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ABSTRACT
Deep learning networks are the standard for medical im-
age segmentation, yet the network architectures in medical
applications are poorly understood. A precise segmenta-
tion of the brainstem is crucial in neurological conditions
like Amyotrophic Lateral Sclerosis (ALS), which is a rare
neurodegenerative disease affecting respiratory muscles by
weakening motor neurons in the brain and spinal cord, but
it is challenging due to the lack and low resolution of Mag-
netic Resonance Imaging (MRI) data. In this context, this
paper explores neural network properties for brainstem seg-
mentation and presents an efficient model with strong results.
We find that minimal gains come from transfer learning in
the encoder while optimizing the decoder and loss function
improves performance. Our work also provides valuable in-
sights into model components for MRI segmentation of the
brainstem.

Index Terms— MRI, Brainstem, Segmentation, Deep
Learning, Neural Network Properties

1. INTRODUCTION

Deep learning has been used extensively in advancing med-
ical research, yet selecting and designing appropriate mod-
els for specific challenges like brainstem nuclei segmentation
from MRI data remains complex [1]. This segmentation task
is pivotal for the diagnosis and the prognosis of the functional
outcome, e.g. in neurodegenerative diseases.

ALS is a progressive neurodegenerative disease affecting
nerve cells in the brain and spinal cord, causing loss of muscle
control and respiratory system degeneration. MRI is crucial
for diagnosing and predicting disease evolution [2, 3], partic-
ularly in the brainstem, which plays a major role in motor
neuron pathways and breathing. However, studying brain-
stem structures in vivo in clinical MRI settings is challenging
due to the limited acquisition time, resulting in low-resolution
images (Figure 1). Most studies on segmentation of brain-
stem nuclei have used high-spatial-resolution ex vivo MRI
with hours of acquisition to obtain data, making them chal-
lenging to apply to in vivo MRI [1, 4].

Code is available at: https://doi.org/10.5281/zenodo.
10657987

Fig. 1. (a) Sample axial slice of an in vivo MR T1-weighted
structural image, spatially registered to a standard space; (b)
crop to a size of 50×50 1-mm isotropic voxels of the red pan
in (a), corresponding to the brainstem; (c) high-resolution ex
vivo T2-weighted MR axial slice of the brainstem with 50-
micron isotropic voxels; (d) detail of the brainstem nuclei,
which are hard to visualize in (b). A: anterior; P: posterior;
R: right; L: left; (c)-(d): adapted from [4].

In this paper, we propose a new segmentation model for in
vivo MRI data, N-DecoNet, based on deep learning methods.
We perform a fine-grained study of the components of deep
learning models for brainstem MRI segmentation. Our main
contributions are:

• We introduce a new simple and powerful segmentation
model that shows competitive results while using fewer
parameters than previously proposed models for the seg-
mentation of brainstem nuclei from MRI data.

• We show that transfer learning does not improve segmen-
tation performance on medical images, but properly con-
figuring the decoder and loss function does.

• We propose guidelines for designing segmentation models
for brainstem MRI through in-depth evaluation of multiple
neural network architectures.

2. DEEP LEARNING NETWORKS

Semantic segmentation classifies image pixels into their re-
spective classes. It typically involves encoder-decoder net-
work models [5].

An encoder network performs convolution with a filter
bank to produce a set of feature maps to capture higher se-
mantic information. Frequently used classification networks
include: ResNet [6], SENet [7] containing additional channel-
wise attention mechanisms, EfficientNet [8] using the com-
pound scaling method to build a more complicated network,



and transformer-based networks such as MiT [9].
Decoder networks are used to rebuild the original image

based on the features passed by the encoder, and various mod-
els have been proposed depending on how this process is con-
figured. They can be classified into UNet-type and Pyramid-
type depending on the structure of the decoder.

UNet-type models refer to methodologies devised based
on U-Net [10], and have two most prominent features. First,
the feature map is gradually expanded in each stage of the de-
coder. Second, a skip connection method is used to combine
the low-level detailed feature maps from the encoder with the
high-level semantic feature maps of the decoder. This model
has been improved by making various changes to the skip
connections. To compensate for the weak connection of fea-
ture maps between the encoder and decoder, which causes
signals to be gradually diluted due to multiple downsampling
and upsampling operations, UNet++ [11] adds several sub-
convolution blocks to the skip connections to capture fine-
grained details. MAnet [12] applies an attention mechanism
to skip connections.

