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Abstract—With the advent and the growing usage of Machine
Learning as a Service (MLaaS), cloud and network systems are
now offering the possibility to deploy ML tasks on heterogeneous
clusters. Then, network and cloud operators have to schedule
these tasks, determining both when and on which devices to
execute them. In parallel, several solutions, such as neural
network compression, were proposed to build small models which
can run on limited hardware. These solutions allow choosing the
model size at inference time for any targeted processing time
without having to re-train the network.

In this work, we consider the Deadline Scheduling with
Compressible Tasks (DSCT) problem: a novel scheduling problem
with task deadlines where the tasks can be compressed. Each
task can be executed with a certain compression, presenting
a trade-off between its compression level (and, its processing
time) and its obtained utility. The objective is to maximize
the tasks utilities. We propose an approximation algorithm with
proved guarantees to solve the problem. We validate its efficiency
with extensive simulation, obtaining near optimal results. As
application scenario, we study the problem when the tasks
are Deep Learning classification jobs, and the objective is to
maximize their global accuracy, but we believe that this new
framework and solutions apply to a wide range of application
cases.

Index Terms—scheduling, compressible tasks, neural network
compression, approximation algorithms, convex programming.

I. INTRODUCTION

Nowadays, with the deployment of new networks, such as
5G and IoT (Internet of Things), the traditional paradigms for
placing and deploying many cloud and network services have
been changed. The new hardware capabilities of devices and
the network requirements, such as latency and delay, create a
new scenario in which the services and functions, in particular
Machine Learning as a Service (MLaaS), are deployed along
the cloud-to-edge continuum [1]. This topic has attracted a
lot of attention and can be applied in many applications,
such as self-driving cars, unmanned aerial vehicles (UAVs)
[2] and Mobile Edge Computing (MEC) [3]. In this domain,
the researchers study the deployment of Deep Learning (DL)
Models on devices in the network edge, such as gateways,
microcontrollers, antennas, and mobile phones [4]. However,
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along this continuum, the edge devices present strong con-
straints in terms of disk space, computational power, and
memory, limiting the latency and accuracy of the models [5].

Thus, it is necessary to find ways for running complex
neural networks in devices with constrained hardware [6]. A
first solution is to design light neural networks to be used on
specific devices, e.g. MobileNet [7] for cellphones. Another
technique, suitable for a a large set of devices, is to use model
compression techniques. The principle is to reduce the size of
an efficient neural networks in order to reduce its memory
and storage usage while having a minimal accuracy drop [8].
Recent works, such as Yu and Huang [9] and Cai et al. [10],
propose to train an adaptable Deep Neural Network (DNN),
which can be configured during the inference without requiring
to re-train the network. For example, the Once-For-All (OFA)
solution [10] allows to adjust the width and kernel size of each
layer, the model depth, and the input image size to build faster
models at inference time.

In this work, we study how to use such adjustable neural
networks to deploy a set of DL models in a networked system.
The inference requests are considered as tasks, which have
to be scheduled along the cloud-edge continuum before their
deadlines. Each task usually has a fixed duration and the
scheduling problem can be solved by traditional techniques,
such as Earliest Deadline First (EDF) and Shortest Job First
(SJF) [11]. The requests can be executed on very heteroge-
neous devices using compressed networks. Recent works [12]–
[14] have proposed to use a collection of pretrained models
with different sizes (i.e., different number of parameters) and
to select the best one to optimize latency and accuracy. Here,
we propose to go a step further by allowing a machine to use
any level of compression on the model size. Indeed, given
any processing time target, adjustable networks, thanks to
their very large number of potential configurations (e.g. for
MobileNet, more than 1019 possible architectures), allow to
produce a model with a size (and then, a processing time)
very close to the targeted time. This leads to the following
optimization problem.

In this paper, we study the new problem of scheduling a
set of fully compressible tasks with deadlines, in which each
task can be run by a compressed algorithm with an arbitrary
number of parameters, presenting a trade-off between its
processing time and the obtained utility. The goal is to decide



when, on which machine, and with which compression level,
each task should be executed in order to maximize the global
utility. We propose convex optimization models and an approx-
imation algorithm to solve the problem for a large family of
utility functions. We used as example classification inference
tasks solved using the OFA technique, but our framework is
general, and can be applied to any task following the classic
law of diminishing marginal utility [15]. The contributions can
be summarized as follows:

– We study the scheduling problem in which tasks can be
compressed. The tasks have a utility function expressing
their trade-off between processing time and utility. We
focus on classification tasks solved with compressible
neural networks. In this case, the utility is given by the
attained accuracy.

– We carry out experiments to study this trade-off for the
OFA [10] solution, particularly for low processing times.

– We model the accuracy function of large families of
compressible tasks, as concave differentiable functions,
and we propose convex optimization models to solve the
problem exactly.

– We discuss the problem complexity and propose (i) an
exact algorithm to solve the problem on one machine, and
(ii) an approximation algorithm with proved guarantees
for several heterogeneous machines.

– Finally, the solutions are validated and compared to state-
of-the-art solutions with extensive experimentation.

The rest of this paper is organized as follows. In Section II,
we review related works in more details. In Section III, we
describe the experiments done to generalize the OFA solution
and to get its accuracy function. In Section IV, we present the
problem formulation. In Sections V and VI, we present details
and analysis of our scheduling algorithms. In Section VII, we
evaluate our proposed algorithms. In Section VIII, we discuss
our solution and conclusions are drawn, together with open
questions for future work.

II. RELATED WORK

NN Compression. Model compression plays an important role
in Edge Computing, since it allows the deployment of light
models, leading to computation, memory, and communication
bandwidth savings. A large review [8] investigated model com-
pression techniques (e.g. pruning and knowledge distillation)
for Deep Learning (DL). These methods are usually applied
during the training phase and use a significant time to update
the weights.

