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Tempered SMC for Sequential Bayesian Optimal Design

Jacopo IOLLO1,2,3 Christophe HEINKELE3 Pierre ALLIEZ2 Florence FORBES1

1,2Inria center at Université Grenoble Alpes and Inria center at Université Côte d’Azur, France
3Cerema, Strasbourg, France

Résumé – Nous proposons une approche Monte Carlo séquentielle tempérée (SMC) pour l’optimisation séquentielle du design
experimental dans un context bayésien. Le choix séquentiel des parametres de design est effectué par une procédure d’approximation
stochastique (SA) incorporant des échantillonneurs SMC avec tempering. Le tempering rend possible à la fois un gain d’information
important et un échantillonnage SMC précis. Cette combinaison originale de SA et SMC permet d’obtenir simultanément le design
optimal et une approximation de la loi a posteriori des paramètres. Une application à une tache de localisation de sources illustre
qu’un gain intéressant peut être atteint en utilisant des simulations pour limiter le nombre de mesures couteuses à faire sur le terrain.

Abstract – We propose a tempered Sequential Monte Carlo (SMC) approach to sequential Bayesian optimal experimental design.
The sequential design process is carried out through a Stochastic Approximation (SA) procedure using tempered SMC samplers.
The tempering makes possible both a large information gain and an accurate SMC sampling. This novel combination of SA
and SMC allows to simultaneously address the design optimization and the parameter posterior distribution approximation. An
illustration, on a source localisation task, shows the approach potential using off line computer simulations to significantly reduce
the number of costly field measurements.

1 Sequential Bayesian Optimal Exper-
imental Design (BOED)

A design refers to some experimental conditions required
to perform an experiment and get observations from the phe-
nomenon under study. Experimental design can address allo-
cating resources for information gathering, improving preci-
sion and/or prediction or reducing experimental costs. In this
work, we assume that the design is determined by some param-
eter ξ ∈ Rd, representing for instance a location or a frequency
at which we wish to measure a quantity. The desired designs
are those that maximize information on some parameters of
interest θ ∈ Rm. In this context, the Bayesian framework is a
unified way to account for prior information via a probability
distribution p(θ), for uncertainties about the observations y
through a distribution p(y|θ, ξ), and for a design criterion
(also called utility function) F (ξ,θ,y) describing the experi-
mental aims. The prior is assumed to be independent of ξ and
p(y|θ, ξ) available in closed-form. However, such a Bayesian
modelling often leads to an intractable joint optimization and
integration. We propose to handle this issue by coupling a
Stochastic Approximation (SA) with an efficient Sequential
Monte Carlo approach (SMC).

1.1 Expected Information Gain (EIG)
There exist various utility functions F depending on the

targeted task [15]. In this work, we focus on parameter estima-
tion and consider an information-based utility leading to the
so-called Expected Information Gain (EIG). The EIG, denoted
by I , admits several equivalent expressions (see e.g. [10]). For
instance, it can be written as the expected loss in entropy when
accounting for an observation y at ξ or as a mutual information,

using p(y,θ|ξ) = p(θ|y, ξ)p(y|ξ) = p(y|θ, ξ)p(θ),

I(ξ) = Ep(y|ξ)[H(p(θ))−H(p(θ|Y, ξ)] (1)

= Ep(θ)p(y|θ,ξ)
[
log

p(θ|Y, ξ)
p(θ)

]
(2)

where random variables are indicated with uppercase letters,
Ep[·] denotes the expectation with respect to p andH(p(θ)) =
−Ep(θ)[log p(θ)] is the entropy of p. We thus look for ξ∗

satisfying
ξ∗ = argmax

ξ∈Rd
I(ξ) . (3)

Before optimizing I(ξ), in most cases, evaluating I(ξ) is diffi-
cult due to the intractability of p(θ|y, ξ) and p(y|ξ) [3].

1.2 Sequential design
Solving (3) is a static or one-step design problem. A single

ξ or multiple {ξ1, . . . , ξK} are selected prior to any observa-
tion, measurements {y1, . . . ,yK} are made for these design
parameters and the experiment is stopped. The prior p(θ) can
be used to encode previous observations but in static design,
the selected designs depend only on the model. In contrast,
in sequential or iterated design, K experiments are planned
sequentially to construct an adaptive strategy, meaning that for
the kth experiment, the best ξk is selected taking into account
the previous design parameters and associated observations
Dk−1 = {(y1, ξ1), . . . (yk−1, ξk−1)}. Then, yk is measured
at ξk and Dk is updated into Dk = Dk−1 ∪ (yk, ξk). In
practice, we adopt a greedy approach, choosing the next de-
sign ξk as if it was the last one, which consists of replac-
ing in (1) the prior p(θ) by our current belief on θ, namely
p(θ|Dk−1) = p(θ|y1, ξ1 . . .yk−1, ξk−1), and to solve itera-
tively for

