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Abstract

We investigate the evolution of the reliability of a mobile communication net-
work, i.e., its capacity to avoid and withstand faults (called robustness) and to
maintain proper functioning if faults occur nevertheless (called resilience). Our
case study focuses on a swarm of nanosatellites orbiting the Moon and operating
as a distributed space interferometer. The objective of this study is to evalu-
ate the impact of graph division techniques on the robustness and resilience of
the system, simultaneously. A high reliability level is key to guaranteeing proper
quality of service by recovering from impairments while preserving the primary
function or mission of the mobile network. By analyzing the effects of exploration
and random selection algorithms on the network reliability, our simulations indi-
cate that fair graph division consistently strengthens the robustness of swarming
ad-hoc networks, regardless of the algorithm employed. In addition, our analysis
highlights the superior performance of sequential exploration algorithms, such as
MIRW, in optimizing robustness while preserving a decent level of resilience.

Keywords: Mobile Ad-hoc Networks, Architecture, Robustness, Resilience, Graph
Division
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1 Introduction

Enhancing the reliability of complex distributed systems and ad-hoc networks has
been a central research area for many years. Such systems must be robust and resilient
against faults to guarantee a satisfactory quality of service. System robustness is its
ability to avoid or withstand internal and external faults: it usually regroups pre-
vention mechanisms. For instance, a drone fleet is deemed robust if it incorporates
an energy management mechanism that ensures a reduction in energy consumption,
extends the system lifespan, and minimizes the risk of failure due to energy depletion
([1]). Resilience is a distinct concept that characterizes a system’s ability to maintain
functioning despite the presence of faults, and can be assimilated to fault tolerance. For
example, cellular networks demonstrate resilience by deploying redundant equipment
to address network faults ([2]). Although adding redundancy is a common strategy to
enhance resilience, ad-hoc networks and their characteristic lack of infrastructure can-
not rely on external equipment to improve fault tolerance. Consequently, the design
of these systems must consider both robustness and resilience constraints.

This analysis is particularly essential for Distributed Space Systems (DSS) as their
decentralized architecture and reliance on inter-node communication make them highly
sensitive to both robustness and resilience challenges, necessitating a comprehensive
evaluation that simultaneously considers these interdependent factors.

However, most studies related to the reliability of complex systems are either
focused on robustness, or resilience, but rarely both. This approach is problematic
because these concepts can be antagonistic by definition. If we consider an ad-hoc net-
work, a robustness mechanism would be to optimize packet routing, i.e., reduce the
number of packet transmissions to the bare minimum. On the other hand, a resilience
mechanism would be to add redundancy and send packets multiple times, in case
there is loss on the network. This simple example illustrates the existing tradeoff
between robustness and resilience. This study aims to thoroughly analyze the reliabil-
ity of swarming ad-hoc networks by addressing both robustness and resilience, which
is lacking in the literature.

As mentioned above, our study focuses on a scenario involving a nanosatellite
swarm in orbit around the Moon that performs as a distributed radio telescope in
outer space ([3]). This system operates as a Mobile Ad-hoc Network (MANET), and
its configuration as a space observatory raises several communication challenges. First,
the network lacks infrastructure and relies exclusively on wireless Inter-Satellite Links
(ISL), with nodes serving as sources, destinations, and routers. In addition, the swarm
operates as a Distributed Space System (DSS): unlike conventional observation tele-
scopes, which carry one or many measuring devices on a single satellite, a swarm of
nanosatellites forms a single instrument distributed across many satellites. The dis-
tributed nature of this system imposes a significant constraint on the data transmission
model, in addition to the lack of infrastructure: each node is required to share its data
with all other nodes in a manner that resembles any-to-any communication. This data-
sharing process is essential for space observatories to generate a global, comprehensive
image of space observations, which is subsequently transmitted to a base station on
Earth.
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Nevertheless, the data generated from space observations can be extensive, reaching
several gigabits per nanosatellite. The simultaneous transmission of these data pack-
ets may result in ISL congestion, potentially leading to packet loss. Each lost packet
degrades the accuracy of the global image, resulting in reduced information transmit-
ted to the base station. Moreover, data transmission poses an energy challenge on the
nanosatellite scale: if the nanosatellite distribution within the swarm is heterogeneous,
the central nanosatellites will more likely transmit a higher volume of packets, which
will consume their energy faster and result in failure by energy depletion, thus caus-
ing a consistent decline in accuracy for the global image. Consequently, a distributed
MANET must distribute the data load fairly among each network node. In a previous
study ([4]), we proposed an approach based on fair graph division of the swarm to bal-
ance the network load among nanosatellites. Dividing the swarm into multiple groups
of nanosatellites significantly alleviates the overall energy consumption of the swarm,
without impacting the functioning of the system. However, the study of network load
alone is not sufficient to assess the reliability of a swarming ad-hoc network because
it is based solely on a robustness metric and cannot thoroughly describe the system’s
reaction to faults.