To address this problem, some approaches [9], [10] were
recently proposed for compressing the Neural Network (NN)
during the inference. Cai et al. [10] propose a specific training
technique referred to as Once-For-All (OFA). That technique
consists of a progressive shrinking and an evolutionary search
during the inference phase to select the best configuration
for a given targeted processing time from a large number of
parameters (depth, width, kernel size, and resolution).
Scheduling. A large number of works were proposed for ad-
dressing the scheduling problem for classic non compressible

tasks with hard deadlines, a seminal example being the work
of Leyland and Liu [16] in which they proposed the Earliest
Deadlines First (EDF) algorithm. A wide review in this topic
was developed by Chen et. al. [17].

Some works addressed the problem of scheduling allowing
to compress the task processing time. Vickson [18] was the
first to propose controlling the processing times in a single
machine without deadlines. Alidaee and Ahmadian [19] then
considered a single deadline with the objective of minimizing
tardiness. Wu et al [20] and Shabtay and Kaspi [21] studied
the multiple machines scenario. However, they do not consider
deadlines.

In the cloud-to-edge continuum, a large number of works
have addressed the scheduling problems such as optimizing
completion time, latency and energy [22]–[26]. In this context,
one of the first scenarios considering compressible tasks with
several possible processing times is the transcoding of video
streams [27] . In such a case, video chunks can be transcoded
into different video quality levels, leading to a trade-off
between the utility (the Quality of Experience , QoE) and the
task processing time (the transcoding time).
Machine Learning inference Scheduling and Allocation
Recently, a collection of works, e.g. [28]–[31] , studied how
to efficiently allocate inference requests for Machine Learning
(ML) models among network nodes with available computa-
tional resources.

The closest work to ours are [12]–[14]. They investigate
the scheduling of DL inference tasks, while proposing cre-
ating a collection of DDN models using compression. The
authors propose methods to select the model configuration,
and the hardware setting, to maximize the QoE (Quality of
Experience) [12], and a utility function based on latency
and accuracy [13]. Both works, however, have a different
objective function and do not consider deadlines requirements
as hard constraints for scheduling. Nigade et al. [14] study
how to maximize the accuracy of a set of DL model inference
requests, while satisfying network and processing latency
constraints.

However, all the above mentioned works use a limited
number of models, constrained by the storage constraints of
devices. Such a system does not scale up if we want to
arbitrarily increase the number of possible configurations to
adapt to any real system. On the contrary, we consider fully
compressible tasks using adjustable neural networks to any
arbitrary size, without requiring to store a high number of
models. Studying it allows us to be the first, to the best of
our knowledge, to propose a solution with proved guarantees
to choose any arbitrary compression level and the machine
on which to execute each task, while maximizing the global
accuracy and satisfying deadline constraints for a large family
of accuracy functions.

III. EXPERIMENTS AND LATENCY-ACCURACY TRADEOFF
ANALYSIS

In this section, we derive the latency-accuracy trade off of
families of compressible neural networks such as [9], [10]



Fig. 1. Accuracy vs. Latency using the OFA framework for classifying a set
of 1000 images from imagenet-1k. Experiments on a CPU (left) and GPU
(right).

experimentally. Indeed, in their works, the authors study a
limited range of reached accuracy, mostly between 70% and
80%, as their goal is to obtain efficient models on devices
with limited hardware. For our problem, we need to have
the latency-accuracy trade-off for the full accuracy range for
processing times from 0 to the maximum one. We thus made
new experiments. We selected Once-For-All (OFA) [10], as it
obtains better results than other similar approaches.

As discussed in Section II, OFA approach reduces the
model by changing the value of 4 different parameters: depth,
width, kernel size, and resolution. We extended the possible
configurations by adding new values (in bold) for resolution
([16, 32, 48, 64, 96, 128, 144, 160, 176, 192, 224]) and depth
([1, 2, 3, 4]), as they are the parameters with the largest impact
on the accuracy. We tested the accuracy of the configurations
with the classical imagenet-1k dataset [32], performing
image classification over around 1000 classes.

We used the pre-trained resnet model [33] made available
by the authors. Then, we performed fine-tuning to adapt the
weights over the new configuration range over 20 epochs.
OFA also uses an evolutionary search during the inference to
choose the best configuration for a maximal input latency. This
approach is based on a lookup table to predict the latency, and
on a neural network to predict the accuracy of a configuration.

We then evaluated the updated OFA-resnet in two differ-
ent devices, one equipped with a CPU (Intel Core i9-12900H),
and the other one with a GPU (NVIDIA RTX A2000). Results
are shown in Fig. 1 (left) and (right), respectively. The latency
and accuracy of the configurations selected by the evolutionary
search algorithm are plotted. Each point represents the average
accuracy reached when classifying a set with 1000 images for
a given maximum latency. First, we observe that we obtained
a full range for the trade-off. Then, for both CPU and GPU
cases, we see that the accuracy function is a non decreasing
function with a very strong accuracy gains for small latency
times and an almost flat curve for large latency times.

IV. MODELING

A. Problem formulation

We define the DEADLINE SCHEDULING WITH COMPRESS-
IBLE TASKS (DSCT) problem, which consists of scheduling a
set of n tasks which can be fully compressed on m machines.
Formally, we have a set J of tasks. Each task j ∈ J has a
deadline dj , a maximum processing time tmax

j , and a utility

function uj(t) giving its utility when executed for a time t.
The goal is to choose the processing time tj ∈ [0, tmax

j ] for
each task j ∈ J in order to maximize the global utility, i.e.,∑n
j=0 uj(tj), the sum of the utility of all executed tasks.
In this paper, we focus on the case where tasks are clas-

sification inference tasks done with compressible deep neural
networks. Nevertheless, the same framework also applies to
other tasks as live video transcoding [27] , where we can
compress the transcoding time generating video streams with
lower video quality levels.

