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Abstract—We consider an unsupervised bilevel optimization
strategy for learning regularization parameters in the context
of imaging inverse problems in the presence of additive white
Gaussian noise. Compared to supervised and semi-supervised
metrics relying either on the prior knowledge of reference data
and/or on some (partial) knowledge on the noise statistics, the
proposed approach optimizes the whiteness of the residual be-
tween the observed data and the observation model with no need
of ground-truth data. We validate the approach on standard Total
Variation-regularized image deconvolution problems which show
that the proposed quality metric provides estimates close to the
mean-square error oracle and to discrepancy-based principles.

Index Terms—Imaging inverse problems, parameter estima-
tion, bilevel learning, residual whiteness principle.

I. INTRODUCTION

Variational methods are a reference paradigm in the field
of ill-posed imaging inverse problems. They aim at stabilizing
the unstable inversion process by minimizing a suitable energy
functional encoding prior information available both on the
desired image (such as sparsity, smoothness) and the noise
statistics. Given a blurred, noisy and possibly incomplete
(vectorized) image y ∈ Rm and a linear observation model
A ∈ Rm×n, the task of retrieving a degradation-free image
x∗ ∈ Rn,m ≤ n from y in the presence of Additive White
Gaussian Noise (AWGN) can be reformulated in variational
terms as the optimization problem:

argmin
x∈Rn

(
F (x;A,y,λ) :=

1

2
∥Ax− y∥2 +R(x;λ)

)
, (1)

where R : Rn → R≥0 ∪ {+∞} enforces prior knowledge
through regularization and λ ∈ Λ ⊆ Rℓ is a vector of hyper-
parameters tailoring the amount of regularization in terms of
specific local/global features and against the quadratic data
term. A popular choice for R consists in promoting sparsity
w.r.t. to some specific representation of the image by choosing
for λ > 0 R(x;λ) = λ∥Φx∥1, where Φ ∈ Rd×n or
R(x;λ) = λ∥Dx∥2,1 where D ∈ R2n×n denotes the discrete
image gradient. The former choice has been the object of
study in several works in the field of compressed sensing [1],
while the latter has been extensively employed starting from
the pioneering work [2] under the name of Total Variation
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(TV) regularization which is still a benchmark for model-based
approaches for imaging.

Note that while the choice of a scalar λ > 0 essen-
tially serves to balance the (global) action of the regularizer
against the data term, local choices in the form R(x;λ) =∑n

j=1 λjrj(x) enforces regularization at a local level weighted
by a vector of space-variant parameters λ, see, e.g., [3]
for a straightforward space-variant generalization of the TV
regularizer and [4] for some more sophisticated variants. Even
in the scalar case, however, choosing an optimal λ = λ̂ is
a challenging problem. Classical approaches rely on the use
of cross-validation or on the (heuristic) study of the Pareto
frontier as in the case of L-curve [5]. Provided that some
information on the AWGN component is available (i.e., its
standard deviation value σ > 0), Morozov-type approaches
aim at estimating λ̂ by imposing that the solution x∗(λ̂) of
(1) satisfies ∥Ax∗(λ̂) − y∥22 ≈ mσ2 [6] or via more refined
unbiased estimators [7] depending on σ. We remark that in
practice brute-force methods are still often employed whenever
ℓ is reasonably small. However, over-parametrized variational
and deep-learning models often require estimations of millions
of parameters which make their use prohibitive.

Bilevel learning [8]–[13] is a powerful paradigm for the esti-
mation of optimal hyper-parameters λ̂. There, the idea consists
in optimizing a certain quality measure Q(λ,x∗(λ)) assessing
the goodness of the solution x∗(λ) to (1) with respect to the
specific task considered. In the context of imaging, standard
bilevel approaches make use of classical mean-squared error
(MSE) metrics mimicking SNR-type optimization [11] and/or
other ones related to more perception-inspired metrics such as
the Structural Similarity Index (SSIM), see, e.g. [12]. While
this choice is natural, it suffers from the major problem of
requiring reference ground-truth data for its assessment, which
may be restrictive in applications. Other quality measures can
be used within a semi-supervised framework providing optimal
estimations depending only on information coming from the
noise, in a discrepancy-based fashion [14].

