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ABSTRACT

The detection of smoke plumes by satellite imagery is a
comprehensive research topic that can be used to better moni-
tor activity and emissions from the energy and industrial sec-
tors. In this study, we propose a machine learning methodol-
ogy based on the extraction of relevant features from Sentinel-
2 images to perform industrial smoke plume detection. This
computer vision problem is modeled as an image classifica-
tion task based on the presence or absence of plumes for pre-
viously identified sources. A dataset of nearly 17,000 hand-
labeled images of smoke plumes for activity classification has
been compiled to train and evaluate our detection models. The
final Gradient Boosting model only uses the 3 RGB bands of
Sentinel-2 and after a post-processing step reaches an accu-
racy of 95%.

Index Terms— Industrial plumes, Sentinel-2 images,
Machine learning, Feature extraction, Pattern recognition

1. INTRODUCTION

Monitoring the activity of industrial and power generation
plants is a major issue for estimating greenhouse gas emis-
sions from these sectors. The observation over time of indus-
trial smoke plumes emitted by these plants is a good indicator
of the state of their activity. These plumes can be of differ-
ent sizes and compositions depending on the plant type, but
many of them can be identified on medium-resolution satellite
images. For this purpose, optical images from the Sentinel-2
constellation provide a good trade-off between spatial reso-
lution and revisit frequency. The problem addressed in this
study is the classification of satellite images based on the
presence or absence of industrial smoke plumes. To tackle
this problem, we propose a machine-learning method based
on the extraction of relevant features.

The smoke plume detection of our study is carried out on
cooling towers of different sites around the world, such as
power or industrial plants. The prior identification of plume-
emitting sources makes the computer vision task easier but
greatly increases the performance of the detection models.
The different plume sources are then identified beforehand.

They are of various sizes and shapes. This diversity is an im-
portant stake making the robustness of our method necessary.
In order to train and evaluate our models, we built a dataset
of nearly 17,000 images of smoke plume sources labeled by
hand for activity classification.

The main idea of the approach is to extract the most valu-
able features from Sentinel-2 images in order to detect the
presence of smoke plumes. This detection is achieved by uti-
lizing reference classification models, such as gradient boost-
ing or ResNet. The value of the presented method lies in the
pre-processing of the images. First, we apply a process aimed
at eliminating the image background, which tends to highlight
possible plumes. Then we reduce the number of parameters
by grouping information into relevant features. For this pur-
pose, various parameters are incorporated into the method,
including source positions, seasonality, satellite orbits, and
image context.

2. RELATED WORK

The detection of industrial smoke plumes has been exten-
sively studied in the scientific literature. Hsu et al. introduce
Project RISE [1], which specifically focuses on recognizing
and identifying industrial smoke emissions. To accurately
characterize these plumes, various papers have investigated
the physical properties of industrial smoke. Mommert et al.
[2, 3] and Calassou et al. [3] have contributed to this area of
research, studying the characteristics and behavior of indus-
trial smoke plumes. In addition to industrial smoke, Calassou
et al. [3] also propose a comprehensive characterization of
aerosol plumes. Furthermore, Ehret et al. [4] have explored
the detection of methane plumes. These studies provide valu-
able insights and methodologies for effectively detecting and
characterizing different types of plumes in various industrial
and environmental contexts.

Satellite data are a rich source of information for detect-
ing smoke plumes. The European Space Agency (ESA) pro-
vides detailed documentation [5] allowing the exploitation of
Sentinel-2 satellite images [2, 4, 6]. The usability of satellite
images often depends on weather conditions. For this pur-



pose, ground visibility is studied in [7, 8], and cloud detectors
are developed in [9, 10].

To perform image classification, a wide range of models
is available, ranging from logistic regression to the latest im-
age transformers. In this study, we chose to utilize a gradi-
ent boosting method, XGBoost [11], along with a well-known
convolutional neural network, ResNet [12]. The main focus
of this study lies in the pre-processing of the data; therefore,
exhaustive testing of different classifiers was not conducted.
However, the relevance of the method should extend to any
other model thus enhancing its performance.

3. METHOD

Our smoke plume detection method is based on the compu-
tation of features to train a classification model. The exact
positions of the towers that can emit plumes are considered
to be known. This allows us to build, for each tower, a time
series of observations. This time series takes into account
the seasonality to ensure that the different observations of the
towers are sufficiently similar: the time difference between
the first and last observation of the time series should not ex-
ceed 3 months. Satellite images are also grouped by orbit in
time series to which a global registration [13] is applied. The
background of the observed scene is then computed as the
average of this time series. We then compute the difference
between the image to be tested and the average of the time
series to remove this background.