The utility function for a task j ∈ J corresponds to the ac-
curacy aj(t) reached by the neural network (or any computing
process) for a given processing time. In the following, we use
a standard order of the tasks by non-decreasing deadlines. The
tasks are often denoted by their index in that order. This way
the set of tasks is noted J = {1, 2, . . . , n} and di ≤ dj iff
i ≤ j.

B. Accuracy Function
The accuracy of a compressible neural networks (i.e.,

OFA [10]) can be modeled as a function, denoted as a(t),
of the processing time t with the following properties:

- Concave and non decreasing. It is based on the fact
that the marginal gain of running an inference model is
decreasing with the task processing time, and tending to
0 when the processing time is large. We argue that such
dependency can be generally found in many tasks utilities
(accuracy functions), not only in compressible neural
networks. For example, in Approximation Theory polyno-
mials of degree s can be approximated with Chebyshev’s
polynomials of degree d up to an error which scales as
e−s

2/d [34, Theorem 3.3], while the classical analysis of
the famous AdaBoost algorithm shows that, for a weakly
PAC learnable class of functions C, T weak learners can
be combined to obtain a classifier with empirical error of
order e−Θ(T ) [35].

- Support [0, tmax]. Processing time 0 means accuracy
amin. Note that amin for a classification class with C
classes corresponds to a random choice between the
classes leading to an accuracy amin = 1/C. processing
time tmax has an accuracy amax ≤ 1. Note that our model
also allows setting tmax =∞. In this case, a(t) converges
to the constant amax, when t goes to infinity.

We add a technical property:
- Differentiability (and thus continuity) over R+. Differen-

tiability allows to define the marginal gain a′j(t) of a task
j ∈ J when executed for a time t.

In the following, we study this general class of accuracy
functions. We also use the exponential accuracy function as an
illustration, as it models well the behavior of OFA, studied in
the previous section (See also the discussion in Section VIII).
It is defined as follows:

a(t) = (amax − amin)(1− exp(−θt)) + amin,

where θ is the slope at the origin of the accuracy function and
is a measure of the job efficiency.



V. PROBLEM ON A SINGLE MACHINE

A. Formulation as a Convex Program

The DSCT on a single machine can be formulated as a
convex program (because of the concavity of the accuracy
function) with only fractional variables. Indeed, the continuity
over R+ of the accuracy makes that no binary variables are
needed to indicate if a task is executed. Not executing a task
is equivalent to setting its processing time to 0.
Objective functions. The general objective function is
max

∑n
j=1 aj(t) This is equivalent to minimize the error

defined as 1 − a(t): min
∑n
j=1 1 − aj(t). As the accuracy

aj(t) is concave, the error 1 − aj(t) is convex. The sum of
the error thus is convex as a sum of convex functions.
Convex optimization program with linear constraints. The
variables of the program are the processing times tj for all
j ∈ J .

min
n∑
j=1

1− aj(tj) (1)

s.t.
j∑
i=1

ti ≤ dj , j ∈ J = {1, 2, 3...n} (1a)

tj ≤ tmax
j , j ∈ J (1b)

tj ∈ R+, j ∈ J (1c)

Equation (1a) ensures that, for each deadline, all tasks with
inferior deadlines must be executed before it. Equations (1b)
and (1c) state that tj is chosen in [0, tmax

j ].
Algorithmic complexity and Resolution methods. The
DSCT thus is polynomial for a concave accuracy function.
For a differentiable accuracy function, it can be solved using
Kelley’s Cutting-Plane Method with a linear solver or gradient
descent. We study faster methods, with closed form formulas
for the exponential accuracy function, in the following.

B. Optimal Algorithm

We first discuss the KKT (Karush-Kuhn-Tucker) conditions
for the optimization problem and, then, we present an algo-
rithm to solve it with polynomial time complexity.

1) Optimality Conditions: In our convex problem, the KKT
conditions are necessary and sufficient conditions for optimal-
ity [36] (Chap. 5 p. 226 and 244). To analyze them, we first
write the Lagrangian of the problem:

L(t, µ) =

n∑
j=1

(1− aj(tj)) + µT g(t) (2)

where µ = [µ1, ..., µ3n] and g(t) = [t1 − d1, . . . ,
∑n
i=1 ti −

dn, t1 − tmax
1 , . . . , tn − tmax

n ,−t1, . . . ,−tn].
The complementary slackness conditions give that, when a

task j ∈ J is neither constrained by its deadline, nor by its
maximum execution time, and has a strictly positive execution
time (we say that such tasks are 3-unconstrained), we have
µj = µn+j = µ2n+j = 0. Furthermore, if j + 1 is neither
constrained by its maximum time nor by its minimum times
(i.e., µn+j+1 = µ2n+j+1 = 0), the optimum execution times

of both tasks are derived from the zero-gradient condition (i.e.,
the gradient at the optimum (t∗, µ∗) should be 0) and we
have:

∂

∂tj
a(tj) =

∂

∂tj+1
a(tj+1). (3)

The intuition is that, when tasks are 3-unconstrained, the
optimum schedule is to choose their execution time so that
they have the same marginal gain i.e., the same value for
the partial derivative of their accuracy functions. This is due
to the concavity of the accuracy function or equivalently to
its decreasing marginal gain. In the case of the exponential
accuracy function, this gives:

∆ajθje
−θjtj = ∆aj+1θj+1e

−θj+1tj+1 , (4)

where ∆aj
def
= amax

j − amin
j . The optimum execution time of

task j is thus given by:

tj =
θj+1

θj
tj+1 −

1

θj
ln

(
∆aj+1θj+1

∆ajθj

)
, (5)

if the value is non negative, otherwise tj = 0 (in this case, task
j is constrained by the non negativity bound and µ2n+j > 0).

