
HAL Id: hal-04497743
https://hal.science/hal-04497743

Submitted on 10 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Global Registration Method for Satellite Image Series
Charles Hessel, Carlo de Franchis, Gabriele Facciolo, Jean-Michel Morel

To cite this version:
Charles Hessel, Carlo de Franchis, Gabriele Facciolo, Jean-Michel Morel. A Global Reg-
istration Method for Satellite Image Series. IGARSS 2021 - 2021 IEEE International
Geoscience and Remote Sensing Symposium, Jul 2021, Brussels, Belgium. pp.3121-3124,
�10.1109/IGARSS47720.2021.9554786�. �hal-04497743�

https://hal.science/hal-04497743
https://hal.archives-ouvertes.fr


A GLOBAL REGISTRATION METHOD FOR SATELLITE IMAGE SERIES

Charles Hessel?,†, Carlo de Franchis?,†, Gabriele Facciolo? and Jean-Michel Morel?

? Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, France
† Kayrros SAS

ABSTRACT

Image registration is a fundamental tool of remote sensing. The
recent proliferation of earth observation satellites has opened
the way to the analysis of long image time series with denser
temporal repetition. Given this wealth of images, it is crucial
to design automatic tools to process them. We thus propose
a method for the global registration of satellite image time
series, that leverages their redundancy to improve in precision
and robustness. By computing the relative displacement for
all possible pairs of images, we are able to discard outliers
and minimize the number of misaligned images. Experiments
on synthetic data show that longer image series are registered
with a higher precision.

Index Terms— multi-image alignment, registration, phase
correlation

1. INTRODUCTION

Satellite image time series analysis requires precise image reg-
istration. However, due to inaccuracies in the orientation of the
satellite sensors, pixels coordinates hardly ever exactly match
their actual position on the ground. This, in turn, creates small
displacements between consecutive images of time series. In
this work, we tackle the global registration of such series; our
objective is to bring all the images onto a common reference.
Our contribution is a method to take full advantage of the
redundancy in this multi-image alignment problem, including
the detection and handling of outliers or misaligned images.
This is achieved by the estimation of the displacement for all
possible image pairs, using the phase correlation technique.
Verification steps are based on a graph whose nodes are the
images and links are the estimated shifts. This global registra-
tion algorithm is generic and can be used to register optical
and radar image time series. Figure 1 shows the advantage of
using several reference images.

Image registration methods are generally divided in two
categories: feature-based methods and area-based methods [1].
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Fig. 1. Evolution of the RMSE on the estimated shifts in func-
tion of the number of images in the series, for three synthetic
optical time series. Continuous lines are obtained with our
method. Dotted lines are obtained using one reference image.

The latter includes correlation methods, among which the nor-
malized cross correlation and other Fourier-based correlation
methods, dating back to the seventies [2]. The particularly
successful phase correlation method [3] normalizes the cor-
relation image in the Fourier domain by its modulus, thus
keeping only the phase information. This makes it invariant
to global linear variations in contrast and brightness [4]. The
sub-pixel displacement can be estimated from the cross cor-
relation image [5, 6, 7] or by estimating the slope of a plane
in the phase of its Fourier transform [8, 9]. Accuracy and
robustness of correlation algorithms can be further improved
by frequency weighting [8].

These methods only register two images. Moreover, in
spite of all these improvements and advances, image registra-
tion often fails due to occlusions or extreme contrast changes,
which in turn result in severe misalignment. A way around this
is to leverage the availability of all images of the time series.

The problem of registering several images at once is called
multi-image alignment. It consists in bringing a group of
images into a common reference. In addition to being a critical
first step in many remote sensing applications, it is also the
cornerstone of many image fusion techniques such as high
dynamic range imaging, super-resolution, burst deblurring and
burst denoising [10]. One approach is to use a single reference
and register all images onto it. However, this requires either
to have an expected reference image, which, in most practical



situations, cannot be obtained, or to pick from the given series
one image, including the degradations it may contain. In brief,
there is much to gain with the registration on several reference
images [11, 12].

Aguerrebere et al. [10] report approaches using the max-
imum likelihood estimator (MLE), the Bayesian MLE, the
maximum a posteriori (MAP) estimator, and constrained align-
ment. Yet, despite the ubiquity of the problem and the number
of methods proposed to address it, using all possible pair-
wise estimations is scarce. Methods in [13, 14] use this over-
determined system of equations by taking advantage of the
fact that the shift between two distant images is the sum of
the shifts of all adjacent images between them [10]. However,
these methods do not include mechanisms to detect outliers
and correct misaligned images, although they are critical in
the remote sensing context.

We shall describe the proposed method in Section 2, then
present in Section 3 an evaluation of its results.