Pyramid-type models stack and combine feature maps of
different resolutions that can be obtained from the network.
Networks of this type include PSPnet [13], which introduces
the pyramid pooling method to extract feature maps of dif-
ferent sizes, FPN [14], which takes the last feature maps of
each stage of the encoder to combine the pyramid module,
DeepLabV3 [15] and DeepLabV3+ [16], which integrate sep-
arable convolutions with dilation between kernel elements,
which helps expand the receptive field without increasing the
number of parameters.

UNet-type models are commonly used for brainstem re-
gion segmentation in larger areas than the nuclei [17], while
pyramid-type models are less frequently applied to medical
image studies [18, 19]. Few studies have explored the use
of encoder models for medical images [20], and research on
decoder networks for medical image segmentation remains
limited, hindering the development of new models for MRI
segmentation of the brainstem.

3. METHOD

Our segmentation model, N-DecoNet, consists of two net-
works (Figure 2): an encoder network pre-trained with Im-
ageNet [21] for classification tasks and a decoder network
newly designed for the given segmentation task.

The decoder network takes feature maps from the last four
pooling layers of the encoder network. It performs convo-
lutions and upsamples the feature maps to make all feature
maps the same size. The high-dimensional feature represen-
tation acquired by summing all feature maps is fed to a train-
able softmax classifier [22]. This softmax classifies each pixel
independently. The output of the softmax classifier is a K-
channel image of probabilities, where K is the number of
classes.

Fig. 2. Two types of decoder networks proposed for brain-
stem neuroanatomy segmentation: N-DecoNet (top), and U-
DecoNet (bottom). Any pretrained classification network can
be used as an encoder. N-DecoNet and U-DecoNet use the
feature maps from the last four pooling steps. The colors rep-
resent the different compositions of the model.

N-DecoNet reduces the loss of low-level features trained
from the encoder network by removing connections between
each layer of the decoder. It can be trained efficiently with
fewer parameters than UNet-type models that perform addi-
tional calculations before upsampling and add more complex
structures to the skip connection. Also, unlike most pyramid-
type models, it preserves more information to recover fea-
ture maps to the original image size by using multiple pooling
stages.

In this paper, to check the impact of UNet-type operations
on training, we also implemented a version of our model with
an extra step (denoted as U-DecoNet): the upsampled feature
maps of the previous levels are added together.

Model training minimizes the DiceCE loss, which is de-
fined by linearly combining Dice loss [23] and cross entropy
(CE) loss [24] with label smoothing (denoted as SoftCE). For
experiments, we define DiceFocal loss, which is a compound
loss function of Dice loss and Focal loss [25]:

LDiceCE = αLSoftCE + (1− α)LDice (1)

LDiceFocal = αLFocal + (1− α)LDice (2)

where α ∈ (0, 1).

4. EXPERIMENTS

We selected multiple neural network architectures and evalu-
ated their performances on the given task. First, we trained
different models with the same encoder with different loss
criteria. Then we evaluated models with different pre-trained
encoder networks with the same loss function. As far as we
know, exploration of the impact of decoder architecture and
loss function on medical image segmentation tasks is limited.
This line of analysis is especially important for MRI segme-
nation of the brainstem.



Table 1. The number of training parameters in millions (M) and macro mIoU results of each model when it trains with ResNet-
34 encoder and diverse loss functions. Macro mIoU was estimated with 95% confidence interval.

DECODER PARAMS DICE [23] JACCARD [26] FOCAL [25] SOFTCE [24] DICEFOCAL DICECE
UNET [10] 24.4M 0.359 ± 3.4E-2 0.329 ± 2.0E-2 0.605 ± 1.3E-3 0.607 ± 1.2E-2 0.610 ± 1.7E-3 0.684 ± 2.9E-2

UNET++ [11] 26.1M 0.368 ± 4.3E-2 0.371 ± 2.1E-2 0.580 ± 5.6E-3 0.614 ± 9.3E-3 0.587 ± 8.4E-3 0.646 ± 6.9E-3
MANET [12] 31.8M 0.283 ± 3.6E-2 0.220 ± 7.8E-2 0.605 ± 6.2E-3 0.604 ± 4.6E-4 0.604 ± 1.1E-2 0.610 ± 4.2E-2
PSPNET [13] 21.6M 0.643 ± 1.0E-2 0.610 ± 3.3E-3 0.687 ± 3.9E-4 0.740 ± 6.5E-4 0.750 ± 2.0E-4 0.756 ± 3.2E-3