Note that if both tasks have the same efficiency θj = θj+1

and same efficiency range ∆aj = ∆aj+1, then the condition
simplifies to: tj = tj+1. Thus, the optimal execution time for
two consecutive tasks j and j + 1, when j is not constrained
by its deadline, is taking equal execution time tj = tj+1.

On the other hand, the non negativity constraints of the
KKT multipliers (µj ≥ 0) give that, from the zero-gradient
condition, ∀j ∈ {1, . . . , n− 1},
∂

∂tj
a(tj) ≥

∂

∂tj+1
a(tj+1)+µn+j+1−µn+j−µ2n+j+1+µ2n+j .

(6)
If both j and j+ 1 are not constrained by their maximum and
minimum execution times, we have

∂

∂tj
a(tj) ≥

∂

∂tj+1
a(tj+1). (7)

The intuition is that, when considering two tasks i and j
with i < j, j is less constrained by its deadline than i.
Thus, its marginal gain may always be lower or equal than
the one of i (except if constrained by its maximum execution
time). Otherwise, its execution time could have been increased,
leading to a better solution. For the exponential accuracy
function, it gives:

−∆aiθie
−θiti ≥ −∆ajθje

−θjtj and ti ≤
θj
θi
tj−

1

θi
ln

(
∆ajθj
∆aiθi

)
.

(8)
Note, that for two tasks i and j with same efficiency θi = θj
and same accuracy range ∆ai = ∆aj , the equation simplifies
to: ti ≤ tj .

2) Algorithm proposal: Based on the KKT analysis, we
propose Algorithm 1 which aims to allocate the processing
time tj for each task j ∈ J . The algorithm takes as input
the list of task deadlines and maximum execution times, and
returns the execution time for each task. It first sorts the tasks



Algorithm 1 Exact algorithm for scheduling in one machine
Input: List of task deadlines [d1, ..., dn] and [tmax

1 , ..., tmax
n ].

Output: List of task execution times [t1, ..., tn]

1: Sort the tasks by non decreasing deadlines.
2: t1 ← min(d1, t

max
1 )

3: Tcurrent = t1 . Tcurrent
def
=
∑j
i=1 ti for current task j

4: for j : 2 ≤ j ≤ n do
5: tj ← min(dj − Tcurrent, t

max
j ) ; Tcurrent ← Tcurrent + tj

6: if tj = tmax
j then

7: Continue to next iteration of the for loop
8: a′ = a′j(tj) . current gain
9: K ← {j} . Set of 3-unconstrained tasks with
a′(i) ≤ a′. K sorted by non increasing a′(tk(tk))

10: Z ← ∅ . Set of tasks with ti = 0
11: T ← tj ; i← j − 1
12: while (a′i(ti) < a′ or ti = tmax

i ) and i ≥ 0 do
13: if (ti = 0) or (ti = tmax

i and a′i(ti) ≥ a′) then
14: Continue to next while iteration
15: K ← K ∪ {i}; T ← T + ti
16: ti ← max(τ(T,K, i), 0)
17: if ti = 0 then
18: K ← K \ {i}; Z ← Z ∪ {i} . Add in Z

sorted by non increasing a′(tk(0))

19: move ← True
20: while move do
21: move ← False
22: for k ∈ Z do . Z sorted
23: if τ(T,K, k) ≥ 0 then
24: Z ← Z \ {k}; K ← K ∪ {k}
25: move← True
26: else Break
27: for k ∈ K do . K sorted
28: tk ← min(τ(T,K, k), tmax

k )
29: if tk = tmax

k then
30: K ← K \ {k}; T ← T − tmax

k

31: move← True
32: else Break
33: for k ∈ K do
34: tk ← τ(T,K, k)
35: a′ ← ak(τ(T,K, k))

36: return [t1, ..., tn]

by order of non decreasing deadlines. It incrementally sets
the execution time of task j to min(dj −Tcurrent, t

max
j ), where

Tcurrent is the current load in the machine. If tj ≤ tmax
j , it then

tests if the marginal gain of task j is lower than the ones of
tasks i for i ≤ j, which is a optimality condition (Equation 7).
If not, it updates their execution times in order to have equal
marginal gains.

To compute the optimum execution times, we use the
fact that two 3-unconstrained tasks i and j should have
equal marginal gains (Equation 3). Consider now we want
to compute the optimum execution times of a set K of 3-

unconstrained tasks executed in an interval of time T (i.e.,∑
i∈K ti = T ). In the exponential case, we can derive from

Equation (5) a formula for the execution time τ(T,K, j) of
any task j ∈ K:

τ(T,K, j ∈ K) =
1

1 +
∑
i∈K\{j}

θj
θi

T +
∑

i∈K\{j}

1

θi
ln

∆ajθj
∆aiθi

 .

(9)
The subtlety in the algorithm is that we apply the formula

in a context where constrained tasks (by their minimum, max-
imum execution time, or deadline) may become unconstrained
in the process and vice versa. In this case, τ could be negative
for a task i in K or be greater than tmax

i . Then, we set ti = 0
or ti = tmax

i , i is deleted from K, and the execution times
are recomputed. Note that, for the exponential case, it takes a
time linear in the number of tasks in K to compute a value
of τ using Equation 9 for the first computation. However,
computing the value of another element of K can then be
done in constant time by updating both sums of the formula.
Similarly, when K is updated by addition or removal of an
element, updating the value of τ for an element in K can also
be done in constant time. Hence, the computations of τ in the
algorithm are done in constant amortized times. For a general
accuracy function, we note c(n) the amortized complexity of
computing a value of τ .

Theorem 1. Algorithm 1 returns an optimal schedule in time
O(n3(log n+ c(n))), where c(n) is the amortized complexity
of computing a value of τ(T,K, j ∈ K) for a set of 3-
unconstrained tasks K. In the case of the exponential accuracy
function, c(n) = O(1), and the complexity of the algorithm is
O(n3 log n).