2. METHOD DESCRIPTION

This section describes a global registration method for optical
and SAR image time series. Our aim is to bring a series of un-
registered images into a common reference, which is inferred
from the input images themselves. Thus, we do not require a
reference image. We start by presenting the phase correlation
method, used to estimate translations in pairs of images, with
two particular cases: the registration of two images, and the
registration of one image onto several, already registred im-
ages. Then, we shall describe our global scheme to register
several images without references, along with strategies to
detect and remove outliers.

We shall denote by {u0, ..., un, ..., uN−1} the input time
series, composed of N images. The estimated registration
shifts are denoted by {τ̂0, . . . , τ̂n, . . . , τ̂N−1}. They translate
the images to the reference point, that we define as the centroid
of the estimated relative positions of the input images. Hence
the reference is not known in advance. The shifts are finally
applied to the images using spline interpolation of order five.

2.1. Phase correlation

Let us denote U = F{u} the discrete Fourier transform of
image u. We call c the phase-correlation image between u and
a second image v. Its discrete Fourier transform is given by

C =
U · V ∗

|U · V ∗|
, (1)

where ∗ denotes the complex conjugate and | · | the norm. The
shift is given by the position of the maximum in c = F−1{C}.
Some weights can be applied to C to reduce the effect of the
borders and of the noise [8]. Since this estimation only gives
integer translations, a second refinement step is needed to
obtain a shift at sub-pixel precision. Assuming the maximum
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Fig. 2. Synthetic optical time series with eight images, and
including opaque clouds.

position at position (xmax, ymax), we fit a one-dimensional
sinc function for the x-axis using the two neighboring points
xmax − 1 and xmax + 1:

argmin
ax,bx,cx

xmax+1∑
x=xmax−1

‖c(x, ymax)− cx · sinc(bx · (x− ax))‖2,

(2)
and similarly for the y-axis. Finally, the position of the maxi-
mum is τ̂ = (ax, ay). In this paper, we assume that τ̂ = τ +ν,
with τ the exact (and unknown) translation that registers image
u onto the reference. The random perturbation ν models the
method’s inaccuracy; we assume its expected value to be null.

Often, we need to register a new image onto several already
registered images. We denote these M reference images by
{v0, ..., vm, ..., vM−1}. The estimated translation for input un
with the mth reference image vm is denoted τ̂n,m. To limit the
impact of outliers, the final shift is estimated as the the median
of all shifts with the reference images, i.e.

τ̂n = median{τ̂n,m}. (3)

References are, however, not always available.

2.2. Global registration

An example of candidate optical time series is given in Figure 2.
It contains eight images, including one totally covered by a
cloud. We synthesized these images following the procedure
described in Section 3, hence we know the ground truth.

We start by estimating shifts for all possible pairs of images.
We denote by τ̂ this matrix of size N ×N , whose elements
τ̂n,n′ are the estimated translations between images un and
un′ . This matrix is antisymmetric, and its main diagonal is
always zero. The number of shifts to be estimated is therefore
N(N − 1)/2. Assuming an input time series without outliers
and all shifts correctly estimated, the final shift τ̂n that registers
image un onto the reference is obtained by averaging the shifts
estimated with all other images, i.e.

τ̂n = 1
N

∑N−1
n′=0 τ̂n,n′ . (4)



(a) ‖τ̂ ini − τ GT‖ (b) R (c) ‖τ̂ tri − τ GT‖ (d) ‖τ̂ − τ GT‖

Fig. 3. Triconsistency and shift error matrices. Values go from
0 (white) to 0.09 pixels (black). Brighter is better. Dotted
cells indicate discarded shifts. Matrix (b) is the triconsistency
matrix R. Matrices (a,c,d) are the difference with the ground
truth shifts at different steps of the method: initial (τ̂ ini), after
the triconsistency test (τ̂ tri), and final (τ̂ ). Values are computed
with the synthetic time series in Figure 2.

But this is not robust to outliers. Our practical approach there-
fore introduces two steps to detect, remove, and even correct
the wrongly estimated shifts. The first is based on the cor-
relation values. The second on the estimated shifts global
consistency.

2.2.1. Correlation values

The phase correlation image has values in [−1, 1], and its
maximum cmax = max(c) is a good indicator of the number
of pixels in agreement. It will be 1 if the compared images
are identical (−1 if they have reversed contrast), and degrades
towards 0 when they differ. We thus set a threshold, under
which estimated shifts will be considered as erroneous

cmax < tmaxval, (5)

where we set tmaxval = 0. Indeed, we do not need a very restric-
tive threshold since we perform a complementary validation
test. This second test uses the ratio between cmax and second
maximal value csecond max found after discarding the maximal
value and its eight neighbors in the image c.

cmax

csecond max < tmaxratio, (6)

with tmaxratio empirically set to 10/6. All shifts that do not pass
these two tests are discarded.