In this work, we propose an unsupervised bilevel learning
approach where optimality of λ̂ is assessed by maximizing the
whiteness of the residual between the observations y and the
observation model Ax∗(λ̂) [15], [16]. As a proof of concept,
we validate the approach for the case of simple TV-regularized



image deconvolution problem in the scalar case λ = λ >
0. Our preliminary results show that the proposed whiteness
measure allows to achieve results almost as good as in the fully
supervised and semi-supervised case, but depending only on
the model A and the measurements y, making it interesting
for applications where the use of a large number of examples
is prohibitive.

II. METHODS

We review in this section the main ingredients of our ap-
proach, that is the bilevel learning paradigm for the estimation
of λ̂ in both the supervised and semi-supervised case. We then
propose an unsupervised metric based on residual whiteness.

A. Hyper-parameter bilevel learning

Bilevel optimization approaches compute optimal parame-
ters λ̂ by solving a nested optimization problem in the form

λ̂ ∈ argmin
λ∈Λ

K∑
k=1

Q(x∗
k(λ)) (2)

s.t. x∗
k(λ) ∈ argmin

x∈Rn

F (x;A,yk,λ), k = 1, . . . ,K,

where, for k = 1, . . . ,K, Q is a metric assessing the quality
of the reconstructed images x∗

k(λ) given the measurements
yk (typically, some blurred, noisy and possibly undersampled
image patches) w.r.t. some reference quantities. Solving (2)
usually requires some smoothness assumption on the lower-
level variational constraint described by F so as to allow
implicit differentiation w.r.t. λ by means of the implicit
function theorem, see, e.g. [8], [11] and Section III.

Regarding the choice of Q, supervised approaches (see, e.g.,
[11], [12]) make use of pairs of exemplar ground-truth images
corresponding to the measurements {x̄k,yk}, k = 1, . . . ,K
so that Q enforces proximity between x∗

k(λ) and x̄k, i.e.:

QMSE(x
∗(λ); x̄) :=

1

2
∥x∗(λ)− x̄∥22, (3)

which practically corresponds to choose λ so as to optimize
the Signal to Noise Ratio (SNR) of the reconstructions.

In [14] a semi-supervised quality metric was employed to
select the optimal λ̂. Differently from (3), the quality loss
employed therein relates more to a discrepancy-type measure
assessing whether the residual quantity r(λ) := Ax∗(λ)− y
has magnitude close to the noise intensity, i.e. ∥r(λ)∥22 ≈
mσ2, so that a natural semi-supervised choice for dealing with
AWGN which does not require the ground truth data {x̄k} but
an estimate of σ is the Gaussianity loss:

QGauss(x
∗(λ);σ) :=

1

2

(
∥r(λ)∥22 −mσ2

)2
. (4)

B. Residual whiteness principle

To avoid the prior knowledge of both the reference data x̄k

and the Gaussian noise standard deviation σ, a different quality
measure optimizing the whiteness of the residual r(λ) can be
used. Employed in an heuristic fashion under the name of
residual whiteness principle in several papers, see, e.g., [15],

[16], we propose here to use such loss as an unsupervised
quality metric for (2). We thus consider:

QWhite(x
∗(λ)) :=

1

2

∥∥∥r(λ) ⋆ r(λ)

∥r(λ)∥22

∥∥∥2
2
, (5)

where, with a little abuse of notation, we denote by x1 ⋆ x2
the discrete circular cross-correlation between the matrices
X1,X2 ∈ Rn1×n2 such that vec(Xd) = xd ∈ Rn,
d = 1, 2 and n1n2 = n which is defined for (j1, j2) ∈
{0, . . . , n1 − 1} × {0, . . . , n2 − 1} by

(X1 ⋆ X2)j1,j2 =

n1−1∑
k1=0

n2−1∑
k2=0

(X1)k1,k2(X2)(j1+k1)mod n1,(j2+k2)mod n2
.