We then extract square crops of several sizes centered
around each tower. The idea behind these centered crops is
to retrieve information from a potential plume signal at dif-
ferent scale levels around the source. This is illustrated by
Figure 1. A very small patch to get concentrated information
on whether something is coming out of the tower, a medium-
sized patch to get information from the environment close to
the source, and a much larger patch to assess the overall con-
text of the image. We use crops of 4, 10, and 40 pixels of side.
With a Sentinel-2 resolution of 10 meters, this corresponds to
patches of 40, 100, and 400 meters of side. Using crops of dif-
ferent sizes, especially small ones, ensures that the plume is
emitted from the observed tower and not from another nearby
tower. These crops allow computing features in the proxim-
ity of the towers, such as the mean and the standard deviation
of the pixels of the image to be tested and the residual of the
image with the time series. We also use the mean ratio of the
red band over the blue band of the Sentinel-2 image.

These features are then used to train a Gradient Boost-
ing model [11]. The classification of activities is based on
whether or not a tower is emitting a smoke plume, but for
more than half of the images, the presence of clouds makes
this inference impossible. These images are nevertheless kept
in the dataset in order to make the model capable of differen-
tiating between atmospheric conditions and industrial activity
signals. Therefore, the model is trained to classify the data

(b) Inactive tower

(a) Active tower

(c) Cloudy image

Fig. 1: Patches of different sizes (red contours), centered
on a large cooling tower. We employ patches of varying sizes
to capture the image context at different scales.

into 3 classes: Active tower, Inactive tower, and Cloudy. The
dataset is separated into a training set and a test set by making
sure that the areas seen in the training set are never present
in the test set, even at a different date. This ensures that the
model will have a stable performance in all types of areas.

To limit the errors of the model we add a posteriori a
fourth class: Unclear. This class allows us to isolate the ob-
servations where we cannot trust the prediction of the model.
We determine if an observation is Unclear by calculating the
entropy of the distribution that the model associates with the
observation. It should be noted that the Unclear class does
not mean that the model has made an error in its prediction
but rather that even if the prediction is correct we cannot trust
it.

4. EXPERIMENTS AND RESULTS

The model thus constructed is tested on a manually labeled
plume dataset. This dataset contains nearly 17,000 images,
labeled as active, inactive, or cloudy, and separated into train-
ing, validation, and test sets. The method gives an accuracy
of 95% on the test set. In particular, the model without the
addition of the Unclear class a posteriori gives an accuracy
of 92%. The confusion matrix of the model after the addi-
tion of the Unclear class is presented in Table 1. The other
main strength of the method is background subtraction. As
can be seen in Figure 2, the number of potential false posi-
tives is drastically reduced by switching from the RGB image
to the image without a background. The accuracy scores ob-
tained by our method are quite similar to those obtained in [2].
Howeyver, it should be noted that the task and the dataset are
not the same. In our case, we limit ourselves to classifica-
tion and assume the position of the plume sources is known.
This allows us to have a more interpretable and lighter model
than convolutional networks, and still detect a wide variety of
plumes even if they are small. In addition, we note a strong
seasonality in the detectability of smoke plumes whose phys-
ical properties depend greatly on temperature and humidity.
Although the performance of the method is quantitatively
strong, several improvements to the model have been iden-



Predicted Predicted Predicted

Active  Inactive Cloudy
Label Active 99 26 5
Label Inactive 4 746 3
Label Cloudy 8 10 1116

Table 1: Confusion matrix obtained by applying the model
on the test set. Those data correspond to the results after the
addition of the Unclear class which means that the data la-
beled as Unclear have been removed.

tified in this study. The introduction of the Unclear class,
based on the entropy of the model’s class predictions, makes
it possible to identify the cases of limitation of the method.
Figure 3 illustrates the inference by the model of an Unclear
state, in which illumination makes it difficult to differentiate
between smoke plumes and illuminated roofs. Furthermore,
comparing Figures 2 and 3, images of the same plant were
taken from two different orbits. The tops of the towers from
which the smoke comes out are not exactly in the center of
the patches following the orbit. As mentioned before, this
difference is taken into account for the calculation of the time
series and the background subtraction. However, for robust-
ness reasons, the relative position of the top of each source
with respect to the Sentinel-2 orbit is not provided as input
to the model. Incorporating this information would probably
improve the accuracy of the model.

