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Abstract

We investigate a set of methods aimed at enhancing the resilience and
robustness of a mobile communication network, with a focus on a case in-
volving a nanosatellite swarm network. The proposed method focuses on
graph division techniques, aiming to recover from impairments while pre-
serving the primary function or mission of the mobile network. By exam-
ining the effects of exploration and random selection algorithms on network
robustness and resilience, our findings indicate that fair graph division con-
sistently strengthens system robustness by reducing the number of packets
to transmit, regardless of the algorithm employed. Additionally, our anal-
ysis highlights the superior performance of exploration algorithms, such as
MIRW, in enhancing robustness and resilience.
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1. Introduction

Enhancing the robustness and resilience of complex systems and ad hoc
networks has been a focal area of research for numerous years. System ro-
bustness is its ability to withstand internal and external faults. For instance,
a drone fleet is deemed robust if it incorporates an energy management mech-
anism that allows for reduced energy consumption, extends its lifespan, and
minimizes the risk of failure due to energy depletion (Alyassi et al. (2023)).
On the other hand, resilience characterizes a system’s ability to maintain
satisfactory functionality despite faults. Cellular networks demonstrate re-
silience by deploying redundant equipment to address network faults (Rak
and Hutchison (2020)). While adding redundancy is a common strategy to
enhance resilience, ad hoc networks, lacking infrastructure, cannot rely on ex-
ternal equipment for fault tolerance improvement. Consequently, considering
robustness and resilience is crucial during the design of these systems.

This study examines a scenario involving a swarm of nanosatellites in
orbit around the Moon, functioning as a distributed radio telescope in outer
space (Cecconi et al. (2018)). This system operates as a Mobile Ad-hoc Net-
work (MANET), and configuring it as a space observatory poses communi-
cation challenges. As mentioned earlier, the network lacks infrastructure and
relies exclusively on wireless Inter-Satellite Links (ISL), with nodes serving
as sources, destinations, and routers. In addition, the system must operate
distributedly: unlike conventional observation telescopes, which carry one or
more measuring devices on a single satellite, a swarm of nanosatellites com-
prises a single instrument spread across multiple satellites. The distributed
nature of this system imposes a significant constraint on the data transmis-
sion model, in addition to the absence of infrastructure. In this case study,
each node is required to share its data with all other nodes in a manner
that resembles any-to-any communication. This data-sharing process is es-
sential for the space observatory to generate a comprehensive image of space
observation, which is subsequently transmitted to a base station on Earth.

Nevertheless, the data generated from space observations can be exten-
sive, reaching several gigabits per nanosatellite. The simultaneous trans-
mission of these data packets may result in Inter-Satellite Link (ISL) con-
gestion, potentially leading to packet loss. Each lost packet diminishes the
accuracy of the global image, resulting in reduced information transmitted
to the base station. Moreover, data transmission poses an energy challenge
on the nanosatellite scale. The central nanosatellites within the swarm are
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more prone to transmitting a higher volume of packets, depleting their en-
ergy more rapidly and causing a subsequent decline in accuracy for the global
image. Consequently, a distributed MANET must distribute the data load
among each network node equitably. The authors proposed an approach
based on a fair graph division of the swarm to balance the network load
among nanosatellites, as discussed in Akopyan et al. (2023). Dividing the
swarm into multiple groups of nanosatellites significantly mitigates the over-
all energy consumption of the swarm.

This work’s primary contribution lies in emphasizing the beneficial influ-
ence of fair graph division on the robustness and resilience of a distributed
MANET, building upon our prior investigations. We introduce a method-
ology for evaluating robustness and resilience levels before and after graph
division, shedding light on any positive or negative effects that graph division
may impose on the network’s original robustness and resilience. Enhancing
these levels is crucial for improving the system’s fault tolerance and ensuring
the proper functioning of the communication scheme. Our findings reveal
that fair graph division significantly enhances the system’s robustness, and
while specific resilience metrics may experience improvement, it comes at the
cost of others.