Note that as observed in [15] the normalization term in (5)
eliminates the dependence on σ.

We remark that to deal with noise scenarios different than
AWGN, in [17] a whiteness measure tailored for Poisson
noise was considered. We thus expect that, under suitable
modifications, our proposed approach could suit to more
general noise scenarios as well for tailored choice of QWhite.

III. OPTIMIZATION ALGORITHMS

In this section we discuss the algorithms employed to solve
both the lower- and the upper-level optimization problems in
(2). For simplicity we consider in the following discussion
Λ = R>0 and K = 1, that is we look for an optimal positive
parameter λ̂ based only on the observed image y. In order
to exploit implicit differentiation for the computation of the
gradient of the bilevel problem (2), we consider a smoothed
version Fε of the ℓ2-TV functional, defined in terms of a C2

Huber smoothing of the TV regularization term given by:

Hε(Dx) := ∥Dx∥2,1,ε =
n∑

j=1

hε((Dx)j), (6)

where (Dx)j ∈ R2 is the j-th component of the discrete image
gradient Dx ∈ R2n and hε : R2 → R≥0 is a C2 Huber
smoothing function defined by:

hε(v) =

{
3
4ε∥v∥

2
2 − 1

8ε3 ∥v∥
4
2 if ∥v∥2 < ε

∥v∥2 − 3ε
8 if ∥v∥2 ≥ ε

. (7)

The smoothed ℓ2-TV functional

Fε(x;A,y, λ) :=
1

2
∥Ax− y∥22 + λHε(Dx) (8)

is thus C2. Its optimization properties are reported in the
following proposition.

Proposition III.1. The functional Fϵ defined in (6)-(8) is twice
continuously differentiable and convex on Rn. Moreover, if
ker(A) ∩ ker(D) = {0n}, Fε is also coercive and, hence,
admits a compact convex set of global minimisers. Its gradient
∇xFε ∈ Rn and Hessian ∇2

xFε ∈ Rn×n are given by

∇x Fε(x;A,y, λ) = AT (Ax− y) + λDT ∇Hε(Dx),

∇2
x Fε(x;A,y, λ) = ATA+ λDT ∇2Hε(Dx)D, (9)

where ∇Hε and ∇2Hε denote the vector (respectively, ma-
trix) of first-(respectively, second-)order derivatives of Hε(z)



w.r.t. z = Dx. For any λ, ε ∈ R++, the gradient ∇xFε is
thus Lλ,ε-Lipschitz continuous, and Lλ,ε can be bounded as:

Lλ,ε= max
x∈Rn

∥∥∇2
xFε(x;A,y, λ)

∥∥
2
≤ ∥A∥22+

12λ

ε
=: Lλ,ε. (10)

Proof. It follows easily from definitions (6)-(8) that Fε is
C2(Rn) and convex on Rn. Then, if ker(A)∩ker(D) = {0n},
Fε is coercive as both the fidelity and regularization terms
are compositions of a linear map - with coefficient matrix
A and D, respectively - and a coercive function. It follows
that Fε admits a compact convex set of global minimizers.
The gradient and Hessian expressions in (9) are derived easily
by applying the chain rule of differentiation (Jacobian of
composite functions). Then, based on (9) and on the sub-
additivity and sub-multiplicativity properties of the spectral
matrix norm, the smallest gradient Lipschitz constant Lλ,ε in
(10) satisfies