FPN [14] 23.2M 0.674 ± 1.5E-2 0.641 ± 1.3E-2 0.628 ± 2.5E-4 0.759 ± 7.0E-4 0.643 ± 6.8E-4 0.777 ± 1.2E-3
DEEPLABV3 [15] 26.0M 0.667 ± 5.1E-3 0.643 ± 1.4E-2 0.662 ± 2.5E-3 0.758 ± 1.5E-3 0.680 ± 2.8E-3 0.789 ± 3.1E-3

DEEPLABV3+ [16] 22.4M 0.616 ± 4.1E-2 0.553 ± 9.8E-2 0.644 ± 2.8E-3 0.719 ± 5.4E-3 0.655 ± 2.4E-3 0.761 ± 2.0E-3
N-DECONET 21.5M 0.688 ± 2.6E-2 0.656 ± 3.5E-2 0.630 ± 2.7E-3 0.731 ± 4.4E-3 0.655 ± 3.9E-3 0.753 ± 1.3E-2
U-DECONET 21.5M 0.530 ± 2.1E-2 0.549 ± 2.8E-2 0.615 ± 2.2E-3 0.703 ± 3.5E-3 0.621 ± 3.1E-3 0.714 ± 1.0E-2

4.1. Dataset

The MRI ALS dataset consists of T1-weighted scans obtained
on a 3T Verio Siemens MR scanner (CENIR, Brain Institute,
Paris, France) from 26 patients with ALS (in the early stage
of the disease) and 26 sex- and age-matched healthy controls
(60.8± 11.0 yrs old).

Images were preprocessed using the SPM12 software1,
including skull stripping, bias field correction, intensity nor-
malization, nonlinear warping to the Montreal Neurological
Institute (MNI) standard space, and resampling to 1 mm3

isotropic resolution. The size of a preprocessed image is
197 × 233 × 189 voxels, of which the area of the brainstem
is approximately 42 × 42 × 73 voxels. Each image was then
sliced along the axial z-axis and cropped to a size of 50× 50
pixels centered on the brainstem area, then resized to a size
of 224 × 224 pixels. In total, 3,796 2D images were created
and 1,100 images were used for training, 798 for validation,
and 1,898 images were used as test data.

We created a new atlas in MNI space for the ground truth
by combining widely used atlases [27, 28] and masks from
Nilearn project2. The atlas contains a total of K = 34 labels,
including extra-brainstem (denoted as background) and brain-
stem regions: white matter, gray matter other than the nuclei
classes (denoted as gray matter class), and 31 nuclei classes.
The ground truth was generated by registering the atlas to the
given images and transforming it to 2D images.

4.2. Training and Evaluation

To compare the quantitative performance of different models,
we used macro mean Intersection over Union (mIoU) [29] for
34 labels, taking into account differences in the area occu-
pied by each class. The training and evaluation process in
the experiments was repeated 5 times, and Adam optimizer
[30] was used. Each model was trained for 10 epochs with a
batch size of 16, and a learning rate of 0.0001 was applied.
It was confirmed that all models sufficiently converged under
the same conditions.

1SPM12: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2Nilearn: https://nilearn.github.io/dev/index.html

4.3. Results

N-DecoNet, U-DecoNet, and selected models were compared
from three perspectives: structures of decoder networks, loss
functions, and transfer learning of encoder networks. Table 1
presents the model performance with different loss functions
using the same encoder network (ResNet-34) and through
this, we can see how the configuration of each model affects
solving the given problem. N-DecoNet demonstrated com-
petitive results, despite its simple structure and the lowest
parameter count among the models assessed. Both proposed
networks performed more effectively compared to UNet-type
models. Pyramid-type models were both lighter and more ef-
fective. The best results of the models are shown in Figure 3.

4.3.1. Impact of the Decoder Network

Through the results, we propose new considerations when
designing a decoder network, due to the complexity of the
dataset. First, in the process of upsampling, duplicating the
previous layer like in UNet-type networks can reduce perfor-
mance. Because the MRI used is less complex than the nat-
ural image dataset, using the previous layer together during
upsampling resulted in the loss of low-level features. This
can be confirmed by the fact that the Pyramid-type models
and our model outperformed UNet-type models and that the
performance deteriorated just by adding a combination step
on the decoder (U-DecoNet).