The rest of the paper is organized as follows: Sec. 2 introduces the graph
division mechanism and the division algorithms that will be evaluated. The
methodology for assessing robustness and resilience levels in a distributed
MANET is presented in Sec. 3. The impact analysis of graph division and
the results on the nanosatellite swarm are detailed in Sec. 4. Finally, Sec. 5
presents a literature review of the related work, and Sec. 6 summarizes our
study and discusses future research on the subject.

2. Graph division

The main objective of this paper is to highlight the importance of fair
graph division for robustness and resilience improvement in MANETs. Graph
division is a mechanism that assigns each vertex of the graph to a vertex set
called group. Note that the edges remain unchanged; therefore, the groups
are still connected with each other and not physically separated. Graph di-
vision is a particularly interesting solution for reducing the number of routed
packets in MANETs, in the same way that graph clustering helps reduce
the number of routed packets in Wireless Sensor Networks (Daanoune et al.
(2021)). Graph division has a different purpose from graph clustering: the
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core mechanism of graph division is to obtain groups that are similar to the
original graph, whereas the core mechanism of graph clustering is to obtain
groups such that the vertices within a given group are similar to each other.

We talk about fair graph division when the obtained groups are similar
to the original graph and similar to each other: the group size is a straight-
forward fairness metric, but other metrics can be chosen. The evaluation of
fairness in graph division has been thoroughly studied by the authors in a
previous paper (Akopyan et al. (2023)).

2.1. Notations and metrics adaptation

Ad hoc networks can be efficiently represented by graphs (Rajan et al.
(2008)). Throughout this paper, we model any MANET as a temporal graph
Gt = (Vt(G), Et(G)), or simply Gt = (Vt, Et), with a vertex set Vt represent-
ing, for example, sensors, vehicles, or satellites, and an edge set Et represent-
ing communication links (Robinson et al. (2019)). For simplicity, we assume
that the communications are performed over symmetrical duplex links, which
makes Gt an undirected graph. We also assume that the number of vertices
is constant over time, unless stated otherwise.

We consider a MANET scenario in which each member of the network
needs to share its data packet (e.g. atmospheric records or interferometry
measurements) with all the other members, and then combine the data to
obtain a global cross-correlation matrix of data collected by the network.
This means that each member of the network should communicate with the
others. Mathematically speaking, we denoteNG as the total number of vertex
pairs that need to communicate in an undivided graph G, defined as follows:

NG =
|Vt|(|Vt| − 1)

2
=

n(n− 1)

2
(1)

The number of vertex pairs is constant over time because it depends only
on the number of vertices in the graph. However, this number would be time
dependent if we assumed that the number of vertices was not constant over
time.

The robustness and resilience metrics described in Sec. 3 depend on the
number of vertex pairs NG in the graph. However, after performing graph di-
vision, the number of source-destination pairs is altered, because the vertices
only need to communicate with the vertices of the same group. By limiting
data transmission to intra-group transmissions only, each group computes
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a partial cross-correlation data matrix. Once all partial matrices are com-
puted, they are shared among the groups and recomputed locally with the
additional data to finally obtain the global cross-correlation data matrix.

We denote G∗
t = (V ∗

t , Et) the graph obtained after graph division. The
edge set remains unchanged, but the vertices are assigned to x groups in V ∗

t :

V ∗
t = {V 0

t , V
1
t , ..., V

x−1
t } and

⋃
i<x

V i
t = Vt

Moreover, the number of vertex pairs in the divided graph G∗ becomes:

N∗
G =

∑
i<x

|V i|(|V i| − 1)

2
+ x(x− 1)

where the sum represents the number of intra-group transmissions, and
the product represents the number of inter-group transmissions. Because
the latter is usually negligible compared with the first, we can simplify the
formula to be:

N∗
G =

∑
i<x

|V i|(|V i| − 1)

2
(2)

Thus, the robustness and resilience metrics defined in Sec. 3 are to be
adapted to consider only the new source-destination pairs, and not the entire
graph.

2.2. Graph division algorithms

Graph division algorithms are often inspired by sampling algorithms. We
focus on two main families of algorithms: random selection algorithms and
exploration algorithms.

