes seen in (a) violate the constant albedo hypothesis which
results in an erroneous reconstruction (b). The result in (c) is
obtained by imposing a Dirichlet condition everywhere and in

particular along the occluding objects boundaries, which affects
the estimation of the occluded stockpile. The result in (d) is uses

Neumann conditions along the occluding objects boundaries
resulting in better reconstruction.

These variations are smoothed-out by the laplacian term, which
is an isotropic regularizer. This Euler-Lagrange PDE is a linear
elliptic equation that has a unique solution provided there is at
least one Dirichlet datum on each connected component of ∂Ω.

3.4 The effect of occluding objects and the necessity of
mixed boundary conditions

An important hypothesis of our SFS method is that the albedo
is constant and that there are no shadows. This is not true in the
presence of occluding objects. In our experiments these occlud-
ing objects are cranes, that tend to be much brighter than the
coal stockpiles we observe. A simple thresholding of the intens-
ity images detects them well in most cases. Once detected, their
boundaries are treated differently from the manually drawn
boundaries of the lanes. Assuming that the ground on which
the coal is deposited is flat it is coherent to enforce Dirichlet
boundary conditions. On the other hand when a crane is above
a stockpile the reconstructed height should not be imposed to
be zero on that part of the boundary (Dirichlet boundary con-
ditions), but instead to have zero normal derivative (Neumann
boundary conditions).

The importance of using these mixed boundary conditions is
noticeable in Figure 3, particularly on the middle lane. The top
row corresponds to the normalised image and the reconstruc-
tion without removing the cranes. This leads to a depression
on the ground of the second lane and a peak on the bottom
lane. Imposing boundary Dirichlet conditions everywhere (bot-
tom left of the figure), the former aberrations disappear but the
left stockpile appears carved in the middle. This comes from
enforcing a zero height near the middle of the pile. Adding Neu-
mann conditions on the occluded part (bottom right) leave the
reconstruction more freedom along the crane boundaries and
the results are much more realistic (bottom right).



3.5 Discrete formulation

To ease the discretisation of equation (7), and especially the
Neumann boundary condition, we use the algebraic graph form-
alism for finite difference schemes (Lézoray, Grady, 2012).
Briefly, the whole image domain is modelled as a grid graph
of size W × H . This graph has n = W × H vertices
and m = 2WH −W − H edges. Notice that m ≈ 2n. The
region of interest Ω is thus a subset of the vertex set, identified
by a binary vector 1Ω ∈ Rn, and the boundary condition is
specified by the knowledge of h ∈ Rn outside of Ω. Scalar
fields correspond to real-valued functions defined over the ver-
tices (i.e. vectors of Rn), and vector fields to functions defined
on the edges (i.e. vectors of Rm). We define the following three
matrices: The identity matrix I ∈Mn,n(R), the mask operator
of the region of interest M = diag(1Ω) ∈ Mn,n(R), and the
signed incidence matrix of the graph, ∇ = Mm,n(R). The
matrix ∇ is the operator for computing first-order derivatives
by forward differences.

Notice that if u ∈ Rn represents a scalar field, then its dis-
crete gradient is ∇u ∈ Rm, which is a vector field accord-
ing to the above convention. From these operators we define
the divergence operator −∇> ∈ Mn,m(R) and the Lapla-
cian ∆ = −∇>∇ ∈ Mn,n(R). We also define a centering
operator C = 1

2
|∇| ∈ Mn,m. It can be checked readily that

the pointwise scalar product of two discrete vector fields F,G ∈
Rm corresponds naturally to F ·G = C>(F �G), where � is
the component-wise product (Hadamard product) on Rm. This
allows to compute the directional derivatives that appear in the
continuous equation. Notice that the Hadamard product can be
written as a matrix-vector product F �G = diag(F )G. To en-
force Neumann boundary conditions, we remove the lines of the
matrix∇ that corresponds to the edges that we want to remove.

This formalism allows a direct translation of the linear equa-
tions and variational problems defined above in a continuous
setting. For example, the linear shape-from-shading equa-
tion f = ~α · ∇u is discretised as f = C>diag(Sα)∇h,
where Sα ∈ Rm is a (constant) vector field in the direc-
tion ~α. This is a square linear system with matrix Nα :=
C>diag(Sα)∇ ∈Mn,n(R). The matrixNα computes the dis-
crete directional derivative in the direction of ~α. The Dirichlet
boundary conditions g are linear constraints that can be easily
added to the problem:{

MNαh = Mf

(I −M)h = (I −M)g
(12)

or (MA+I−M)h = Mf+(I−M)g. This is a linear problem
on the unknown h. As happens in the continuous setting, this
problem has no solution (its matrix is singular) unless the data
term happens to satisfy a further integrability condition. Worse
than that, even when there is a solution, the computations along
each characteristic line are performed independently, resulting
in a structured noise on the solution. To solve this problem we
prefer to use the variational formulation, that corresponds to the
associated normal equations of the linear problem, and where it
is easier to add a regularisation term.

The energy functional E(h) is discretised using the same form-
alism, to give the following discrete energy:

E(h) = ‖Nαh− f‖2 + λ ‖∇h‖2

(a) Input images (b) After correction

(c) Normalisation (d) Computed heights

Figure 4. Input images before and after relative radiometric
correction (Hessel et al., 2020) , normalised images and

predicted heights from our shape-from-shading method for the
first site (2.58× 1.58 km).