Second, in the process of recovering the encoder’s feature
maps, combining feature maps of different sizes led to worse
results. Likewise, with data of relatively low complexity, it
may be difficult for the model to focus only on the details
and learn the overall shape. Using the same size, U-DecoNet
performed better than the UNet-type model. When using a
loss function that specifically helps a model to learn the de-
tails such as Dice loss and Jaccard loss, the UNet-type model
performed worse.

Lastly, changing the skip connections between the en-
coder network and the decoder network did not help improve
model performance. Because the features that can be trained
from the given data were limited, complex skip connections
do not allow the model to discover more features.



Fig. 3. Best results of each decoder. The FPN result used
ResNet-50 as the encoder, and DeepLabV3 used SENet-101
as its encoder. N-DecoNet and U-DecoNet used ResNet-152
and ResNet-101 as encoders. All networks were trained with
DiceCE loss (α = 0.1). Each color represents a label class.

4.3.2. Importance of the Loss Function

As shown in Table 1, the results of each model differed de-
pending on the loss function. All models performed best
when trained in a way that minimizes the DiceCE loss func-
tion. In particular, N-DecoNet recorded 0.904 mIoU in the
nuclei classes. However, the performance was greatly af-
fected by the combining ratio (α) of the DiceCE loss (Fig-
ure 4).

As the proportion of SoftCE increased, performance de-
teriorated. Indeed, as the ratio of SoftCE grows, more em-
phasis is placed on training the overall shape rather than the
details of the image. This is because the mIoU for nuclei
classes drops more steeply than the mIoU for white matter
and gray matter classes, which contain relatively more pix-
els. Interestingly, DeepLabV3 was not significantly affected
and maintained similar performance regardless of the ratio
being varied. The standard deviation of DeepLabV3 results
was 0.006, while it was 0.040, 0.026, and 0.034 for FPN, N-
DecoNet, and U-DecoNet results, respectively. Therefore, in
DeepLabV3, we may find clues to create more efficient de-
coders, such as using atrous convolutions.

Fig. 4. Macro mIoU results based on different ratios of
SoftCE in DiceCE loss. All networks used ResNet-34 as the
encoder. (left): overall mIoU results; (middle): mean mIoU
for gray and white matter classes; (right): mIoU for nuclei
classes. α is the ratio factor in equations (1) and (2).

Fig. 5. Macro mIoU results of selected decoders with dif-
ferent encoder architectures for transfer learning and random
initialization. All models were trained with DiceCE loss
(α = 0.1).

4.3.3. Influence of the Encoder Network

Figure 5 shows the results for each encoder and for each de-
coder. All models were trained with the DiceCE loss func-
tion with α = 0.1. DeepLabV3, unlike other networks, has
only results for three encoders. This is because some encoders
could not be tested due to computational issues.

The results show that using deeper and more complex en-
coders did not improve the results. Additionally, there is no
significant difference between the results of transfer learning
with an encoder pre-trained on ImageNet and the results of
training with random initialization. After checking the acti-
vation maps of each layer, we found that this was because the
complexity of the given data set was lower than ImageNet.
Perhaps because the encoder has already learned enough fea-
tures, it could be more valuable to devise an appropriate de-
coder and loss function to restore the feature map to the size
of the original image with less dilution process rather than
applying state-of-the-art classification networks as encoders.

5. CONCLUSION

In this paper, we proposed a deep neural network to segment
brainstem nuclei from in vivo structural MR images. By mak-
ing a decoder with fewer dilution steps, we were able to de-
sign an efficient model that required less number of param-
eters and showed competitive results compared with state-
of-the-art networks. We also investigated central questions
on designing deep learning models for MRI segmentation of
the brainstem. Evaluating different architectures with diverse
loss functions, we found that constructing an appropriate de-
coder network and loss function improved the performance,
even though transfer learning on an encoder network offered
limited performance gains. In the future, this research can
be used to implement a model with improved performance,
which can expand the direction of research on diseases such
as ALS, and the direction of research into multi-modal med-
ical AI by improving the trustworthiness and interpretability
of the model.
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