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ABSTRACT
Reducing methane emissions is essential to tackle climate
change. Here, we address the problem of detecting auto-
matically point source methane leaks using high resolution
hyperspectral images from the PRISMA satellite. We use
a variation of the Matched Filter (MF) called the Adjusted
Spectral Matched Filter (ASMF) to detect methane plumes
in satellite images. To remove false positives, the detected
plumes are confirmed by comparing their orientation to the
wind direction extracted from the standard meteorological
reanalysis product ERA5. The ASMF reduces the fraction of
false detections compared to the MF and without preventing
the detection of plumes. To validate the method, we use a
recently proposed dataset of manually annotated plumes on
PRISMA images. We also compare our detection rate to the
detection rate of methods using deep learning or the standard
matched filter. We then show that our method outperforms
those methods in terms of F1 score.

Index Terms— Hyperspectral images, Matched filter,
Wind data, Methane, Anomaly detection

1. INTRODUCTION

The detection of methane (CH4) leaks from anthropogenic ac-
tivities is a cost-effective and global approach, which could
help rapidly reducing greenhouse gas (GHG) emissions. In a
time lapse of 20 years, a CH4 molecule has a global warm-
ing potential 80 times larger than carbon dioxide (CO2) [1].
A significant part of human CH4 emissions could be reduced
or fully-avoided, as about 33% come from oil and gas infras-
tructures.

These methane emissions are usually “point emissions”,
which means that the plume is emitted from a small surface on
the ground but contains a large amount of gas. The detection
of these emissions therefore requires instruments capable of
observing the whole globe at high spatial resolutions.

Work partly financed by Office of Naval research grant N00014-20-
S-B001, MENRT, and a PhD scholarship financed by MESRI (Ministère
de l’Enseignement Supérieur, de la Recherche et de l’Innovation). Centre
Borelli is also a member of Université Paris Cité, SSA and INSERM.
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Fig. 1: Comparison between the matched filter and the Adjusted
Spectral Matched Filter (ASMF). The tested methane plume is in
Turkmenistan.

In order to detect GHG fossil fuel emissions from hu-
man activities, several satellites have been placed in orbit
around the Earth over the past ten years. Here, we focus on
PRISMA [2] (PRecursore IperSpettrale della Missione Ap-
plicativa), a satellite launched in 2019 by the Italian Space
Agency. PRISMA provides hyperspectral images with a high
spatial resolution (30m) and a swath of 30 km. Each pixel
contains a spectrum with 237 channels between 400nm and
2500nm.

Methods for the detection of point source methane emis-
sions on PRISMA already exist with in particular the work
of [3], which is based on the matched filter algorithm. The
work presented in [3] is based on the application of the
matched filter and a manual segmentation of the plumes.



Here, we propose an improvement of this method comprising
an automatic methane plume detection algorithm involving a
variant of the matched filter. Our plume detection algorithm
is automatic, unsupervised, and reduces the number of false
positives with respect to the standard matched filter. Our
method involves two steps: (i) We compute a matched filter
variant called the Adjusted Spectral Matched Filter (ASMF)
[4], the ASMF highlights the plumes while reducing the num-
ber of false positives. (ii) Then, to remove a part of the false
positives, we compare the orientation of the plume detected
in (ii) with the orientation of the wind.

To validate the method, we evaluate our approach on
manually-annotated plumes detected in PRISMA satellite
images from a recently-published dataset [5]. We also com-
pare our detection rate to the detection rate of the methods
proposed by [5] and [3]. We then show that our method
outperforms the methods proposed by [5] and [3] based on a
comparison of the F1 score.

2. RELATED WORK

In the context of hyperspectral imagers two main techniques
have been applied to detect methane plumes, both aiming at
the quantification of the methane concentrations in the ob-
served area.

The first is the Iterative maximum a posteriori applied to
differential optical absorption spectroscopy (IMAP-DOAS) [6].
This method consists in inverting a complete atmospheric
absorption model with an optimal estimation algorithm.
IMAP-DOAS works with sensors that have very different
spectral and spatial resolutions, such as AVIRIS [7] and
TROPOMI [8]. In the case of TROPOMI, the implementa-
tion is based on the work presented in [9].

The second technique is the matched filter. The matched
filter is a linear filter that quantifies the presence of an
anomaly whose spectral signature is known. The matched
filter allows to compute the excess methane concentration
with more computational efficiency than the IMAP-DOAS
method. However, it only retrieves the concentration of
methane whereas the IMAP-DOAS retrieves the concentra-
tion of all gases. It is mainly used for the PRISMA satel-
lite [3]. Several matched filter variations exist. One used for
methane plume detection is the Cluster-Tuned Matched Filter
(CTMF), originally dedicated to sulfur dioxide [10], and then
applied to CH4 plume detection in [11]. Here we focus on
another matched filter variant: the adjusted spectral matched
filter (ASMF) [4]. The ASMF allows to remove false posi-
tives from the matched filter image and therefore has a lower
false positive rate than methods like the CTMF, which rely
mainly on the improvement of the parameter computation.