Lλ,ε = max
x∈Rn

∥∥∥ATA+ λDT∇2Hε(Dx)D
∥∥∥
2

≤ ∥A∥22 + λ ∥D∥22 max
x∈Rn

∥∥∇2Hε(Dx)
∥∥
2

≤ ∥A∥22 + 8λ max
x∈Rn

∥∥∇2Hε(Dx)
∥∥
2
, (11)

where (11) comes from recalling that ∥D∥22 ≤ 8 (with ∥D∥22 ≈
8) when the discrete gradient operator D approximates hori-
zontal and vertical partial derivatives by means of (unscaled)
standard finite differences [18]. It can be proved (we omit the
proof due to the page limit) that ∇2Hε(Dx) ∈ R2n×2n is a
real symmetric 2×2 block matrix with diagonal blocks which
admits x-dependent eigenvalue decomposition

∇2Hε(Dx) = VT
ε (Dx)Eε(Dx)Vε(Dx) , (12)

with orthogonal modal matrix Vε(Dx) and eigenvalue matrix
Eε(Dx) = diag(e

(1)
ε (Dx), . . . , e

(2n)
ε (Dx)) satisfying

0 ≤ e(i)ε (Dx) ≤ 3

2 ε
, ∀ i = 1, . . . , 2n , ∀x ∈ Rn . (13)

It thus follows that

max
x∈Rn

∥∥∇2Hε(Dx)
∥∥
2
= max

x∈Rn
∥Eε(Dx)∥2 =

3

2 ε
, (14)

where the last equality comes from the fact that there always
exists x ∈ Rn such that at least one among the eigenvalues is
equal to the upper bound 3/(2 ε). By replacing (14) into (11),
we obtain (10).

Remark. We remark that for many inverse imaging problems
the value ∥A∥22 in (10) is known a priori or easily computable.
For instance, ∥A∥22 = 1 in image deblurring (with normalized
blur functions), inpainting problems.

We now want to make precise the optimization algorithms
required to solve both the lower and the upper-level problem.
To do that, and similarly as in [10], [14], we consider at first
a change of variables λ = exp (β) in order to deal with an
unconstrained problem depending on a parameter β ∈ R. Upon
this choice note that there holds:

Q(x∗(λ)) = Q(x∗(w(β))),

where w : β 7→ λ is the exponential function. Neglecting for
simplicity the dependence of Fε on the problem ingredients
A and y and denoting for ease of notation by x∗ = x∗(λ) =
x∗(w(β)) the solution of the lower-level problem in (2) for a
fixed λ, by optimality we get:

∇x Fε(x
∗;w(β)) = 0, (15)

which, by differentiating the left-hand-side w.r.t. β and apply-
ing the chain rule entails:

∂∇x Fε(x
∗;w(β))

∂β
=

∂∇xFε(x
∗;w(β))

∂w

∂w

∂β

+∇2
xFε(x

∗;w(β))
∂x∗

∂β
, (16)

whence, by (15) and the implicit function theorem, entails:

∂x∗

∂β
= −

(
∇2

xFε(x
∗;w(β))

)−1 ∂∇xFε(x
∗;w(β)

∂w

∂w

∂β
,

which can be used for the computation of the derivative of the
nested problem so as to get:

∂Q(x∗)

∂β
= ∇xQ(x∗)T

∂x∗

∂β
(17)

= −∇xQ(x∗)T
(
∇2

xFε(x
∗;w(β))

)−1 ∂∇xFε(x
∗;w(β))

∂w

∂w

∂β
,

where the expression of ∇xQ(x∗(λ)) depends on the specific
expression of the assessment loss considered. Formula (17)
is classically used for standard gradient-type algorithms (such
as gradient-descent, quasi-Newton. . . ) addressing the bilevel
problem (2).

We now describe in Section III-A the accelerated first-order
solver of the lower-level problem computing (an approxima-
tion of) x∗ and describe in Section III-B a Gauss-Newton
strategy using an expression similar to (17) to address the
solution of the nested bilevel problem.