Random selection algorithms are based on the random selection of vertices
and/or edges to create a graph sample. In graph division, a random selection
algorithm randomly assigns a vertex and/or edge to a group. We choose to
work with the Random Node Division algorithm (RND), which performs
random selection on vertices only. We decided not to work with edge-related
algorithms such as Random Edge Division (RED) because our graph is not
guaranteed to be connected; hence, some vertices might never be assigned to
any group.

Exploration algorithms are based on neighborhood discovery of a vertex
to select the members of a given group. The choice among the neighborhood
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can be random, or have a certain probability depending on the characteristics
of the vertex. A simple example of exploration algorithms is those based on
random walks. We choose to work with the Multiple Independent Random
Walks algorithm (MIRW), which, as the name suggests, runs several random
walks in parallel in a graph. The particularity of MIRW is that it a random
jump in the graph whenever a random walk is stuck (i.e., there are no more
free vertices in the neighborhood), to continue the random walk elsewhere in
the graph: this mechanism ensures that each vertex in the graph belongs to a
group by the end of the division process. Another example of an exploration
algorithm is the Forest Fire Division algorithm (FFD), which selects each
vertex in a neighborhood with a given probability p. Similarly, FFD performs
a random jump in the graph if there are no more available vertices in a
neighborhood.

3. Assessment of the robustness and resilience levels

We propose a graph theory-based methodology, applicable to divided and
undivided graphs, to assess the levels of robustness and resilience in a net-
work. In this section, we introduce six graph theory metrics that are used to
characterize the levels of robustness and resilience.

3.1. Definition of robustness metrics

We focus on three metrics to evaluate the level of robustness of the net-
work: the flow robustness, routing cost and network efficiency. These metrics
have been chosen because, when combined, they accurately describe the dy-
namics of packet transmission in a network.

Flow robustness, denoted Ft(G): the flow robustness of a divided or un-
divided graph estimates the proportion of the graph that can be reached by
a packet through multi-hop. In graph theory terms, the flow robustness of
a graph G at time t is the proportion of vertex pairs in Gt connected by a
path, and is defined as:

Ft(G) =
NG(t)

NG

(3)

where NG is the number of vertex pairs in the graph defined by Eq. 1
(respectively Eq. 2 for a divided graph), and NG(t) is the number of pairs
effectively connected by a path at time t. When the flow robustness equals
one, the graph is connected, i.e., each vertex can reach any other vertex in
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the graph. Otherwise, the graph is disconnected, so the packets cannot be
spread across the entire graph.

Routing cost, denoted Rt(G): the routing cost is the total number of
packets to be transmitted through the network to reach all the destination
vertices from all the source vertices. We consider a unicast routing strategy
for our scenario and assume that the packets always take the shortest path
between the source and destination vertices. In this study, as described in
Sec. 2.1, all vertices should share their data packets with all other vertices of
the network. This means that the vertices in the graph act as sources and
destinations. The routing cost of a graph G at time t can be simply defined
as:

Rt(G) =
∑

u,v∈V 2
t

d(u, v) (4)

where d(u, v) is the shortest path length between the vertices u and v, also
called the distance between u and v. The routing cost must be as small as
possible because any node in a MANET consumes energy when transmitting
a packet. Thus, by transmitting fewer packets in the network, the nodes save
more energy and can last longer.

Network efficiency, denoted Θt(G): the network efficiency is a coefficient
between 0 and 1 that characterizes the distances between each vertex pair in
the graph. If the distances are globally short, i.e., the network efficiency is
high, then the packets will need to perform fewer hops and thus be retrans-
mitted less often, eventually saving energy for the nodes of the network. To
evaluate the network efficiency, we first compute the pair efficiency for each
vertex pair in Gt, denoted θ(u, v):

θ(u, v) =
1

d(u, v)

The pair efficiency of vertices u and v equals 0 if there is no path con-
necting these vertices. The network efficiency of a graph G at time t is then
simply defined as the average pair efficiency in Gt:

Θt(G) =
1

2NG

∑
u,v∈V 2

t ,u̸=v

θ(u, v) (5)

The network efficiency tends to 1 if most vertex pairs are connected by
very short paths, and it tends to 0 if several vertex pairs are not connected
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by a path and/or the distances are very large.