ξ∗k = argmax
ξ∈Rd

Ik(ξ) , (4)
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Ik(ξ)=Ep(y|ξ,Dk−1)[H(p(θ|Dk−1))−H(p(θ|Y, ξ,Dk−1))].
Observations are assumed conditionally independent, so that,
p(θ|Dk) ∝ p(θ)

∏k
i=1 p(yi|θ, ξi) which also leads to

p(θ|Dk) ∝ p(θ|Dk−1) p(yk|θ, ξk) . (5)

1.3 EIG contrastive bound optimization
Going back to the optimization in (3), a standard gradi-

ent ascent algorithm would consist, at iteration t, of updating
ξt+1 = ξt+γt ∇ξI(ξ)|ξ=ξt with a stepsize γt, but in practice
both I(ξ) and its gradient ∇ξI(ξ) are intractable. However,
they can both be expressed as expectations, which naturally
leads to consider stochastic approximation approaches [2],
among which the most popular is the stochastic gradient al-
gorithm (SG). In a BOED setting, if ∇ξI(ξ) is expressed as
an expectation∇ξI(ξ) = E[f(ξ,X)] over a random variable
X, the SG iteration writes ξt+1 = ξt + γt f(ξt,xt) with xt
a realisation of X. This assumes that we can differentiate
under the integral sign in (2). There exists different ways to
differentiate, including the popular reparametrization trick, but
SG for I(ξ) remains difficult to perform due to the intractabil-
ity of the integrand in (2). An alternative approach has been
proposed in [10] referred to as a variational approximation.
It consists of optimizing a tractable lower bound of I(ξ) and
computing ξ∗ via an alternate maximization. In this work, we
consider such a bound named the Prior Contrastive Estimation
(PCE) bound and denoted by IPCE . It is based on contrastive
samples from L additional variables θ`, for ` = 1 . . . L, dis-
tributed following the prior p(θ), like θ rewritten as θ0. De-
noting FPCE(ξ,θ0, ·,θL,y)= log p(y|θ0,ξ)

1
L+1

∑L
`=0 p(y|θ`,ξ)

, IPCE
is defined as

IPCE(ξ) = Ep(y|θ0,ξ)
∏L
`=0 p(θ`)

[FPCE(ξ,θ0, ·,θL,Y)]

The above quantity is a lower bound I(ξ) ≥ IPCE(ξ) and the
bound is tight when L tends to ∞ (see [11] for a proof). It
is tractable as all expressions p(y|θ`, ξ) are tractable, and its
gradient requires only the gradient∇ξp(y|θ, ξ). Stochastic ap-
proximation can be applied to maximize IPCE as∇ξIPCE(ξ)
can be expressed as an expectation via a reparametrization
trick. More specifically, we assume that there exists a transfor-
mation Tξ,θ0

such that Y = Tξ,θ0
(U) with U independent of

ξ and θ0 and easy to simulate, e.g. U is a standard Gaussian.
It follows under some mild conditions omitted here, that

∇ξIPCE(ξ)=Ep(u)∏L
`=0 p(θ`)

[∇ξFPCE(ξ,θ0, ·,θL,Tξ,θ0
(U))]

Only the differentiability of FPCE(ξ,θ0, ·,θL,Tξ,θ0
(U)) in ξ

within the expectation is required. A similar IPCE bound
and its gradient can be easily derived for greedy sequential
design (4). Using the conditional independence assumption
(5), at each step k, the prior p(θ) only needs to be replaced
by the current posterior p(θ|Dk−1). The stochastic gradient
(SG) algorithm is described in Algorithm 1, with the additional
possibility to estimate gradients with minibatches. In line 5,
the current noisy gradient can actually be replaced by any
unbiased estimate of the IPCE gradient.

Optimizing the contrastive bound IPCE requires then sam-
pling θ0 . . .θL from p(θ|Dk−1) (line 3). This is more costly
than sampling from the prior as p(θ|Dk−1) is only know up

Algorithm 1: SG with minibatches(Nt)t=1:T for (4)

1 Set T number of iterations, ξ0, stepsizes (γt)t=1:T

2 while t ≤ T do
3 Sample θi`,t∼ p(θ|Dk−1), for `=0:L, i=1:Nt
4 Sample uit ∼ p(u), for i = 1 : Nt
5 Set ∇t+1=

1
Nt

Nt∑
i=1

∇ξFPCE(ξ,θi0,t, ·,θ
i
L,t, Tξ,θi0,t(u

i
t))|ξ=ξt

6 Update ξt+1 = ξt + γt∇t+1

7 end
8 return ξ∗k = ξT or a Polyak averaging value

to a normalizing constant (5). Such simulations could be ob-
tained via MCMC algorithms but the necessity to do so at each
step would be too simulation intensive. As a more efficient
alternative, we propose to use sequential Monte-Carlo (SMC)
approaches for sequential sampling as detailed next.