A. Accelerated gradient-descent lower-level solver

To compute (approximate) minimizers x∗ of the smooth
and convex functional Fε in (8) we consider the Nesterov’s
accelerated gradient-descent algorithm, see Algorithm 1. We
preferred such approach to Newton-type techniques in order
to reduce the computational costs required for the inversion of
(approximations of) the Hessian along the iterations. Still, to
get a good approximation of x∗ a fairly small relative tolerance
parameter ϵ should be employed to assess optimality. Note that
at each iteration i ≥ 1 of the outer optimization solver, a fixed
step-size Li = Lλi,ε in (10) depending on the current estimate
λi is used.

B. Gauss-Newton upper-level solver

We now describe the optimization algorithm solving the
outer problem in (2) for optimizing over λ the different quality
losses Q described above. Note that independently on the
convexity of the loss function Q (which holds for instance
both for (3) and (4)), the nested problem is generally non-
convex hence only convergence to local minima λ̂ = exp (β̂)



Algorithm 1 Nesterov AGD, NesterovAGD(x0, Li, λi, ϵ)

Initialize: θ0 = 1, τ = 1/Li, x−1 = x0, t = 0
while ∥xt+1 − xt∥2 > ϵ do
θt+1 =

1+
√

1+4θ2
t

2

zt+1 = xt +
θt−1
θt+1

(xt − xt−1)

xt+1 = zt+1 − τ∇xFε(zt+1;A,y, λi)
t = t+ 1

end while
return x∗ = x∗(λi)

is expected. In the literature, several algorithms have addressed
this task. In [11], [12], for instance, a semi-smooth Newton
algorithm was employed. Here, similarly as in [14] we employ
a Gauss-Newton algorithm which suits well to the squared ℓ2-
type structure of the three losses employed which can indeed
be all expressed as

Q(x∗(λ)) =
1

2
∥ρ(x∗(λ))∥22 (18)

for suitable choices and dimensionality of ρ(x∗(λ)) depending
on the choice of Q ∈ {QMSE,QGauss,QWhite}. By (18), we
observe that

∂Q(x∗(exp (βi)))

∂β
= ρ(x∗(exp (βi)))

TJρ(βi),

where Jρ(βi) =
∂ρ(x∗(exp (βi)))

∂β can be computed similarly as
in (17) depending on the particular choice of ρ. We can now
define in Algorithm 2 a Gauss-Newton solver for the bilevel
problem (2) making explicit use of the residual function ρ(·).
The algorithm depends on a tolerance parameter ϵ1 which
assesses stationarity and a line-search parameter α ∈ (0, 1)
which could potentially be estimated on the fly by imposing,
e.g., Wolfe-type conditions, but which we preferred to fix
beforehand.

Algorithm 2 Gauss-Newton bilevel solver, GNbil(β0, ϵ1, α,max it)

Initialize: i = 0, x∗(w(β−1)) = y
while ∥di∥2 > ϵ1 and i < max it do

compute x∗(w(βi))=NesterovAGD(x
∗(w(βi−1)), Li, w(βi), ϵ)

using (17), compute descent direction by solving:

di = −
(
Jρ(βi)

TJρ(βi)
)−1 (

Jρ(βi)
T ρ(x∗(w(βi)))

)
update using βi+1 = βi + αdi
i = i+ 1

end while
return λ̂ = w(β̂)

IV. EXPERIMENTAL RESULTS

We now compare the proposed bilevel approaches on two
exemplar image deconvolution problems with different types
of blur (Gaussian, motion) and AWGN of different magnitude.
The algorithmic parameters for both Algorithm 1 and 2 are
chosen as ϵ = 10−6, ϵ1 = 10−5, α = 0.1, max it = 60. The

Huber smoothing parameter in (7) is chosen as ε = 10−3,
while the initial β-value in Algoritgm 2 has been set as β0 = 2.