3.2. Resilience

As stated in Sec. 5.2, the resilience can be characterized by various met-
rics. We propose the following three metrics to evaluate the level of resilience
in the network: path redundancy, path disparity, and node criticity. We se-
lected these metrics because they thoroughly evaluate the reliability of the
paths taken by the packets.

Path redundancy, denoted Ψt(G): the path redundancy is a measure of
the number of alternative paths in the graph. A path is considered an al-
ternative if it passes through at least one vertex different from the reference
path. A great path redundancy is proof of a strong level of resilience be-
cause the packets can be routed from source to destination through different
vertices if a vertex goes down. Path redundancy is defined as the average
number of alternative paths between each two vertices in Gt:

Ψt(G) =
1

2NG

∑
u,v∈V 2

t

|Puv| (6)

where Puv is the set of paths connecting vertices u and v. If there is no
path between vertices u and v, the path redundancy of this pair equals 0.

Path disparity, denoted ∆t(G): the path disparity is complementary to
path redundancy. It is a measure of the difference between the alternative
paths, i.e., the number of different edges composing the paths. A high path
disparity ensures that in the presence of a fault on a path, a packet can transit
on a completely separate path and hence not be impacted by the fault. We
first compute, for each vertex pair, the proportion of different edges between
the alternative paths available between the two vertices, which is called pair
disparity:

δ(u, v) =
1

2|Puv|
∑

pi,pj∈P 2
uv

|pi(u, v)⊕ pj(u, v)|
d(u, v)

where the numerator represents the number of distinct edges between the
two alternative paths pi and pj. The pair disparity is maximal if the paths are
edge-disjoint, i.e., they share no common edge, and is minimal if the paths
are identical, or if there is at most one path between two vertices. Fig. 1
illustrates the computation of pair disparity. The path disparity of a graph
G at time t is then easily derived as the average pair disparity of the graph:
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Figure 1: Illustration of pair disparity computation: the pair disparity between vertices 0
and 5 equals 7

9 , or approximately 0.78.

∆t(G) =
1

2NG

∑
u,v∈V 2

t

δ(u, v) (7)

Node criticity: the node criticity is an indicator of the presence and num-
ber of critical vertices in a graph. Node criticity is usually based on a central-
ity measure of the vertices, such as degree centrality or betweenness centrality
(Liu et al. (2019)). We choose the normalized betweenness centrality as our
criticity measure, defined for a vertex i as follows:

BCt(i) =
1

2NG

∑
u,v∈V 2

t

|Puv(i)|
|Puv|

(8)

where Puv(i) is the set of paths from u to v passing through vertex i. The
distribution of betweenness centrality values is sufficient to describe node
criticity; however, the analysis of the number of extreme values can be a
great addition to grasp the dynamics of the graph. As such, we define the
critical set Ct(G) of a graph as the subset of vertices whose betweenness
centrality is higher than the threshold value ϵ at a given time t:

Ct(G) = {i ∈ Vt |BCt(i) ≥ ϵ} (9)

By definition, the critical set contains the most critical vertices of a graph,
i.e., the vertices that are the most vulnerable to faults. A resilient network
tends to have the smallest critical set possible.
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To summarize, we have presented three metrics for robustness assessment
(flow robustness, routing cost and network efficiency) and three metrics for
resilience assessment (path redundancy, path disparity and node criticality).
In the following section, we demonstrate the relevance of this selection of
metrics to thoroughly characterize the dynamics of packet transmission and
the reliability of the available paths in the network.

4. Impact analysis of graph division: application to nanosatellite
swarms

In this section, we present a practical application of the theoretical ap-
proach described above. We focus on a nanosatellite swarm deployed in orbit
around the Moon to perform space observations by analyzing very low fre-
quencies. We prove in Sec. 4.4 that fair graph division makes a non-trivial
improvement in the robustness and resilience of such a system.