(a) Input images (b) After correction

(c) Normalisation (d) Computed heights

Figure 5. Input images before and after relative radiometric
correction (Hessel et al., 2020) , normalised images and

predicted heights from our shape-from-shading method for the
second site, more challenging because smaller (1.17× 0.46 km).

this is a positive-definite quadratic form on the variable h. The
unique minimum is attained at the point h solution of (N>α Nα−
λ∆)h = Nαf . Notice that, apart from the regularisation term
depending on λ, this is just the normal equation of the first-order
discrete problem. The proposed method consists in the solution
of the regularised problem by this equation. The whole method
can be implemented in about 10 lines of Matlab/Octave code.

So far, we have explained how to solve the linear shape-from-
shading equation, which is just an approximation. To deal with
the nonlinear problem we use the following strategy: first we
solve the linear problem to obtain an initial approximation h0.
Then we re-weight the data term f on the linear problem by
the function

√
1 + (h0

x)2 + (h0
y)2, which results in a new lin-

ear problem of the same form that has a unique solution h1.
Thus we compute a sequence hn of approximate solutions that,
if it converges, the limit must be the solution of the nonlinear
problem. In practice, it seems that after a couple of iterations
the solution does not change much.

4. EXPERIMENTS

For our experiments we use PlanetScope (Planet Team, 2017)
imagery. The PlanetScope constellation is made of approxim-
ately 130 small satellites (form factor of 10 × 10 × 30 cm)
imaging the entire Earth’s landmass every day. The satellites
carry 3-band or 4-band frame cameras and fly at 475 km on sun-
synchronous orbits whose constant local solar time is between
9:30 and 11:30 am. The provided images are orthorectified with
a GSD resolution of 3m.

Our dataset consists of a pair of temporal series of two sites
over seven months, which amounts to about 100 images per
site after removing cloudy days. We do not have access to the
ground truth for the sites we studied. Still we were provided
DEM reconstruction of the first site using stereo photogram-
metry (de Franchis et al., 2014) obtained from SkySat imagery
along with volumes (in cubic meters) computed from these
DEMs. These reconstructions will serve as references for our
validation.

4.1 Qualitative evaluation

We applied our method to the time series on the two sites and we
observed that the stockpiles were correctly estimated in most
cases. The images for the first site (Figure 4) cover an area
of 2.58 × 1.58 km while the images for the second site (Fig-
ure 5) only cover an area of 1.17 × 0.46 km. Thus the second
site is much more challenging and we don’t expect the same
quality of results for both sites. Indeed our method struggles in
reconstructing the shapes of the second site that presents much
smaller stockpiles. By looking at the enhanced images we can
confirm that it is actually quite hard to see the stockpiles in the
images.

4.2 Analysis of time series

The ground is lower than the rails along which the cranes move.
During the reconstruction we assumed the height of these rails
to be zero. The first step to compute volumes is to add a global
additive constant to restore the ground level to zero. The ver-
tical scale of our SFS reconstruction is arbitrary but coherent in
the whole time-serie. We add a multiplicative constant to this
scale such that the maximum altitude of our stockpiles matches
the one from the reference stereo reconstructions. The volumes



(a) Colorbar Shape-from-Shading (b) Colorbar stereo

Figure 6. Volume tracking in a time series. The plot represents the estimated volumes using the algorithm described in Section 3 on a
time series of PlanetScope images spanning 7 months. The Shape-from-Shading heights are scaled by a constant so that the maximum
altitude of our stockpiles matches the one from a reference stereo reconstruction (about 15m). The results for some highlighted dates

are shown above the plot. The results of our method are consistent with the volumes obtained using stereo reconstruction and are
obtained with a much higher frequency. The images shown below the plot allow the comparison on 3 dates of our result with 3D

reconstructions. Note that the altitudes in the 3D reconstructions are expressed relative to the ellipsoid.

are then computed from the reconstructed shapes by integration
on the ROI after clipping the first and last percentile to get rid
of aberrant values. Then we multiply this result by 9, which is
the size of a pixel for a GSD resolution of 3m.

In Figure 6 we represent the volumes estimated using the al-
gorithm described in Section 3 on a time series of PlanetScope
images spanning 7 months. The results for some highlighted
dates are shown above the plot. We can see that the estimated
volume is lower when less stockpiles are detected. For the ste-
reo reconstructions we only have access to three months of data
with about one acquisition per week. The images shown below
the plot allow the comparison on 3 dates of the result of the 3D
reconstruction with our method. Note that the PlanetScope and
the SkySat images are often acquired at different hours or days.
So the volumes obtained by stereo reconstruction are only an
approximation of the ground truth. Taking this into account we
see from Figure 6 that our estimated volumes are quite realistic.

5. CONCLUSION

Nowadays stockpile monitoring appears to be performed almost
exclusively using UAV based techniques. In this paper we have
shown that applying a simple Shape-from-Shading method on
low resolution PlanetScope images can be sufficient to monitor
the evolution of the volume of these stockpiles. The unques-
tionable loss in accuracy is well compensated in our opinion by
the much higher revisit frequency and less human intervention.
It is also easy to follow simultaneously several stocking sites
all over the world. Thus this method appears very well suited
to the problem of large scale stocks monitoring. In future work,

more sophisticated Shape-from-Shading algorithms should be
considered and the detection of occluding objects could be im-
proved. Our method needs to be tested on more stocking sites.
Access to more stereo reconstructions would also allow a quant-
itative evaluation of our results in addition to our qualitative
evaluation.
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