2 Tempered Sequential Monte Carlo
SMC has been used in previous work on BOED mainly as

an alternative to MCMC, to compute approximation of the
EIG. For instance [7, 8] use SMC to incorporate model uncer-
tainty or for finite-valued design, thus reducing optimization
to a finite number of comparisons. In contrast, [14] propose
SMC samplers to handle the optimisation part but they restrict
to static design. In particular, their solution requires p(y|ξ)
which is intractable and requires an approximation. This ap-
proximation is not easy to perform in a sequential setting. The
originality of our approach is to consider continuous design
parameters and to adopt a stochastic optimization approach to
both compute and optimize the EIG. A tempered SMC is then
used in conjunction with SA to efficiently sample the relevant
quantities and estimate the noisy gradients required for the SG
Algorithm 1 (lines 3 and 5).

More specifically, the goal is to provide samples from a
sequence of probability distributions {pk}k=1:K . To simplify,
we deal with probability densities assuming absolute conti-
nuity wrt the Lebesgue measure but the setting is more gen-
eral, see [4]. An MCMC approach would require to build
an ergodic kernel Mk and to run a Markov Chain for each
pk, which would be very compute intensive in the sequen-
tial context. In contrast, SMC samplers [6, 5, 4] provide the
possibility to approximate pk+1 recycling samples from pk.
SMC samplers aim at propagating N samples also called par-
ticles θ1:Nk = {θ1k, . . .θ

N
k } and their corresponding weights

w1:N
k = {w1

k, . . . w
N
k } in such a way that the empirical distri-

bution pNk of the particles at times k converges to pk: meaning
that for all integrable function φ,

EpNk [φ(θ)] =
N∑
i=1

wikφ(θ
i
k) −−−−→

N→∞
Epk [φ(θ)]

with pNk (·) =
N∑
i=1

wikδθik(·) particle approximation of pk.

As showed in [1], the number of particles N required to yield
an accurate approximation pNk scales exponentially with the
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Kullback-Leibler distance between the proposal pk−1 and the
target pk distributions. In a BOED context, this is potentially
problematic as EIG-based design optimisation aims at increas-
ing this distance by looking for design ξk that makes p(θ|Dk)
as far as possible from the previous p(θ|Dk−1), for higher
information gain. Moving from p(θ|Dk−1) to p(θ|Dk) with
just one SMC step might then yield poor results. A solution
is to consider tempering ([4], section 17.2.3) to move along
a sequence of probability distributions interpolating between
p(θ|Dk−1) and p(θ|Dk). A tempering path is a sequence of
the form pλτ with 0 = λ0 < λτ < . . . < λT = 1 where
p0 = p(θ|Dk−1) and p1 = p(θ|Dk). Usually, only the initial
and final distributions are imposed. Intermediate distributions
pλτ are not of interest so that the λτ ’s can be chosen as desired.
A popular approach is to use what is know as the geometric
path [5]: pλτ (θ) ∝ pk−1(θ)

1−λτ pk(θ)
λτ , which using (5),

in our context takes the form

pλτ (θ) ∝ p(θ|Dk−1) p(yk|θ, ξk)λτ

or equivalently pλτ (θ) = pλτ−1(θ) p(yk|θ, ξk)λτ−λτ−1 .
As setting the sequence λτ manually can be a challenging

task with disappointing results, we follow the adaptive strategy
proposed by [12]. Given a user-set threshold ESSmin inter-
preted as an effective sample size, at iteration τ of the tempered
SMC procedure, given a current set of particles θ1:Nτ , we set
recursively λτ = λτ−1+δ with δ the solution in [0, 1− λτ−1]
of the following equation (if δ is not in [0, 1− λτ−1], λτ is set
to 1 and the tempering stops):(∑N

i=1 p
(
yk|θiτ , ξk

)δ)2
∑N
i=1 p

(
yk|θiτ , ξk

)2δ = ESSmin . (6)

This is a relatively simple task to solve with numerical root
finding. This procedure guarantees that the SMC approxima-
tion error remains stable over iterations, see [12] for details. It
can be interpreted as a way to control the Chi-square pseudo-
distance between the successive distributions, see [4] proposi-
tion 17.2. Tempered SMC then requires like SMC an unbiased
resampling scheme denoted by resample(θ1:N ,w1:N ). Re-
sampling is the action of drawing randomly from a weighted
sample, so as to obtain an unweighted sample. Several unbi-
ased resampling schemes are listed in Chapter 9 of [4]. The
most standard one is multinomial resampling which draws
samples according to their weights, while stratified resampling
has better variance properties. Tempered SMC also requires
a family of MCMC kernels (Mλ)λ so that Mλ leaves pλ in-
variant. The tempering, at step k of our sequential BOED,
is specified in Algorithm 2 with a numerical illustration in
Section 3.