For our tests, we considered a dataset of 30 test images with
size 180×180 pixels from the BSD400 repository [19]. The
generic test image x̄ has been corrupted by space-invariant
blur defined by a convolution kernel; the Gaussian blur kernel
used has square support of side 9 pixels and standard deviation
2, while for the motion blur kernel the support size is 10 pixels
and the direction angle is 60◦. The generic blurred image
Ax̄ has then been corrupted by realizations of AWGN with
different magnitudes. In our set-up, the noise level is quantified
by the Blurred Signal-to-Noise Ratio (BSNR) defined by:

BSNR(y, x̄) = 10 log10
∥Ax̄− E(Ax̄)∥22

∥Ax̄− y∥22
, (19)

where E(Ax̄) denotes the average intensity of the blurred
image Ax̄. Notice that there exists a one-to-one inverse rela-
tionship between the BSNR and the noise standard deviation
and the larger the noise the smaller the BSNR. We thus
selected increasing values of BSNR ∈ {10, 17.5, 25, 32.5, 40}.

For each test image and BSNR value we evaluated the
quality of the image reconstructed by bilevel optimization (2)
of the regularization parameter λ when using the three quality
metrics (3) (supervised, S), (4) (semi-supervised, SS) and (5)
(unsupervised, U) in terms of average values of PSNR and
SSIM computed over the set of images.

In Figure 1 we report the results obtained in the case of
Gaussian blur for the estimation of a scalar parameter λ̂.
We observe that compared to the MSE oracle and the semi-
supervised Gaussianity loss, the proposed whiteness-based
procedure provides results which are as good but do not
require the use of prior information.

Fig. 1: Average PSNR and SSIM and dispersion bands for MSE
(S), Gaussianity (SS) and Whiteness (U) loss computed over 30 test
images corrupted by Gaussian blur and AWGN of different levels.

A similar behavior is observed for a TV deconvolution
problem in the presence of motion blur, see Figure 2. For this
second test, we report in Table I and in Figure 3 the numerical
values and the visual results obtained for three different images
in the dataset, respectively.



MSE (S) Gaussianity (SS) Whiteness (U)
PSNR SSIM PSNR SSIM PSNR SSIM

#1 26.50 0.66 26.03 (1.8%) 0.63 (4.1%) 26.05 (1.7%) 0.64 (3.8%)
#13 22.67 0.54 22.43 (1.1%) 0.51 (6.1%) 22.50 (0.7%) 0.52 (4.6%)
#22 19.50 0.65 (8.8%) 18.91 (3.0%) 0.70 (0.3%) 19.02 (2.4%) 0.71

TABLE I: PSNR and SSIM achieved by optimizing the MSE (S),
Gaussianity (SS) and Whiteness (U) loss for the three different images
in Figure 3 of the BSD400 dataset corrupted by motion blur and
AWGN with BSNR=10. Percentages w.r.t. the maximum values (in
bold) are reported.

#1 #13 #22
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Fig. 3: From top to bottom, row-wise: ground-truth images, data y
corrupted by motion blur and AWGN with BSNR=10, optimal recon-
structions achieved by bilevel optimization of MSE (S), Gaussianity
(SS) and Whiteness (U) loss.

Fig. 2: Average PSNR and SSIM and dispersion bands for MSE
(S), Gaussianity (SS) and Whiteness (U) loss computed over 30 test
images corrupted by motion blur and AWGN of different levels.

V. CONCLUSIONS

We proposed an unsupervised bilevel learning strategy based
on residual whiteness for estimating the regularization parame-
ters in exemplar TV-regularized image deconvolution problems
in the presence of AWGN. Our results suggest that such
quality measure performs as well as standard MSE-based and
discrepancy-type alternatives, but does not rely on any ground
truth data nor noise magnitude estimation. Further work should
address its use in more challenging inverse problems and
comparisons with recent approaches [20] proposed in the
context of deep learning for, e.g., image denoising.
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