4.1. Context of the operation

The study of Dark Age signals is a key research topic for understanding
the early days of the universe and the formation of stars (Brown and Novaco
(1978)). These signals consist of very low-frequency interferences, typically
below 10 MHz. Unfortunately, they are hardly observable by current ground-
based interferometers because of ionospheric distortion and Radio Frequency
Interferences (RFI). One solution to alleviate this issue is to deploy a swarm
of nanosatellites directly into space, as presented in the Nanosatellites for a
Radio Interferometer Observatory in Space study (NOIRE) carried out by
Cecconi et al. (2018). This study proves that the deployment of a nanosatel-
lite swarm in orbit around the Moon is a viable solution for space observations
of Dark Age signals while being protected from the Earth’s RFI.

To be considered a valid space radiotelescope, the nanosatellite swarm
must operate similarly to ground-based telescopes. There are four main
stages in the process:

1. while on the dark side of the Moon, i.e. when the swarm is shielded
from the RFI, each nanosatellite collects raw observation data from
space;

2. each nanosatellite shares its data with each other member of the swarm
and receives their data in return;
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(a) Evolution of average swarm degree over one
revolution

(b) Degree distributions at three levels of swarm
density: low (a), medium (b), and high (c)

Figure 2: Estimation of swarm density: analysis of degree

3. each nanosatellite computes a cross-correlation matrix from all avail-
able data to produce a global interferometry image of space;

4. the swarm finally uplinks the image to a base station on Earth, prefer-
ably when the swarm-to-Earth distance is minimal.

It is primordial for such a system to be robust and resilient to perform
its mission for the longest time possible.

4.2. Description of the dataset

We use nanosatellite position data generated synthetically using a Mat-
lab simulator (Paimblanc and Mailhes (2018)). We consider a swarm of 50
nanosatellites orbiting the Moon. The dataset provides the positions of each
nanosatellite of the swarm and their trajectory over time. There is no boot-
strap stage, so the behavior of the swarm is stable over time.

The data consist of the (x, y, z) coordinates of each nanosatellite in the
Moon-centered coordinate system, sampled every 10 seconds over a complete
duration of 24 hours. The swarm performs a revolution around the Moon in
5 hours. The behavior of the swarm is quasi-identical for each revolution, so
we choose to analyze only one period of revolution for simplicity.

During a revolution, the topology of the swarm evolves, particularly in
terms of nanosatellite density. Fig. 2a shows the temporal evolution of the
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average degree of the swarm, and Fig. 2b displays a close-up of the degree
distribution in the swarm at three typical levels of density: a low-density
topology, represented by a low average degree (point a), a medium-density
topology, represented by a medium average degree (point b), and a high-
density topology, represented by a high average degree (point c). When the
density is low, around 20% of vertices are isolated and 50% have less than 3
neighbors. When the density is medium, some vertices are still isolated but
50% of vertices have at least 8 neighbors. Finally, when the density is high,
there are no more isolated vertices and 50% of them have over 13 neighbors.
Tab. 1 summarizes the properties of each topology.

Density Low (a) Medium (b) High (c)

Number of vertices 50 50 50
Number of edges 80.6 217.5 325.5
Average degree 3.2 8.7 13
Number of connected components 8.8 4.2 2.3

Table 1: Topology analysis at each density level: average values

The evaluation protocol of robustness and resilience metrics, presented in
Sec. 4.3, is performed over the complete revolution as well as the three topol-
ogy close-ups to fully grasp the characteristics of robustness and resilience in
the swarm.

4.3. Evaluation protocol

To understand the influence of fair graph division on the robustness and
resilience of the network, we compute the robustness metrics (flow robustness,
routing cost and network efficiency) and resilience metrics (path redundancy,
path disparity and node criticity) on the original undivided graph. To do so,
we compute these metrics at each timestamp over a complete revolution (we
remind that the data are sampled every 10 seconds). Then, we analyze
their distribution on each of the three levels of swarm density. These results
represent the reference performance of the network in terms of robustness
and resilience.