Therefore, the primary objective of this follow-up study is to provide an extensive
analysis of network reliability under both robustness and resilience constraints, which
is rare in the MANET and DSS literature. Our main contribution lies in emphasiz-
ing the beneficial influence of fair graph division mechanisms on the robustness and
resilience of a distributed MANET, building upon our prior investigations. We intro-
duce a methodology for evaluating robustness and resilience levels before and after
graph division, shedding light on any positive or negative effects that graph division
may have on network reliability. Enhancing these levels is crucial for improving the
system’s reaction to faults and ensuring the proper functioning of the DSS. Our find-
ings reveal that fair graph division significantly enhances the system’s robustness, but
it also highlights the tradeoff aforementioned: while specific resilience metrics may
experience improvement, it comes at the cost of others.

The remainder of this paper is organized as follows: Sec. 2 presents a literature
review of related work, and Sec. 3 introduces the graph division mechanism and the
division algorithms to be evaluated. The methodology used to assess robustness and
resilience levels in a distributed MANET is presented in Sec. 4. The impact analysis
of graph division and the nanosatellite swarm scenario results are detailed in Sec. 5.
Finally, Sec. 6 summarizes our study and discusses future research on the subject.

2 Related work on system reliability

This section presents a compilation of studies relevant to the proposed investigation.
We have categorized this state-of-the-art review into two parts: the first focuses on
robustness, and the second on resilience.
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2.1 Robustness

The robustness of a network characterizes its ability to maintain functionality and
withstand internal and external faults. Achieving a high level of robustness is essential
for countering intentional attacks and ensuring operation in hostile environments.

Energy efficiency is a crucial metric for robustness, particularly in Wireless Sensor
Networks (WSN), where routing protocols play a vital role in finding optimal routes
while considering energy consumption. Hierarchical protocols such as Low Energy
Adaptive Clustering Hierarchy (LEACH) enhance the overall efficiency of WSNs,
increasing network lifetime. A comparative analysis by [5] evaluates 27 routing pro-
tocols derived from LEACH, considering metrics such as scalability, energy efficiency,
and communication method. Although each algorithm has its strengths and weak-
nesses, they collectively contribute to improved network load balancing and reduce
energy consumption, enhancing overall robustness.

Identifying critical nodes is another crucial aspect of building a robust network.
[6] propose an algorithm based on weighted betweenness centrality to pinpoint central
nodes in complex transportation networks. Identifying these major nodes is crucial for
network safety and reliability. The authors demonstrate the accuracy of the algorithm
in identifying critical nodes efficiently, with results consistent with real-world scenarios.

Examining the impact of attacks on MANETs, [7] focus on the targeted attack
scenario in which the highest-centrality nodes are affected in dynamic graphs of varying
density levels. The authors establish betweenness centrality as a precise measure of
node importance in highly connected graphs. However, in sparsely connected graphs,
node degree and eigenvector centrality emerge as more accurate metrics for node
significance.

In the context of robust networks, ensuring a strong Quality of Service (QoS) is
paramount. [8] propose the Reliable and Stable Topological Change Adaptive Ad-hoc
On-demand Multipath Distance Vector (RSTA-AOMDV) routing protocol to main-
tain QoS during data transmission. This protocol considers the local information of
nodes while forwarding packets, resulting in superior performance in terms of Packet
Delivery Ratio (PDR), throughput, and packet transmission time compared to tra-
ditional routing protocols such as AOMDV-MCA or SR-MQMR. While robustness
focuses on preventing failures, resilience addresses the ability to recover from them,
making both aspects interdependent.

2.2 Resilience

The resilience of a network refers to its ability to recover from faults when they occur.
The extensive literature on system resilience and sustainability spans various domains,
including communication networks (referenced in [2]), transportation networks (ref-
erenced in [9]), environmental sustainability (referenced in [10]), and socio-ecological
systems (referenced in [11]). Despite differences across these domains, the definitions
of resilience and the measurement methods remain consistent.

The Internet serves as an example of a communication network with low resilience.
[12] introduce an architectural framework that enhances communication network
resilience by incorporating resilience strategies and principles into the analysis. The
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authors underscore the importance of considering resilience in communication network
design.