Proof. The proof is omitted due to space constraints. The
correctness is ensured by showing by induction that at the
end of step j of the for loop of line 4, the KKT conditions
are satisfied for i ∈ {1, . . . , j}. The complexity proof consists
in proving that tasks may only pass a limited number of
times from 3-unconstrained to any-constrained, and vice versa.
This is ensured by sorting the sets of tasks by non increasing
marginal gains using an AVL tree implementation.

VI. PROBLEM ON SEVERAL MACHINES

We now consider the problem in which the tasks can be
executed on m different machines. We consider a scenario in
which machines have different speeds (e.g. servers, laptops,
cellphones, IoT devices, etc.). We model this by introducing
the accuracy function of a task j on a machine r of speed sr
and setting:

aj,r(t) = aj(sr, t).

As an example, for the exponential accuracy function, we
have: aj,r(t) = 1− e−srθjt.

A. Formulation as a Mixed Integer Program

The DSCT problem on several machines can be formulated
as the mixed integer program given below.



Variables. We introduce the Boolean variables xj,r, which
indicate if task j is executed on machine r, for all j ∈ J and
r ∈M def

= {1, . . . ,m}. The processing time is now chosen for
each machine by the variables tj,r ∈ R+.
Objective function. The processing time, tj , of task j is given
by
∑m
r=1 tj,r. The accuracy of j thus is aj(

∑m
r=1 sr ·tj,r). The

objective function is: min
∑n
j=1 1 − aj(

∑m
r=1 sr · tj,r).

As an example, for the exponential accuracy function, the
objective is: min

∑n
j=1(amax

j −amin
j )e

− 1
θj

∑m
r=0 sr·tj,r . We

thus have:

min
n∑
j=1

[
1− aj

(
m∑
r=1

sr · tj,r

)]
(10)

s.t.
j∑
i=1

ti,r ≤ dj , j ∈ J, r ∈M (10a)∑
r∈M

tj,r ≤ tmax
j , j ∈ J (10b)

tj,r ≤ xj,r · dj , j ∈ J, r ∈M (10c)∑
r∈M

xj,r = 1, j ∈ J (10d)

tj,r ∈ R+, j ∈ J, r ∈M (10e)

B. NP-Hardness complexity

On the contrary to the problem on one machine which is
polynomial, DSCT on several machines is formulated with
binary variables. In fact, we have the following result.

Definition 1. The decision problem of DSCT with m ma-
chines is to decide if there exists a schedule {tj,r|j ∈ J, r ∈
M} such that the global accuracy is greater than x ∈ R, that
it
∑
j∈J aj(tj) ≥ x.

Theorem 2. The decision problem of DSCT (for any strictly
increasing accuracy function) is NP-complete when the num-
ber of machines is m ≥ 2.

Proof. The proof is done via a reduction from the PARTITION
SET PROBLEM and omitted due to lack of space.

C. Approximation Algorithm

We propose here an approximation algorithm, DEADLINE
SCHEDULING WITH COMPRESSIBLE TASKS - APPROXIMA-
TION ALGORITHM (or DSCT-APPROX in short), presented in
Algorithm 3, to solve DSCT with a proved guarantee, see
Theorem 3. DSCT-APPROX consists in three main steps:
- Step 1 (Fractional relaxation). We first solve the fractional
relaxation. It gives a schedule with maximum accuracy value
OPTf ≥ OPT in polynomial time, where OPT is the
maximum accuracy of DSCT. In fact, an optimal fractional
solution can be found by using the algorithm for one machine
(Algorithm 1) with deadlines d1

j = Sdj and by taking

tj,r =
t1j
sr

, see Lemmas 1 and 2).
- Step 2 (Rounding). We consider the tasks by non decreasing
deadlines and assign them incrementally to the machine with

the least amount of work. At the end of this step, each deadline
may only be violated by a single task on every machine.
- Step 3 (Incremental shift). For each machine r ∈ M , we
consider the tasks in the order of their execution on r. We
denote by t

(i)
j,r the starting time of task j on machine r. If a

task j violates the deadline with a violation vj = t
(i)
j,r+tj,r−dj ,

we cut the execution of the task done after the deadline, i.e.,
tj,r ← tj,r − vj , and we shift the processing times of the all
the tasks executed after j on r, i.e., t(i)i,r ← t

(i)
i,r − vj for all

i ≥ j.
We first show in Lemma 2, that Algorithm 2 solves the

fractional relaxation of the problem. To this end, we use
the preliminary result of Lemma 1. We then prove that
Algorithm 3 is an approximation algorithm and give its
approximation guarantee in Theorem 3.

Algorithm 2 Exact algorithm for solving the fractional relax-
ation
Input: List of task deadlines [d1, ..., dn], of maximum process-
ing times [tmax

1 , ..., tmax
n ], and of machine speeds [s1, . . . , sm]

Output: List of task processing times [tj,r : ∀j ∈ J, r ∈M ]

1: S ← 0 . The sum of all speeds
2: for r ∈M do
3: S ← S + sr
4: for j ∈ J do
5: d1

j ← Sdj

6: [t11, ..., t
1
n]← Algorithm 1([d1

1, ..., d
1
n], [tmax

1 , ..., tmax
n ])

7: for j ∈ J do
8: for r ∈M do
9: tj,r ←

t1j
sr

10: return [tj,r : ∀j ∈ J, r ∈M ]

Lemma 1. The fractional relaxation of the DSCT problem
with m machines has an optimal fractional solution which
allocates the same processing time on each machine, i.e.,
tf∗j,r1 = tf∗j,r2 for all r1, r2 ∈M .

Proof. The omitted proof is done by checking that the sym-
metric version of an optimum solution is also optimum.

Lemma 2. Given an instance of DSCT with n tasks and
m machines, Algorithm 2 provides an optimal solution of the
fractional relaxation for the instance in time O(n3(log n +
c(n)) + nm). Recall that c(n) is the amortized complexity of
computing a value of τ , see Theorem 1.