Then, we perform graph division with the chosen algorithm (RND, MIRW
or FFD) in the initial phase of the swarm (i.e., at timestamp 0), and fix the
groups for the rest of the simulation so that the vertices cannot change groups
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during the simulation. The results presented below are based on a graph divi-
sion into 10 groups because this is the optimal number of groups to minimize
the routing cost. We proceed to compute robustness and resilience metrics
on the divided graph, similarly to the original graph. Because the proposed
algorithms are based on random mechanisms, this operation (division and
computation) is independently repeated 30 times to obtain a good estima-
tion of the behavior of the divided graph. These results are then compared
with the reference results of the original graph to highlight the impact of
graph division on the robustness and resilience of the swarm.

4.4. Results

We analyze the performance of each algorithm on two aspects: the tem-
poral evolution of the metrics, and the distribution of metrics values at three
typical levels of network density (low, medium and high), as presented in
Sec. 4.2.

Fig. 3 and Fig. 4 show the impact of graph division on robustness and
resilience by presenting four cases: original graph (undivided), graph divided
by RND, graph divided by MIRW, and graph divided by FFD. The figures
in the left column represent the temporal evolution of the metrics. Each
point of the curves symbolizes the value of the metric at a given timestamp.
The figures in the right column show various boxplots for each case (original,
RND, MIRW and FFD) and for each level of network density (low, medium
and high). Each boxplot represents the values distribution of a given metric
at a given level of network density. Note that the temporal evolution of the
routing cost, depicted in Fig. 3c, has two y-axes because the routing cost of
the original graph is much higher than that of the divided graphs. Likewise,
Fig. 3d does not display the values distribution of the original graph because
it is on a much higher scale and thus not relevant for comparison.

4.4.1. Reference results

Tab. 2 shows the cross-correlation matrix of the robustness and resilience
results obtained from the original graph. Regarding robustness metrics (up-
per left box), there is a strong correlation between flow robustness and net-
work efficiency: increasing one increases the other. Regarding resilience met-
rics (lower right box), there is a strong correlation between path redundancy
and path disparity, which is expected from their definition in Sec. 3. We can
also notice a few cross-correlations between robustness and resilience met-
rics (upper right box): flow robustness and network efficiency are strongly
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Metric F (G) R(G) Θ(G) Ψ(G) ∆(G) |C(G)|

F (G) 1 0.53 0.89 0.64 0.81 0.1
R(G) 1 0.12 0.15 0.11 0.8
Θ(G) 1 0.69 0.9 -0.31
Ψ(G) 1 0.8 -0.11
∆(G) 1 -0.21
|C(G)| 1

Table 2: Cross-correlation of robustness and resilience metrics based on the results of the
undivided graph

correlated with path disparity, which implies that any modification to one of
these metrics has the same impact on the other two.

The routing cost and critical set size are particular cases because the
objective is to minimize these metrics. First, the routing cost is strongly
correlated to the critical set size, which means that a reduction in the number
of critical vertices also decreases the number of packets to transmit, and
conversely. Although the other metrics are not strongly correlated to the
critical set size, we can notice that increasing the network efficiency leads
to a decrease in the critical set size, hence has a positive impact on the
minimization of the number of critical vertices.

On the other hand, increasing flow robustness can lead to a non-trivial
increase in routing cost. This negative impact is related to our packet propa-
gation model: when a destination vertex is unreachable (i.e., there is no path
connecting to it), no packets are sent, so a poorly connected graph tends to
have a lower routing cost. This bias can be compensated by forcing the graph
to be connected by adding weighted edges between distant vertices. In this
way, a path will always be available, but the transmission will possibly cost
more. In this case, we would work with a weighted graph, but this is beyond
the scope of this paper.

4.4.2. Results on robustness

Fig. 3 depicts the results on robustness and shows that each division
algorithm has a positive impact on robustness over time and at any level of
network density. The biggest gain is obtained on the routing cost (Fig. 3c),
where each algorithm divides by almost ten the number of packets to transmit
in the network. We can see in Fig. 3d that MIRW gets the lowest routing cost
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independent of network density, in contrast to FFD, which gets the highest
routing cost. The flow robustness also increases after division. Fig. 3a shows
that MIRW and FFD perform better than RND, and increase flow robustness
the most when the network density is low (Fig. 3b). Finally, regarding the
network efficiency, Fig. 3e and Fig. 3f show that only MIRW and FFD are able
to make an improvement, and more significantly when the network density
is either low or high.