In Figure 3 (a) we show in matrix form the norm of the dif-
ferences between all τ̂ ini and the corresponding ground truths
for the series in Figure 2. Dotted cells represent discarded
shifts. The image u4, fully covered by clouds, did not pass the
tests on the correlation values in all pairs.

The matrix τ̂ ini is then interpreted as a graph, where two
images (the nodes) are connected if their estimated shift (link)
is not discarded, and disconnected otherwise. This graph is
illustrated in Figure 4. We then keep only the largest connected
component. In general, the isolated components removed at
this step are due to cloudy images.

u0

u1 u2

u3

u4 u5

u6

u7

Fig. 4. Actual positions of eigth images with the same, noisy
coordinates. So as to bring them all onto the same reference
point, we compute shifts for all possible image pairs. They are
displayed as black lines, or red arrows for image u0.

2.2.2. Global shifts consistency

To further improve the precision of the registration, we detect
and replace badly estimated shifts. Indeed, for any triplet of
images (uk, uk′ , uk′′), we have τk,k′ + τk′,k′′ = τk,k′′ . This
allows us to measure the consistency of a shift in this connected
graph. We call this measure r the triconsistency, defined as

rk,k′,k′′ = ‖τ ini
k,k′ + τ ini

k′,k′′ − τ ini
k,k′′‖, (7)

for any three different k ∈ 0..(N − 1). We compute the tricon-
sistency matrixR of sizeN×N by averaging all triconsistency
values for a particular pair of images:

Rn,n′ =
1

N − 2

∑
n′′∈{0...(N−1) \n,n′}

rn,n′,n′′ . (8)

An example triconsistency matrix is given in Figure 3 (b).
Triconsistency values are not computed for discarded shifts.

Using this triconsistency matrix R, we then look for the
smallest threshold ttri such that all connected images in the
graph remain connected. All shifts whose triconsistency value
is below this threshold are removed. The cleaned shift matrix
is denoted τ̂ tri. Figure 3 (c) shows the norm of the difference
of this matrix with the ground truth.

Using the same consistency idea, we finally correct the
discarded shifts of the connected graph by the composition of
valid ones. That is, we estimate the discarded τ̂n,n′ between
images un and un′ by using a third image uk as bridge:

τ̂n,n′ =
1

K

∑
k

τ̂n,k + τ̂k,n′ (9)

for all k such that both τ̂n,k and τ̂k,n′ are valid, K being the
number of such valid couples. Figure 3 (d) shows the norm of
the difference between this final matrix τ̂ and the ground truth.

3. EVALUATION AND RESULTS

To evaluate the precision attained by the proposed method we
needed a ground truth. For that, we generated three synthetic
image time series, each composed of 150 images, following



this procedure: first, we computed a high signal-to-noise ratio
image by registering, then averaging eleven images between
March and August 2020 in the same weather conditions. Then,
we applied 150 randomly generated shifts to this image, using
spline interpolation with order eleven. These shifts follow a
Gaussian distribution with zero mean and a standard deviation
of two pixels. We then simulated changes in the weather
conditions by applying an affinity to the intensities in the
images, i.e. the value u(x) is transformed to a·u(x)+b, where
the parameters a and b are constant in the image, but different
between images. They both follow a uniform distribution in
the range [1, 2] for a and [−50, 50] for b. Finally, Gaussian
noise was added to the image, with zero mean, and standard
deviation 100. In the case of the eight-images long series in
Figure 2, we added synthetic opaque clouds.

We present in Figure 1 precision results for these three
time series. The registration precision is computed as the
root mean squared error (RMSE) of the estimated shifts. The
graph shows the evolution of the average error as we increase
the number of images. We observe a quick improvement in
the registration accuracy between 3 and 50 images, then the
curves stabilize. Moreover, the variance between the series
also decreases with the number of images, which suggests a
more stable result for long time series. Experiments conducted
on SAR images showed the same behavior.

4. CONCLUSION

We presented a global registration method for time series of
optical and radar images. This method detects and discards
unregistrable images (e.g. fully covered by clouds), and de-
tects and corrects misaligned images. As a result, the global
registration is more precise and reliable. These features are
obtained by exploiting the redundancy brought by the multiple
images. A graph is constructed with the relative shift of the
images; unreliable links are trimmed and replaced thanks to
a measure of global consistency. Validation with synthetic
data showed that the precision is improved by increasing the
number of images in the time series.

An online demo is available at https://ipolcore.

ipol.im/demo/clientApp/demo.html?id=77777000117.
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