Proof. The omitted proof verifies that the original problem has
the same optimum fractional solution as the problem with one
machine of speed one but with deadlines S ·dj and maximum
processing times S · tmax

j ∀j ∈ J , where S def
=
∑
r∈M sr.

Theorem 3. Algo 3 is an approximation algorithm with an
absolute performance guarantee G:

OPT −G ≤ SOL ≤ OPT,



Algorithm 3 DSCT-APPROX: Approximation algorithm for
scheduling in several machines
Input: List of task deadlines [d1, . . . , dn], [tmax

1 , ..., tmax
n ], and

of machine speeds [s1, . . . , sm]
Output: List of task processing times [tj,r : ∀j ∈ J, r ∈M ]

1: Sort the tasks by non decreasing deadlines.
2: tf = Algorithm 2([d1, . . . , dn], [tmax

1 , ..., tmax
n ], [s1, . . . , sm])

. Compute the optimal fractional solution tf .
3: for r ∈M do
4: Sr ← [] . List of tasks scheduled on machine r
5: workr ← 0 . workr amount of work on r
6: for j ∈ J do . Schedule each task on the machine with

the least amount of work, rmin

7: rmin ← arg minr∈M workm
8: tj,rmin ←

∑m
r=1 t

f
j,r

9: Srmin
← Srmin

+ [j]

10: for r ∈M do . Cut tasks violating their deadlines and
shift the following ones.

11: for j ∈ Sr do
12: if t(i)j,r + tj,r ≥ dj then
13: vj ← t

(i)
j,r + tj,r − dj

14: tj,r ← tj,r − vj . Cut task
15: for i > j ∈ Sr do . Shift the following tasks
16: t

(i)
i,r ← t

(i)
i,r − vj

17: return [tj,r : ∀j ∈ J, r ∈M ]

where OPT is the global accuracy of an optimal solution and
SOL is the solution returned by Algo 3 and with

G = m

∫ ∞
0

max
θ,j

∂aj(t, θ)

∂t
dt.

For the exponential accuracy function:

G = mA

(
1 +

1

e
ln

(
θmax

θmin

))
,

where A
def
= maxj∈J(amax

j − amin
j ).

SOL is computed in time O(n3(log n+ c(n)) + n2m).

Proof. The algorithm starts from a optimal solution of the
fractional relaxation of the problem of value OPTf . We know
that OPT ≤ OPTf .

The algorithm then assign tasks to the machine with the
least amount of work. Note that on any machine r ∈ M ,
a deadline d may be only violated by a single task. Indeed,
consider deadline d is violated on machine r by task i. When
Algo 3 places a task j > i with the same deadline d at step j
in the for loop on line 6, there exists a machine r′ such that
workr′ < d. Indeed,

∑
r∈M workr + tfj =

∑j−1
i=0 t

f
i,r ≤ md,

because the schedule is feasible for the fractional relaxation.
Thus, Algo 3 does not assign j to machine r.

Finally, the algorithm incrementally cuts tasks violating
their deadlines (For a cut task j, we note vj the cut time.)
and shifts by vj the starting times of the tasks executed
afterwards. We compute the difference between OPTf and

the total accuracy of the solution returned by the algorithm
SOL.

The total lost accuracy, TLA, is the sum the lost accuracy
for each cut task. Let us first bound the accuracy lost when
cutting task j on a machine r of speed sr. We denote by
t = dj − t

(i)
j,r the execution time after the job was cut. We

have
LAj

def
= aj(sr(t+ vj))− aj(srt)).

First, note that the function is decreasing in t due to concavity.
Moreover, a cut task j was first shifted by vcj

def
=
∑
i<j vi. This

part is executed. Thus, the worst case is when t = vcj , and
LAj ≤ aj(sr(vcj + vj))− aj(srvcj). We now bound LAj by
the accuracy of the worst task that could be cut at time vc.
Note that the worst cut task depends on the time at which it is
cut, see the discussion for the exponential accuracy function
below for an illustration.

LAj ≤ max
i∈J

(ai(sr(v
c
j + vj))− ai(srvcj)).

Now, we know that two functions f(x) and g(x) such that
f(x1) = g(x1) and f ′(x) ≤ g′(x) for all x ∈ [x1, x2] is such
that f(x) ≤ g(x) for all x ∈ [x1, x2]. It gives

LAj ≤ max
i∈J

(ai(sr(v
c
j + vj))− ai(srvcj))

= max
i∈J

∫ vcj+vj

vcj

d

dt
ai(srt)v dt ≤

∫ vcj+vj

vcj

max
i∈J

d

dt
ai(srt)dt

Let us now bound the total lost accuracy TLA. We have

TLA
def
=

nc∑
j=1

LAj ≤
nc∑
j=1

∫ vcj+vj

vcj

max
i∈J

d

dt
ai(srt)dt

=

∫ v

0

max
i∈J

d

dt
ai(srt)dt =

∫ ∞
0

max
i∈J

d

dt
ai(srt)dt

where nc is the number of tasks which were cut at the end of
the algorithm.
Exponential accuracy function. Let us compute
maxi∈J

d
dtai(srt). We have

a′i(t) =
d

dt
ai(srt) =

d

dt

(
(amax
i − amin

i )(1− e−srθit) + amin
i

)
= (amax

i − amin
i )srθie

−srθit.

We now consider the function a′(t, θ)
def
= Asrθe

−srθt, with
A = maxi∈J a

max
i − amin

i . We have maxi∈J a
′
i(t) ≤

maxθ a
′(t, θ).

Let us find the value of θ for which a′(t, θ) is maximum,
that is the one for which d

dθa
′(t, θ) = 0.

d

dθ
a′(t, θ) = Asre

−srθt−As2
rtθe

−srθt = Asr(1−srtθ)e−srθt.