In complex networks, [13] present metrics for evaluating resilience, particularly in
resource trade networks. Their evaluation involves statistically characterizing resilience
through redundancy (the number of duplicate elements), diversity (variety, distribu-
tion, and disparity of elements), and modularity (a system’s capacity to fragment into
distinct communities to contain shocks or stress).

For MANETs, [14] propose the Multipath-ChaMeLeon (M-CML) resilient rout-
ing protocol. M-CML, based on a multipath approach, reduces end-to-end delay and
improves the PDR compared to the Optimized Link State Protocol (OLSR), albeit
with a higher number of redundant packets.

Resilience in MANETs also plays a crucial role in disaster management. [15] intro-
duce a hybrid Wireless Multi-Hop Network (WMHN) architecture, combining Flying
Mesh Networks (FMN) and opportunistic MANETs to enhance connectivity with
survivors, reduce packet loss, and decrease end-to-end delay.

To evaluate the resilience of public transportation networks, [16] assesses the num-
ber and availability of alternative paths. A resilient transportation network, defined by
extensive route redundancy, is characterized by efficient and reasonably short alterna-
tive paths that consider travel costs. In addition, the authors evaluate the connectivity
and accessibility of the studied metro networks.

Our position in this literature review is to analyze the impact of a given mechanism
and/or algorithm on both robustness and resilience, simultaneously. We consider that
these two properties should not be studied separately, because they have a mutual
influence on each other. Hence, we propose a general methodology to combine the
assessment of robustness and resilience levels in MANETs. This methodology can
be a great help for researchers conducting comprehensive studies of robustness and
resilience levels in complex systems.

3 Graph division

The main objective of this paper is to highlight the importance of fair graph division
for robustness and resilience improvement in MANETs. Graph division is a mechanism
that assigns each vertex of the graph to a vertex set called group. Note that the edges
remain unchanged; therefore, the groups are still connected with each other and not
physically separated. Graph division is a particularly interesting solution for reducing
the number of routed packets in MANETs, in the same way that graph clustering
helps reduce the number of routed packets in Wireless Sensor Networks ([5]). Graph
division has a different purpose from graph clustering: the core mechanism of graph
division is to obtain groups that are similar to the original graph, whereas the core
mechanism of graph clustering is to obtain groups such that the vertices within a given
group are similar to each other.

We talk about fair graph division when the obtained groups are similar to the
original graph and similar to each other: the group size is a straightforward fairness
metric, but other metrics can be chosen. The evaluation of fairness in graph division
has been thoroughly studied by the authors in a previous paper ([4]).
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3.1 Notations and metrics adaptation

Ad-hoc networks can be efficiently represented by graphs ([17], [18]). Throughout this
paper, we model any MANET as a temporal graph Gt = (Vt, Et), with a vertex set
Vt of size |Vt| = n(t) representing the network nodes (e.g. the nanosatellites), and an
edge set Et of size |Et| = m(t) representing the communication links (e.g. the ISL).
Each edge has a weight representing the communication cost. In our case study, the
cost of using a specific ISL depends on the distance between two nanosatellites. For
simplicity, we assume that the communications are performed over symmetrical duplex
links, which makes Gt an undirected weighted graph.

We consider a MANET scenario in which each member of the network needs to
share its data packet (e.g. interferometry measurements) with all the other members,
and then combine the data to obtain a global cross-correlation matrix of data collected
by the network. This means that each member of the network should communicate
with the others. Mathematically speaking, we denote NG(t) as the total number of
vertex pairs that need to communicate in an undivided graph, called flow number, and
defined as follows:

NG(t) =
n(t)× (n(t)− 1)

2
(1)

The robustness and resilience metrics described in Sec. 4 depend on the flow num-
ber NG(t) in the graph at a given time. However, after performing graph division,
the number of source-destination pairs is altered, because the vertices only need to
communicate with the vertices of the same group as a first step. By limiting data
transmission to intra-group transmissions only, each group computes a partial cross-
correlation data matrix. Once all partial matrices are computed, they are shared
among the groups and recomputed locally with the additional data to finally obtain
the global cross-correlation data matrix. In other words, the flow number of a divided
graph is the sum of intra-group and inter-group transmissions.

We denote G∗
t = (V ∗

t , Et) the graph obtained after graph division. The edge set
remains unchanged, but the vertices are assigned to x groups in V ∗

t :

V ∗
t = {V 0

t , V
1
t , ..., V

x−1
t } and

⋃
i<x

V i
t = Vt

Therefore, the flow number of the undirected, weighted, divided graph G∗
t becomes:

N∗
G(t) =

∑
i<x

ni(t)× (ni(t)− 1)

2
+ x(x− 1) (2)

where the sum represents the number of intra-group transmissions, and the product
represents the number of inter-group transmissions. Thus, the robustness and resilience
metrics defined in Sec. 4 are to be adapted to consider only the new source-destination
pairs, and not the entire graph.