3 Source localisation example
We consider the 2D location finding experiment described

in [9]. It consists of S hidden sources in R2 whose locations
θ = {θ1, . . . ,θS} are unknown. The number of source S is
known. Each source emits a signal whose intensity attenuates
according to the inverse-square law. The measured signal is
the superposition of all these signals. The design problem is
to choose where to make the measurements to best learn the
source locations. If a measurement is performed at a point

Algorithm 2: Tempered SMC at step k

1 Set τ = 0, λ0 = 0, N,ESSmin, Mλ, and resample
2 Sample θ1:N0 ∼ p(θ|Dk−1) = pλ0

(θ)
3 Set wi0 = 1/N for i = 1 : N
4 while λτ < 1 do
5 Set τ = τ + 1

6 Set θ̃
1:N

τ−1 = resample(θ1:Nτ−1,w
1:N
τ−1)) (∼ pλτ−1

)

7 Sample θiτ ∼Mλτ−1
(θ̃
i

τ−1, ·) for i=1:N

8 Solve for δ,

(∑N
i=1 p(yk|θ

i
τ ,ξk)

δ
)2

∑N
i=1 p(yk|θiτ ,ξk)

2δ = ESSmin

9 Set λτ = λτ−1 + δ

10 Set w̃iτ = p(yk|θiτ , ξk)δ

11 and wiτ =
w̃iτ
N∑
j=1

w̃jτ

for i = 1 : N

12 end
13 return θ1:Nk = θ1:Nτ and w1:N

k = w1:N
τ for a particle

approximation of p(θ|Dk) = p1(θ)

ξ ∈ R2, the signal strength is µ(θ, ξ) = b+
∑S
s=1

αs
m+||θs−ξ||22

where αs, b and m are constants. A standard Gaussian prior
is assumed for each θs ∼ N (0, I) and the log total inten-
sity is observed with some centered Gaussian noise with
standard deviation σ. The likelihood is thus log-normal, i.e.
(logy|θ, ξ) ∼ N (logµ(θ, ξ), σ). In this experiment, we set
S = 2, α1 = α2 = 1, m = 10−4, b = 10−1, σ = 0.5 and we
plan K = 40 successive design optimisations. The Markov
kernel is that of a Metropolis-Hasting scheme with a Gaussian
proposal centered at the current particle with a variance set
to the empirical variance of the θ̃

1:N

τ−1 (line 6). Resampling is
done via a stratified scheme. We use L = 20, 000 contrastive
variables. At each step k =1:K, we consider an IkPCE bound
of Ik(ξ). Algorithm 2 is used to get N = 1, 000 simulations
θ1:N` of each contrastive variable. The Adam algorithm [13]
is then used with standard hyperparameters to perform the
stochastic gradient in Algorithm 1. Considering the large num-
ber of simulated θ1:N` , line 3 in Algorithm 1 is replaced by a
random shuffling of these simulations. For comparison, we
also consider the case where the observations {y1, . . . ,yK}
are simulated at random locations without design optimization.

The whole experiment is then repeated 150 times but draw-
ing source locations at random each time. Figure 1 shows
the cumulative EIG and the L2 Wasserstein distances between
weighted particles and the true source locations. Design opti-
mization leads to a significant improvement both in terms of
information gain and posterior estimation. Measurements can
be reduced from 40 randomly located measurements to 13 with
optimized locations, for the same approximation quality, as
measured by the Wasserstein distance. Figure 2 illustrates the
evolution of the particles over the design steps, starting from a
sample following the prior to a sample concentrating around
the true source locations. This provides a visual assessment of
the quality of the posterior approximation.
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4 Conclusion
We have introduced a new algorithm for Bayesian design

that performs sequential design optimization while provid-
ing an estimate of the parameter posterior distribution. The
procedure uses a tempering principle to handle the fact that
maximizing information gain jeopardizes standard SMC sam-
plers accuracy. The approach behaves well on a preliminary
2D source localization example. It illustrates that with off
line simulations, the number of performed field measurements
can be significantly reduced, with lower costs for practition-
ers, while preserving the estimation quality. Other approaches
such as [10, 11, 9] should also be tested but due to the different
nature and output of these proposals, a fair comparison would
require careful choices and is postponed to future work.

Figure 1 – Cumulative EIG adding each IkPCE (top) and L2

Wasserstein distance between weighted particles at each step
k and the true source locations (bottom) for our method (red)
and random draws (blue). Lines and shaded regions represent
the median, 25% and 75% quantiles over 150 rollouts.
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