The derivative is 0 for θ = 1
srt

. This means that the worst
task efficiency θ∗ for a task cut after time t on a machine r
is θ∗ = 1

srt
. For a set of tasks with maximum and minimum

efficiencies, respectively θmax and θmin, we have:

θ∗(t) = arg max
θ

a′(t, θ) =


θmax when t ≤ 1

srθmax

θmin when t ≥ 1
srθmin

1
srt

otherwise.



Note that it means that for small values of t, the worst tasks to
be cut have maximum efficiency. However, for large values of
t, it is the reverse: the worst cut tasks have minimum efficiency.

Let us now bound the total lost accuracy. We have

TLA ≤
∫ ∞

0

max
i∈J

d

dt
ai(srt)dt ≤

∫ ∞
0

a′(t, θ∗(t))dt

=

∫ 1
srθmax

0

a′(t, θmax)dt+

∫ 1
srθmin

1
srθmax

a′
(
t,

1

srt

)
dt

+

∫ v

1
srθmin

a′(t, srθmin)dt.

Recall that a′(t, θ) = Asrθe
−srθt. Computing each integral

and adding up, we get: TLA ≤ A+ A
e ln

(
θmax

θmin

)
.

As there are m machines, the global lost accuracy of the
algorithm is bounded by G def

= mA
(

1 + 1
e ln

(
θmax

θmin

))
.

The algorithm complexity is directly given by the one of
Algorithm 2 and of the 3 final nested loops.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed approximation
algorithm DSCT-APPROX described in Algorithm 3. We first
show that the absolute guarantees given by Theorem 3 really
correspond to a worst case scenario and that in practice
DSCT-APPROX provides near optimal solutions. We then
discuss the processing time of our algorithm and show that
DSCT-APPROX provides near optimal solutions for medium
to large instances in a limited time, even using a non optimized
Python code. Last, we compare its performance with the one
of state of the art solutions using no compression or a limited
number of models. We show that using adjustable models
allows to reach very significant gains in performance for a
large range of scenarios.
Hardware Settings. During the experiments, we used a com-
puter equipped with a CPU Intel Core i9-12900H and with a
GPU NVIDIA RTX A2000.
Experimental scenarios and Problem instances. We gen-
erate synthetic sets of tasks based on the results of our
experiments with OFA in Section III. We set the maximum
accuracy to amax = 0.82, i.e., the highest value found by
ofa-resnet on ImageNet-1k, and the minimum task
accuracy to amin = 1/1000, the accuracy of a random guess.
We fix the value of the minimum task efficiency θmin = 0.1.

We then build scenarios with different (i) task heterogeneity
and (ii) deadline tolerance levels. For (i), we vary the task
heterogeneity ratio of a set of tasks, denoted as µ def

= θmax

θmin

which measures the similarity between task efficiencies. When
µ is chosen, so θmax, for each task j ∈ J , we select its
efficiency θj uniformly at random between θmin and θmax.
Then, we compute its maximal processing time tmax

j , in order
to have aj(t

max
j ) = 0.82. For (ii), we define the deadline

tolerance level, denoted by ρ, as following: ρ = m·dmax∑
j∈J t

max
j

.

The greater ρ is the more time is allocated for the tasks.
Baselines. We benchmark the performance of DSCT-APPROX
with 3 different solutions:

- DSCT-UB, an upper bound solution provided by Algo-
rithm 2 that solves the fractional relaxation of the problem
DSCT problem on several machines.

- EDF-NOCOMPRESSION: Here, compression is not al-
lowed. Then, each task must be executed with its maximal
processing time (tmax

j ), which corresponds to the neural
network in its maximal configuration. The scheduling
strategy used here is the EDF (Earliest Deadline First)
for ordering the tasks combined to the worst-fit
strategy [37], for deciding the machine on which the task
should be executed.

- EDF-3COMPRESSIONLEVELS: The algorithm considers
a discrete set of possible configurations for compressing
the neural network. In this approach, we use 3 levels
of compression, corresponding to 3 accuracy levels com-
pared to the maximal configuration: 27%, 55% and 82%.
For this algorithm, we implemented a strategy based
on [27], which uses the EDF for ordering the tasks
and implements a heuristic based on the accuracy for
choosing the node and the compression level.

Study of the approximation guarantee. We first compare
the performance of our algorithm to the absolute performance
guarantee derived in Theorem 3, i.e. G = mA(1 + 1

e ln(µ)).
We thus make µ, the task heterogeneity ratio, vary (from 1
to 20). The guarantee is derived from a worst case analysis.
We thus study here the algorithm performance over a large
number of experiments (1000 for each value of µ). The
deadline tolerance factor is fixed ρ = 0.35. We used m = 2
machines and n = 100 tasks. Fig. 2 presents the distribution
over the experiments of two optimality gaps: (i) the absolute
performance guarantee G, which is actually a worst-case
optimality gap; and (ii) the optimality gap provided by the
difference between the fractional relaxation DSCT-UB and
the approximation algorithm DSCT-APPROX solutions. For
the latter, we plot the mean, min and max differences over all
the tests for a fixed µ. Recall that A = 0.82 and m = 2 here,
thus G = 1.64 when µ = 1. We observe that the optimality
gaps increase with the task heterogeneity ratio as expected, but
the gap with respect to the fractional relaxation solution is well
below G. In our experiments, in average, the ratio between
the mean of the optimality gap and G was 12.36%. This is
expected as G comes from very specific scenarios, in which
tasks with very short processing times and the worst accuracy
are cut at each time when doing rounding. These scenarios are
rare, as, even with 1000 experiments, the maximal optimality
gaps were far from G.