3.2 Graph division algorithms

Graph division algorithms are often inspired by sampling algorithms ([19]). We focus
on two main families of algorithms: random selection algorithms and exploration
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algorithms. The algorithms listed below and their implementation are thoroughly
explained in [20].

Random selection algorithms are based on the random selection of vertices and/or
edges to create a graph sample. In graph division, a random selection algorithm ran-
domly assigns a vertex and/or edge to a group. We choose to work with the Random
Node Division algorithm (RND), which performs random selection on vertices only.
We decided not to work with edge-related algorithms such as Random Edge Division
(RED) because our graph is not guaranteed to be connected; hence, some vertices
might never be assigned to any group.

Exploration algorithms are based on neighborhood discovery of a vertex to select
the members of a given group. The choice among the neighborhood can be random,
or have a certain probability depending on the characteristics of the vertex. A simple
example of exploration algorithms is those based on random walks. We choose to work
with the Multiple Independent Random Walks algorithm (MIRW), which, as the name
suggests, runs several random walks in parallel in a graph. The particularity of MIRW
is that it performs a random jump in the graph whenever a random walk is stuck (i.e.,
there are no more free vertices in the neighborhood), to continue the random walk
elsewhere in the graph: this mechanism ensures that each vertex in the graph belongs
to a group by the end of the division process. Another example of an exploration
algorithm is the Forest Fire Division algorithm (FFD), which selects each vertex in a
neighborhood with a given probability p. Similarly, FFD performs a random jump in
the graph if there are no more available vertices in a neighborhood.

In the following sections, we will also study the clustering algorithm K-means for
comparison: this algorithm is well-known and widely used in the clustering community,
although it is not designed to create similar groups, but rather regroup similar nodes
together. Still, the comparison with division algorithms is necessary to fully grasp the
interest of each technique.

4 Assessment of robustness and resilience levels

We propose a graph theory-based methodology, applicable to divided and undivided
graphs, to assess the levels of robustness and resilience in a network. In this section, we
introduce six graph theory metrics that are used to characterize the levels of robustness
and resilience.

4.1 Definition of robustness metrics

We focus on three metrics to evaluate the level of robustness of the network: the
flow robustness, routing cost and network efficiency. These metrics have been chosen
because, when combined, they accurately describe the dynamics of packet transmission
in a network.

Flow robustness, denoted Ft(G): the flow robustness of a divided or undivided
graph estimates the proportion of the graph that can be reached by a packet through
multi-hop. In graph theory terms, the flow robustness of a graph G at time t is the
proportion of vertex pairs in Gt connected by a path, and is defined as:
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Ft(G) =
ft(G)

NG(t)
(3)

where ft(G) is the number of pairs effectively connected by a path at time t, and
NG(t) is the flow number of the graph defined by Eq. 1 (respectively Eq. 2 for a divided
graph). When the flow robustness equals one, the graph is connected, i.e., each vertex
can reach any other vertex in the graph. Otherwise, the graph is disconnected, so the
packets cannot be spread across the entire graph.

Routing cost, denoted Rt(G): the routing cost is the total number of packets to
be transmitted through the network, including multi-hop retransmissions, in order to
reach all the destination vertices from all the source vertices. We assume that the
packets always take the shortest path between the source and destination vertices.
This assumption is realistic in a multicast routing scenario, where the first instance
of the packet to reach the destination would have travelled the shortest path. In this
study, as described in Sec. 3.1, all vertices should share their data packets with all
other vertices of the network: this means that the vertices in the graph act as sources
and destinations. The routing cost of a graph G at time t can be simply defined as:

Rt(G) =
∑

u,v∈V 2
t

d(u, v) (4)

where d(u, v) is the shortest path length between the vertices u and v, also called
distance between u and v. The routing cost must be as small as possible because any
node in a MANET consumes energy when transmitting a packet. Thus, by transmitting
fewer packets in the network, the nodes save more energy and can last longer.