We also compare the results of our method to the results
obtained with a deep neural network. We make several com-
parisons. First of all, we compare our method with the one
presented in [2]. For this we use the architecture proposed
by [2] and we train it on our dataset. This allows us to test
the viability of this model on a different set of plumes. The
other comparison is to use a classical deep learning architec-
ture such as a Resnet and to perform the classification us-
ing the features extracted in our method. The more complex
architecture of a network and its significantly larger number
of weights make image reduction using patches less impor-
tant. We directly use as input the largest crops centered on
the plume sources. The network should be able to extract
by itself the information that we would have extracted with
smaller crops. We use crops of size 40 which are the largest
we have used with the gradient boosting. The input of the
Resnet is then an image of size 40 x 40 with 6 channels. The
first 3 channels are those of the RGB image and the next 3 are
the residual of the time series. The results of the experiments
proposed here are summarized in Table 2. The methods us-
ing a Resnet are indicated by the label Resnet + TS to indicate
that we use the time series to obtain the features used as input.

We can see in Table 2 that our method using gradient
boosting gives the best global accuracy with a score of 95.3.
It is closely followed by the Resnet152 with a score of 95.2.
Despite these very close scores in terms of global accuracy,

(1a) Sentinel-2
RGB image

(1b) Background
removal

(1c) Thresholding
and inference

(2a) Sentinel-2
RGB image

(2b) Background
removal

(2c) Thresholding
and inference

Fig. 2: Image processing for feature extraction. Plume
sources are initially identified on Sentinel-2 RGB images (or-
ange). Background removal is obtained after time series im-
age registration [13] and subtraction of a reference image ob-
tained by temporal averaging. Features are calculated for each
source from centered crops of different sizes, from which the
model infers whether the source is active (green) or inactive
(red). The thresholding shown in this figure is applied only
for visualization.

the results of the two methods are significantly different when
we look at the results by class. The gradient boosting out-
performs all other methods on the inactive label while the
Resnet152 far outperforms the other methods on the active la-
bel. It is this latter label that has the greatest variance between
the different methods. The difference between Resnet152 and
Gradient boosting is much greater on the active label than on
the inactive label. However, in the dataset, we have much
more images with the inactive label than with the active label
which explains why we obtain a better global accuracy with
the gradient boosting. In the cloudy class, all methods have
very close results although the Resnet152 gives slightly better
results.

Concerning the method of Mommert et al. [2], we can
note that it is the one that obtains the worst score in all the
classes. Its results on the inactive and cloudy classes are just
slightly below the others. But, the difference is especially



(1a) Sentinel-2
RGB image

(1b) Background
removal

(1c) Thresholding
and inference

Fig. 3: Inference of an Unclear state of activity. In this
example, the model prediction for the middle source (purple
box in the right image) is considered not reliable enough. All
four sources are predicted to be active by the model but this
one has a distribution entropy equal to 0.63 compared to less
than 0.03 for the other three. The prediction of this tower is
then put to Unclear.

Acc. Inactive Active Cloudy
Gradient Boost.  95.3 99.1 76.2 98.4
Mommert et al.  89.5 94.7 45.9 97.4
Resnet50+TS 93.9 97.3 67.6 98.3
Resnet152+TS 95.2 95.9 81.1 98.6

Table 2: Comparison of classification results between Gra-
dient Boosting and deep learning methods. The scores dis-
played for the Active, Inactive, and Cloudy columns corre-
spond to the accuracy for each class in percentage. The col-
umn Acc. corresponds to the global accuracy. Those data cor-
respond to the results after the addition of the Unclear class
which means that the data labeled as Unclear have been re-
moved

significant in the active class where it has only 45.9% of ac-
curacy. These results are explained by the fact that in the
dataset proposed by [2], the plumes are significantly larger
than in our dataset. Thus, the approach of [2] is less suit-
able for small plumes. As for the choice to be made between
Gradient Boosting and Resnet, it depends on the metric one
wishes to maximize. If one prefers to maximize the recall
on the inactive areas then gradient boosting will be better,
while to maximize the recall on plume detection one will pre-
fer Resnet.
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