3. MATERIALS

We use the level 1 images from the PRISMA satellite. Those
images are hyperspectral images with a 30m spatial resolution
and contain at each pixel a 237 channels spectrum between
400nm and 2500nm. Here, we are interested in the SWIR
region of the spectrum containing 171 channels in a spectral
interval of 920− 2505nm.

We also use wind data from the ECMWF ERA5 dataset [12].
Wind data are used to compare the orientation of the plume
with the orientation of the wind. The ECMWF provides
hourly wind data with a spatial resolution of 30km.

Lastly, we use a detailed CH4 absorption spectrum taken
from the HITRAN spectral database [13]. Spectrum varia-
tions are small in the near-surface atmospheric layers so we
selected the CH4 spectrum at 15◦C and 1 atm to represent
near-surface atmospheric conditions.

4. METHOD

4.1. Adjusted spectral matched filter

The state-of-the-art methods on PRISMA use the standard
matched filter to detect methane plumes [3]. For a given pixel
x, the matched filter detector DMF (x) is defined by

DMF (x) =
tTΣ−1(x− µ)

tTΣ−1t
, (1)

where µ and Σ are the mean and covariance of the back-
ground, and t is the target vector. It represents the direction
of the expected perturbation when observing a pixel with a
methane plume. In the case of gas detection, the target vector
is defined by [14, 3] as

t = −KCH4
µ, (2)

where KCH4 is the diagonal matrix whose coefficients are the
ones of the methane absorption spectrum.

The methane absorption spectrum is obtained from the Hi-
tran database [13]. The parameters µ and Σ are computed
with their empirical estimates.

A major drawback of the matched filter is that we can de-
tect anomalies that are not in the direction of the target vector
if there are outliers. In our case the values of t are negative
so for example if x has its values very close to 0 we will get
a very high matched filter score, independently of the shape
of the spectrum of x. This often happens when we have an
area with a very low albedo, such as buildings, roads or water
bodies. To avoid false positives, we need to penalize the score
of these outliers, which correspond to anomalies in any direc-
tion, by using an adjusted spectral matched filter (ASMF) [4].

To penalize the anomalies that are not in the direction of
the target vector we use the Reed-Xiaoli (RX) detector DRX ,
which can also be seen as the squared of the Mahalanobis



distance. It is defined by

DRX(x) = (x− µ)TΣ−1(x− µ). (3)

The Reed-Xiaoli detector will return a high score for any pixel
that is dissimilar to µ. The AMSF detector is then defined
by [4]:

DASMF (x) = DMF (x) ·
(
DMF (x)

DRX(x)

)2

. (4)

The ASMF significantly reduces the number of false pos-
itives. However, it can lower the detection score of actual
plumes because plumes can also have a high RX score. The
detection of the plumes is performed on the image resulting
from the ASMF also referred to as the ASMF image. The
ASMF image is centered and normalized so that the distri-
bution of the pixels is a standard normal distribution. Then,
a threshold is set on a quantile of the distribution. To pre-
vent the detection of isolated false positives, we only keep
the detections of groups of at least 3 pixels. Since the spatial
resolution of PRISMA is 30m, the plumes we aim to detect
will always extend over more than a hundred meters. Smaller
plumes have a very low methane concentration and are there-
fore generally impossible to detect with the spatial and spec-
tral resolution of PRISMA.

4.2. Wind orientation test

To validate the detections obtained with the method described
above, the spatial inclination of the plume is compared with
the wind direction. The wind data are obtained from the
ECMWF ERA5 dataset. We interpolate the wind data clos-
est to the mean coordinates of the plume to obtain the wind
angle θwind. To calculate the plume angle θplume we perform
a principal component analysis on the centered coordinates
of the plume. The coordinates are centered to ignore the posi-
tion of the plume in the image. The orientation of the plume
is then given by the principal component.

Once θwind and θplume are computed, the two angles
are compared to confirm the presence of the plume. Since
the wind data is obtained up to 30min after or before the
plume emission, a large margin of error must be left on
θwind which may have changed. We therefore allow an
error of plus or minus 30 degrees on the wind angle. If
θplume ∈ [θwind − 30, θwind + 30], we consider that the
plume is directed in the direction of the wind.