Network efficiency, denoted Θt(G): the network efficiency is a coefficient between
0 and 1 that characterizes the distances between each vertex pair in the graph: if the
distances are globally short, then the network efficiency is high. This means that the
packets will need to perform fewer hops and thus be retransmitted less often, eventually
saving energy for the nodes of the network. To evaluate the network efficiency, we first
compute the pair efficiency for each vertex pair in Gt, denoted θ(u, v):

θ(u, v) =
1

d(u, v)

The pair efficiency of vertices u and v equals 0 if there is no path connecting these
vertices, and 1 if they are adjacent. The network efficiency of a graph G at time t is
then simply defined as the average pair efficiency in Gt:

Θt(G) =
1

2NG(t)

∑
u,v∈V 2

t ,u ̸=v

θ(u, v) (5)

In a divided graph G∗
t , the network efficiency only accounts for the source-

destination pairs defined by the groups and is written as:

Θt(G
∗) =

1

2N∗
G(t)

∑
V i
t ∈V ∗

t

 ∑
u,v∈(V i

t )
2

θ(u, v)

 (6)
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Either way, in a robust system, the network efficiency should tend to 1 as it implies
that fewer packet retransmissions are needed for multi-hop.

4.2 Resilience

As stated in Sec. 2.2, the resilience can be characterized by various metrics. We propose
the following three metrics to evaluate the level of resilience in the network: path
redundancy, path disparity, and node criticity. We selected these metrics because they
thoroughly evaluate the reliability of the paths taken by the packets.

Path redundancy, denoted Ψt(G): the path redundancy is a measure of the number
of alternative paths in the graph. A path is considered an alternative if it passes
through at least one vertex different from the reference path without being consistently
longer than the shortest path. A great path redundancy is proof of a strong level
of resilience, because the packets can be routed from source to destination through
different vertices, should a vertex go down. Path redundancy is defined as the average
number of alternative paths between each two vertices in Gt:

Ψt(G) =
1

2NG(t)

∑
u,v∈V 2

t

|Puv| (7)

where Puv is the set of paths connecting vertices u and v. If there is no path
between vertices u and v, the path redundancy of this pair equals 0.

Path disparity, denoted ∆t(G): the path disparity is complementary to path redun-
dancy. It is a measure of the difference between the alternative paths, i.e., the number
of different vertices composing the paths. A high path disparity ensures that in the
presence of a fault on a path, a packet can transit on a completely separate path and
hence not be impacted by the fault. We first compute, for each vertex pair, the pro-
portion of different vertices in the alternative paths available between the two vertices,
which is called pair disparity:

δ(u, v) =
1

2|Puv|
∑

pi,pj∈P 2
uv

|pi(u, v)⊕ pj(u, v)|
d(u, v)− 1

where the numerator represents the number of distinct vertices between the two
alternative paths pi and pj . The pair disparity is maximal if the paths are vertex-
disjoint, i.e., they share no common vertex (apart from source and destination), and is
minimal if the paths are identical, or if there is at most one path between two vertices.
Fig. 1 illustrates the computation of pair disparity. The path disparity of a graph G
at time t is then easily derived as the average pair disparity of the graph:

∆t(G) =
1

2NG(t)

∑
u,v∈V 2

t

δ(u, v) (8)

Node criticity : the node criticity is an indicator of the presence and number of
critical vertices in a graph. A vertex is considered critical if a significant proportion of
traffic passes through it, i.e., if it is present in a large proportion of shortest paths in
the graph. Thus, node criticity is usually based on a centrality measure of the vertices,
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Fig. 1: Illustration of pair disparity computation: the pair disparity between vertices
0 and 5 equals 2

3 , or approximately 67%.

such as degree centrality or betweenness centrality ([6]). We choose the normalized
betweenness centrality as our criticity measure, defined for a vertex i as follows:

BCt(i) =
1

2NG(t)

∑
u,v∈V 2

t

|Puv(i)|
|Puv|

(9)

where Puv(i) is the set of paths from u to v passing through vertex i. The distribu-
tion of betweenness centrality values is sufficient to describe node criticity; however,
the analysis of the number of extreme values can be a great addition to grasp the
dynamics of the graph. As such, we define the critical set Ct(G) of a graph as the
subset of vertices whose betweenness centrality is higher than a threshold value ϵ at a
given time t:

Ct(G) = {i ∈ Vt |BCt(i) ≥ ϵ} (10)

By definition, the critical set contains the most critical vertices of a graph, i.e., the
vertices that are the most vulnerable to faults. A resilient network tends to have the
smallest critical set possible.

To summarize, we have presented three metrics for robustness assessment (flow
robustness, routing cost and network efficiency) and three metrics for resilience assess-
ment (path redundancy, path disparity and node criticality). In the following section,
we demonstrate the relevance of this selection of metrics to thoroughly characterize
the dynamics of packet transmission and the reliability of the available paths in the
network.

5 Impact analysis of graph division: application to
nanosatellite swarms

In this section, we present a practical application of the theoretical approach described
above. We focus on a nanosatellite swarm deployed in orbit around the Moon to
perform space observations by analyzing very low frequencies. We first describe the
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Fig. 2: Illustration of the four stages of operation of the swarm: observation (1),
computation (2), uplink (3) and idle (4).

functioning of the system in Sec. 5.1 as well as the dataset used in Sec. 5.2. Finally, we
analyse the impact of graph division on system reliability in Sec. 5.3 and prove that
fair graph division makes a non-trivial improvement in the robustness and resilience
of this system.