Algorithm performances and processing times. We also
tested the execution time of DSCT-APPROX against DSCT-
Opt, which uses the cvx-MOSEK software [38], a widely
used commercial solver which allows solving Mixed-Integer
Programs (MIP). The results are described in Fig. 3. We
considered two scenarios: keeping the number of tasks fixed
(n = 50), and varying the number of machines and the
reverse, fixing m = 5. We set the solver’s time limit to
60 s. We observe that DSCT-APPROX can handle hundred



Fig. 2. Optimality gap (average ac-
curacy difference between DSCT-UB
and DSCT-APPROX) over 1000 ex-
periments when varying the task het-
erogeneity ratio µ. Absolute guarantee
G is given as a baseline.

(a) Execution time over number
of jobs

(b) Execution time over number
of machines

Fig. 3. Execution times of DSCT-
APPROX vs DSCT-Opt [38] for in-
stances with increasing (a) num-
bers of tasks, with m = 5 and (b)
number of machines, with n = 50.

Fig. 4. Average task accuracy for
DSCT-APPROX and the baselines as
a function of the deadline tolerance
level ρ, for m = 10.

(a) DSCT-APPROX

(b) EDF-NOCOMPRESSION

(c) EDF-3COMPRESSIONLEVELS

Fig. 5. Scheduling Fairness: Heat
maps represent the distribution of
task accuracy values for sets of ex-
periments with different tolerance ρ.
The colors represent the percentage
of tasks within an accuracy range.

of jobs before reaching the time limit. The MOSEK solver,
however, can reach a maximal value of 30 jobs. Moreover,
the solver manages scheduling the jobs within the time limit
until 3 machines. For DSCT-APPROX, it is not impacted for
the increasing number of machines, since the high complexity
of the algorithm is during the fractional relaxation.

Comparison with benchmarks for different deadline
tolerance levels. We now compare the global
accuracy obtained by DSCT-APPROX with the ones
reached by EDF-NOCOMPRESSION [37] and EDF-
3COMPRESSIONLEVELS [27]. To explore the different
possible scenarios of usage, we vary the deadline tolerance
level in a range between 0 and 1.5, with a step of 0.1. The
number of machines is set to m = 10 and we consider
n = 100 tasks with uniform efficiency θj = 0.1. The
average accuracy value reached by DSCT-APPROX, EDF-
NOCOMPRESSION, EDF-3COMPRESSIONLEVELS, and the
fractional relaxation DSCT-UB are given in Fig. 4. Each
point corresponds to an average over 1000 experiments.

We confirm that (i) when ρ is close to zero, all the
methods have an average accuracy close to zero, since the
space to schedule tasks is very limited; (ii) when ρ ≥ 1,
there is space enough to execute all tasks with their max-
imum processing time and, thus, maximum accuracy. All
algorithms thus reach an accuracy of amax = 0.82. Be-
tween these values, we first observe that DSCT-APPROX
return quasi-optimal solutions as its values are very close
to the ones of the fractional relaxation. Secondly, DSCT-
APPROX outperforms EDF-NOCOMPRESSION [37] and EDF-
3COMPRESSIONLEVELS [27] for each deadline tolerance
value tested, as they do not use compression or only a
limited number of models. In fact, the fractional relaxation
DSCT-UB follows a function which is a composition of 1-
exponential functions with limited supports. It thus has a
close to exponentially decreasing marginal gain, when the two

other algorithms have a (piecewise) linear behavior. The differ-
ence between DSCT-APPROX and EDF-NOCOMPRESSION
(and EDF-3COMPRESSIONLEVELS) performances is signif-
icant and reaches more than .18 point (.1) of accuracy, e.g.
representing a gain of 57.9% (22.2%) for ρ = 0.4.
Fairness. A byproduct of allowing for task compression is
that the allocation of processing times over tasks is fairer
than without compression, in the sense that it allows them to
reach similar accuracy values. When not using compression,
a task is either executed, and reaches its maximum possible
accuracy, or not, leading to a minimum one. We study this
behavior in Fig. 5. For each set of experiments (corresponding
to a specific value of deadline tolerance value, ρ), we report
the distribution of reached accuracy values for all tasks. If
we consider as an example, the case ρ = 0.7, we observe
that more than 90% of the tasks reach an accuracy between
0.7 and 0.8 for DSCT-APPROX, and that only 2% of the
tasks have an accuracy below 0.3, to be compared with
33% for EDF-3COMPRESSIONLEVELS and 28% for EDF-
NOCOMPRESSION. Thus, our algorithm allows (i) for having
a better average accuracy (as seen before) and (ii) for not
sacrificing tasks, which may be particularly important for
scenarios in which tasks are requested by different users.

VIII. CONCLUSION AND DISCUSSION

We studied the problem of scheduling with compressible
jobs. We analyzed and modeled the tradeoff between accu-
racy and processing time of a family of compressible neural
networks. This technique can be used for several applications,
such as real-time systems and task offloading. In this paper,
we analyzed the Once-For-All architecture used for image
classification.

We proposed an approximation algorithm for multiple ma-
chines scenario, which is a NP-hard problem. The algorithm
proposed obtained a near-optimal value, outperforming the



baseline average accuracy by up to 57%. Also, we observed
the algorithm presents smaller execution time compared to
commercial MIP solvers.

We studied scheduling problems for specific jobs (classifica-
tion inference tasks) and specific accuracy functions (concave,
differentiable, and with exponentially decreasing marginal
gains). However, we believe our work may have implications
for a large range of problems.

First, the concavity of the accuracy function is a related to
a very general and common phenomena which is the law of
diminishing marginal utility [15].

Second, exponentially decreasing marginal gains can be
found for a large variety of optimization problems. While
general theoretical results on such phenomenon appear still
far from the reach of current techniques for the theory of
artificial neural networks, we argue that such dependency is
supported by analogous phenomena in similar settings, like
approximation error in Chebyshev’s polynomials [34, Theorem
3.3], and classifier error of AdaBoost algorithm [35].

Extending our results to a wide range of optimization model,
such as energy efficiency and communication latency, is an
interesting avenue for future work.
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