The shape of some plumes does not necessarily corre-
spond to the wind direction. This can be due to weak wind
conditions or to the local topography. Therefore, the wind di-
rection information can only be used when the wind is strong
enough. In particular, the plume can have a shape very close
to a circle, which prevents the correct calculation of its orien-
tation. The orientation test is only performed when the ori-
entation of the plume is clear and when the wind is strong
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Fig. 2: Comparison between the Matched Filter, the deep learning
method proposed by [5] and the ASMF. The different methods are
here tested on a plume in Australia.

enough. The orientation is clear when the variance in the
principal component direction is much larger than the vari-
ance in the orthogonal direction. To see if a plume is eligible
for the orientation test, the ratio of the variances is calculated.
The wind is considered to be strong enough when its speed is
above 2.4m/s. When the ratio is large enough and the wind is
above the 2.4m/s threshold, the orientation test is performed.

4.3. Results

As it can be seen in Figure 1 and Figure 2, the ASMF signif-
icantly improves the contrast of the plumes compared to the
background. This can be seen in two main ways. First, we ob-
serve that the average background value is substantially lower
with ASMF than with the MF. Also, we observe a reduction
of potential false positives. This can be seen in Figure 1 with
the very bright pixels on the top and the bottom of the MF im-
age. In particular, the potential false positives on the top of the
image are almost merged with the background in the ASMF
image. Figure 1 also shows an example of an application of
the wind orientation test. The ASMF has not completely elim-
inated the false positive at the bottom of the image. However,
the orientation of this false positive is very different from the
one of the plume and therefore also very different from the
wind orientation. Thus, the wind orientation test removes the
false positive.

We also compare the ASMF with the deep learning



Recall Precision F1

MF [3] 0.53 0.22 0.31
Deep learning [5] 0.88 0.42 0.57
ASMF + wind orientation test 0.83 0.62 0.71

Table 1: Numerical results using the dataset built by [5]. The
method proposed here is refered as ASMF+network

method proposed in [5]. Figure 2 shows the results of the
ASMF and the deep learning method on the same plume. It
can be seen that both methods bring out the plume. How-
ever, with the deep learning network, a false positive appears,
which does not appear on the matched filter or ASMF results.

To confirm the improvement brought by the joint use of
the ASMF and wind data we can look at Table 1 which sum-
marizes the scores of the different methods. All methods were
tested with automatic detection without manual correction.
The images used are those of the dataset proposed by [5],
which have been manually labeled.

The results presented in Table 1 confirm the improvement
brought by our method. Indeed, the ASMF+wind orientation
test method outperforms the others in terms of precision and
F1 score. We can notice that it is slightly behind the deep
learning method in terms of recall but this loss in recall is
compensated by a significant gain in precision.

5. CONCLUSION

We have introduced an automatic methane plume detection
method based on a variant of the matched filter and the use
of wind data. It outperforms pre-existing methods in terms
of precision and F1 score. The algorithm presented here has
been tested on PRISMA satellite images. Since the character-
istics of PRISMA are very close to those of other instruments
such as EnMap or EMIT, we could consider extending the
method to images obtained with these instruments.
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[9] André Butz et al., “Tropomi aboard sentinel-5 pre-
cursor: Prospective performance of ch4 retrievals for
aerosol and cirrus loaded atmospheres,” Remote Sens
Environ., vol. 120, no. SI, pp. 267–276, 2012.

[10] Christopher C. Funk et al., “Clustering to improve
matched filter detection of weak gas plumes in hyper-
spectral thermal imagery,” EEE Trans Geosci Remote
Sens, vol. 39, pp. 1410 – 1420, 08 2001.

[11] Andrew K. Thorpe et al., “High resolution mapping of
methane emissions from marine and terrestrial sources
using a cluster-tuned matched filter technique and imag-
ing spectrometry,” Remote Sens Environ., vol. 134, pp.
305 – 318, 2013.

[12] Hans Hersbach et al., “The era5 global reanalysis,”
Quarterly Journal of the Royal Meteorological Society,
vol. 146, no. 730, pp. 1999–2049, 2020.

[13] Iouli E. Gordon et al., “The HITRAN2016 molecular
spectroscopic database,” J Quant Spectrosc Ra, vol.
203, pp. 3 – 69, Dec. 2017.

[14] James Theiler and Brendt Wohlberg, “Detection of un-
known gas-phase chemical plumes in hyperspectral im-
agery,” in Algorithms and Technologies for Multispec-
tral, Hyperspectral, and Ultraspectral Imagery XIX,
Sylvia S. Shen and Paul E. Lewis, Eds., 2013.