5.1 Context of the operation

The study of Dark Age signals is a key research topic for understanding the early
days of the universe and the formation of stars ([21]). These signals consist of very
low-frequency interferences, typically below 10 MHz. To this day, low-frequency inter-
ferometers are deployed on the surface of the Earth, in extreme weather conditions
for better observation (e.g. the interferometers ALMA and VLTI, both deployed in
the Atacama desert in Chile). Unfortunately, low-frequency signals are still hardly
observable by these interferometers because of ionospheric distortion and Radio Fre-
quency Interferences (RFI). One solution to alleviate this issue is to deploy a swarm of
nanosatellites directly into space, as presented in the Nanosatellites for a Radio Inter-
ferometer Observatory in Space study (NOIRE) carried out by [3]. This study proves
that the deployment of a nanosatellite swarm in orbit around the Moon is a viable
solution for space observations of Dark Age signals, as the Moon naturally shields the
swarm from Earth’s RFI when the swarm flies over the dark side of the Moon.

To be considered a valid space radiotelescope, the nanosatellite swarm must operate
similarly to ground-based telescopes. There are four main stages in the process, as
depicted in Fig. 2:

1. Observation phase: while on the dark side of the Moon, i.e., when the swarm
is shielded from the RFI, each nanosatellite collects raw observation data of low
frequencies from space;

2. Computation phase: each nanosatellite shares its data with each other member
of the swarm and receives their data in return, then computes a cross-correlation
matrix from all available data to produce a global interferometry image of space;

3. Uplink phase: the swarm finally uplinks the image to a base station on Earth,
preferably when the swarm-to-Earth distance is minimal.
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(a) Evolution of average vertex strength
over one revolution

(b) Strength distributions at three levels
of swarm density: low (a), medium (b),
and high (c)

Fig. 3: Estimation of swarm density: analysis of vertex strength

4. Idle phase: the nanosatellites restore their energy, and the swarm can spatially
reconfigure if requested by the base station.

It is primordial for such a system to be reliable, i.e., both robust and resilient, to
perform its mission for the longest time possible.

5.2 Description of the dataset

We use nanosatellite position data generated by a trajectory simulator developed for
the French National Institute of Space Studies (CNES, [22]). We consider a swarm
of 50 nanosatellites orbiting the Moon. The dataset provides the positions of each
nanosatellite of the swarm and their trajectory over time. There is no bootstrap stage,
so the behavior of the swarm is stable over time.

The data consist of the (x, y, z) coordinates of each nanosatellite in the Moon-
centered coordinate system, sampled every 10 seconds over a complete duration of 24
hours. The swarm performs a revolution around the Moon in 5 hours. The behavior
of the swarm is quasi-identical for each revolution, so we choose to analyze only one
period of revolution for simplicity.

During a revolution, the topology of the swarm evolves, particularly in terms
of nanosatellite density. Fig. 3a shows the temporal evolution of the average vertex
strength of the swarm, which is equivalent to the vertex degree for weighted graphs. We
can easily see that the swarm density is time-dependent, as the average vertex strength
is not constant in time. Fig. 3b displays a close-up of vertex strength distribution in
the swarm, at three typical levels of density: a low-density topology, represented by a
low average strength (point a), a medium-density topology, represented by a medium
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average strength (point b), and a high-density topology, represented by a high aver-
age strength (point c). We can see that the statistical range increases with the level of
density, meaning that the strength distribution is particularly heterogeneous in dense
topologies. This also indicates that the swarm density is very heterogeneous, which
implies that some nodes located in dense areas can be overused and consume their
energy faster than the average.

The evaluation protocol of robustness and resilience metrics, presented below, is
performed over the complete revolution as well as the three topology close-ups to fully
grasp the dynamics of robustness and resilience metrics in the swarm.

5.3 Simulation results

To understand the influence of fair graph division on the robustness and resilience of
the network, we first compute the robustness metrics (flow robustness, routing cost
and network efficiency) and resilience metrics (path redundancy, path disparity and
node criticity) on the original undivided graph. To do so, we compute these metrics at
each timestamp over a complete revolution around the Moon. These results represent
the reference performance of the network in terms of robustness and resilience.

Then, we partition the graph into groups with the chosen algorithms (RND, MIRW,
FFD or k-means) in the initial phase of the swarm (i.e., at timestamp 0), and fix the
groups for the rest of the simulation so that the vertices cannot change groups dur-
ing the simulation. The results presented below are based on a graph division into
10 groups, because it is the optimal number of groups to minimize the overall energy
consumption of the swarm (see previous studies in [4] and [20]). We proceed to com-
pute robustness and resilience metrics on the divided graph, similarly to the original
graph. Because the proposed algorithms are based on random mechanisms, this oper-
ation (division and computation) is independently repeated 30 times to obtain a good
estimation of the behavior of the divided graph. These results are then compared with
the reference results of the original graph to highlight the impact of graph division on
the robustness and resilience of the swarm. Namely, we analyze the performance of
each algorithm on two aspects: the temporal evolution of the metrics, and the distri-
bution of metrics values at three typical levels of network density (low, medium and
high), as presented in Sec. 5.2.

5.3.1 Reference results

Fig. 4 shows the temporal evolution of each metric over a complete revolution: the blue
curves represent the robustness metrics (flow robustness, routing cost and network
efficiency), while red curves represent the resilience metrics (path redundancy, path
disparity and node criticity).

Regarding robustness metrics, we observe that the flow robustness is overall equal
to 1 (or 100%), except during a short period of time when it drops to 96%, discon-
necting the graph. Nonetheless, the graph is connected the majority of the time. The
routing cost slightly varies in time and is equal to 8170 transmissions in average, which
means that the network needs to handle over 8000 voluminous data packet transmis-
sions in order to complete an image computation. The network efficiency oscillates
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Fig. 4: Reference results on temporal evolution of robustness metrics (blue) and
resilience metrics (red) on the undivided graph

around 45%, which can seem low but is not: from the definition by Eq. 5, the efficiency
of a path of length 2 (i.e., 2 hops between 3 vertices) is equal to 50% despite the path
being particularly short, so an average network efficiency of 45% is fairly acceptable.

Regarding resilience metrics, we first notice that the path redundancy is very high
at some times, reaching over 15 alternative paths between a pair of vertices. This level
of redundancy is even more impressive because of our definition of alternative paths:
in our case study, we define alternative paths as the set of all shortest paths between
two vertices, and only the shortest paths. In other words, the path redundancy could
be much higher if we decided to take into account slightly longer paths, but we do
not deem it necessary in such graph. The disparity of these alternative paths is less
impressive (around 30% in average), implying that the majority of the paths pass
through the same vertices. It also indicates that a faulty node is very likely to affect
multiple paths simultaneously. Finally, the node criticity is rather high: in average,
15 out of 50 nodes in the swarm are critical. This important criticity is a sign of low
resilience and can be caused by the heterogeneous distribution of nanosatellites within
the swarm.

In conclusion, the system shows a good level of robustness and is mostly able to
withstand and avoid faults. However, the large path redundancy is compensated by
poor disparity and high node criticity, which drastically lowers the level of resilience
of the system, i.e., its capacity to maintain functionality in the presence of faults.
In these conditions, a reliability mechanism needs to be implemented to guarantee a
good quality of service.
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5.3.2 Results on robustness

Fig. 5 shows two types of figures: temporal curves in the left column, and boxplots
in the right column. The temporal evolutions do not depict the values of the metrics
at each timestamp, but rather the deviation of the metrics obtained after division by
comparison to the reference metrics. The deviation can be positive, negative, or trivial
in some cases. The figures in the right column show the distribution of each metric
obtained with each graph partitioning (original, RND, MIRW, FFD and k-means)
and for each level of network density (low, medium and high). The boxplots show the
actual value of each metric, in opposition to the temporal deviation curves.

Fig. 5 depicts the results of robustness, which demonstrates that each division and
clustering algorithm has a positive impact on robustness over time and at any network
density level. The biggest gain is obtained on the routing cost (Fig. 5c), where each
algorithm divides by almost ten the number of packets to transmit in the network (pay
attention to the deviation scale). We can see in Fig. 5d that MIRW and k-means get
the lowest routing cost independent of network density, in contrast to FFD, which gets
the highest routing cost. This significant reduction in routing cost translates directly
into longer mission durations and improved reliability in harsh environments. In either
case, the reduction in packet transmission is drastic and has a very positive influence
on the system’s robustness. The flow robustness also increases after division, but very
slightly as the graph is connected most of the time. K-means seems to mitigate the
disconnection the best when it occurs (Fig. 5b). However, the gain is very trivial.
Finally, regarding the network efficiency, Fig. 5e and Fig. 5f show that k-means and
MIRW both stand out in performance, and improve the network efficiency from 45%
to over 50%, which is an interesting improvement.

5.3.3 Results on resilience

The results on resilience are globally more mixed than those on robustness. Fig. 6
is arranged similarly to Fig. 5, with temporal curves on the left representing devia-
tions, and boxplots on the right for distributions. This figure shows that none of the
algorithms can improve all robustness and resilience metrics simultaneously.

The only improvement is performed by MIRW and k-means, and deals with the
size of the critical set, as shown in Fig. 6e and Fig. 6f. We can clearly notice a reduction
in the number of critical vertices with k-means, although MIRW performs poorly
when the node density is low. On the other hand, RND and FFD tend to increase
the number of critical vertices. Then, the results obtained for path redundancy are
shown in Fig. 6a and Fig. 6b, proving that RND is the only algorithm that does not
have a negative impact on resilience by not decreasing the redundancy of the original
network. MIRW and k-means decrease the path redundancy level the most, which
is to be expected as they perform the best at reducing the routing cost, and these
two metrics are clearly antagonistic. A very similar observation is made on the path
disparity presented in Fig. 6c and Fig. 6d. Despite the negative impact on resilience,
it is important to highlight that MIRW and k-means decrease the redundancy level
of an extremely redundant graph to begin with: depending on the application, such
levels of path redundancy and disparity can be acceptable.
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In conclusion, the algorithms MIRW and k-means algorithms clearly demonstrate
better performance. K-means even outperforms MIRW in a few situations. However,
in practice, an algorithm such as MIRW would be more interesting than k-means due
to its computational complexity: indeed, MIRW is a distributed sequential algorithm
with a very low complexity that scales easily. K-means, on the other hand, shows
excellent results but comes at the cost of its complexity, which can cause problems
when scaling large networks. Thus, MIRW is the best reliability mechanism to deploy
in a nanosatellite swarm with limited computational power onboard.

6 Conclusion and future research

Optimization of the reliability, i.e., the robustness and resilience of a system, is crucial
in Mobile Ad Hoc Networks (MANETs) and complex systems. A robust network can
withstand internal and external faults, whereas a resilient network maintains function-
ality despite faults. This study focuses on enhancing the robustness and resilience of
MANETs, which are treated as temporal graphs, through network architecture opti-
mization. Our approach involves graph division by assigning each vertex to a group
without isolating them. We examine the impact of random selection algorithms (RND),
exploration algorithms (MIRW and FFD), and a clustering algorithm (k-means) on
the original graph by analyzing flow robustness, routing cost, network efficiency, path
redundancy, path disparity, and node criticity. Applying this evaluation protocol to the
practical application of a nanosatellite swarm orbiting the Moon acting as a distributed
radio-telescope, we demonstrate that division and clustering algorithms significantly
improve the robustness of the system by reducing routing costs. Notably, MIRW and
k-means outperform FFD and RND in reducing routing costs. MIRW and k-means
overall excel in robustness optimization compared to the other algorithms. Regard-
ing network resilience, MIRW and k-means decrease the number of critical vertices,
but also decrease path redundancy and disparity, resulting in a mixed impact on the
level of resilience. Overall, our results demonstrate that no algorithm is perfect for
improving both robustness and resilience simultaneously, as some of their metrics are
antagonistic. In conclusion, graph division and clustering techniques can drastically
enhance the robustness of a system, but it comes at the cost of redundancy. Depending
on the application and the original system, it may be problematic: in our study case,
the original network is redundant enough to alleviate this issue and find an acceptable
trade-off.

These findings not only enhance the theoretical understanding of MANETs but
also provide actionable insights for real-world deployments in nanosatellite swarms.

Future research should explore the implementation of new algorithms derived from
graph division and clustering techniques while considering their computational com-
plexity (MIRW is lighter than k-means, but its performances could be improved).
The search for new mechanisms that mitigate the robustness-resilience tradeoff is also
crucial, as these two aspects should no longer be analyzed separately in exhaustive
studies.

Acknowledgements. The authors would like to thank the CNES and the TéSA
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(a) Flow robustness (temporal) (b) Flow robustness (distribution)

(c) Routing cost (temporal) (d) Routing cost (distribution)

(e) Network efficiency (temporal) (f) Network efficiency (distribution)

Fig. 5: Temporal evolution of robustness metrics (left) and their distributions at three
levels of network density (right)
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(a) Path redundancy (temporal) (b) Path redundancy (distribution)

(c) Path disparity (temporal) (d) Path disparity (distribution)

(e) Critical set size (temporal) (f) Critical set size (distribution)

Fig. 6: Temporal evolution of resilience metrics (left) and their distributions at three
levels of network density (right) 18
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sur essaims de nanosatellites. PhD thesis, Université de Toulouse (2024)
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