4.4.3. Results on resilience

The results for resilience are globally more balanced than those for ro-
bustness. Fig. 4 shows that none of the algorithms can improve all resilience
metrics simultaneously. The only improvement performed by MIRW and
FFD concerns the size of the critical set, as shown in Fig. 4e and Fig. 4f.
We can clearly notice a reduction in the number of critical vertices, although
MIRW performs slightly better than FFD regardless of the network density.
RND brings few to zero changes in the presence of critical vertices. The
results obtained for path redundancy and disparity are related to each other,
which is expected because they are strongly correlated. Fig. 4a and Fig. 4b
show that RND is the only algorithm that does not decrease the path redun-
dancy of the original network. MIRW and FFD decrease the path redundancy
level the most when the network density is high: when the density is low,
there is little difference between the algorithms. A very similar observation
is made on the path disparity presented in Fig. 4c and Fig. 4d. However,
it is important to highlight that MIRW and FFD do not decrease the path
redundancy and disparity to extremely low levels either: depending on the
application, such levels of path redundancy and disparity can be acceptable.

5. Related work

This section presents a compilation of studies relevant to the proposed
investigation. We have categorized this state-of-the-art review into two seg-
ments: the first focuses on robustness, followed by the resilience aspect.

5.1. Robustness

The robustness of a network characterizes its ability to maintain func-
tionality and withstand internal and external faults. Achieving a high level
of robustness is essential for countering intentional attacks and ensuring op-
eration in hostile environments. Energy efficiency is a crucial metric for
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(a) Flow robustness (temporal) (b) Flow robustness (distribution)

(c) Routing cost (temporal) (d) Routing cost (distribution)

(e) Network efficiency (temporal) (f) Network efficiency (distribution)

Figure 3: Temporal evolution of robustness metrics (left) and their distributions at three
levels of network density (right)
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(a) Path redundancy (temporal) (b) Path redundancy (distribution)

(c) Path disparity (temporal) (d) Path disparity (distribution)

(e) Critical set size (temporal) (f) Critical set size (distribution)

Figure 4: Temporal evolution of resilience metrics (left) and their distributions at three
levels of network density (right)
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robustness, particularly in Wireless Sensor Networks (WSN), where routing
protocols play a vital role in finding optimal routes while considering energy
consumption. Hierarchical protocols such as Low Energy Adaptive Cluster-
ing Hierarchy (LEACH) enhance the overall efficiency of WSNs, increasing
network lifetime. A comparative analysis by Daanoune et al. (2021) eval-
uates 27 routing protocols derived from LEACH, considering metrics such
as scalability, energy efficiency, and communication method. Although each
algorithm has its strengths and weaknesses, they collectively contribute to
improved network load balancing and reduce energy consumption, enhanc-
ing overall robustness. Identifying critical nodes is another crucial aspect of
building a robust network. Liu et al. (2019) propose an algorithm based on
weighted betweenness centrality to pinpoint central nodes in complex trans-
portation networks. Identifying these major nodes is crucial for network
safety and reliability. The authors demonstrate the accuracy of the algorithm
in identifying critical nodes efficiently, with results consistent with real-world
scenarios. Examining the impact of attacks on MANETs, Zhang et al. (2013)
focus on the targeted attack scenario in which the highest-centrality nodes
are affected in dynamic graphs of varying density levels. The authors es-
tablish betweenness centrality as a precise measure of node importance in
highly connected graphs. However, in sparsely connected graphs, node de-
gree and eigenvector centrality emerge as more accurate metrics for node
significance. In the context of robust networks, ensuring a strong Quality
of Service (QoS) is paramount. Marydasan and Nadarajan (2022) propose
the Reliable and Stable Topological Change Adaptive Ad-hoc On-demand
Multipath Distance Vector (RSTA-AOMDV) routing protocol to maintain
QoS during data transmission. This protocol considers the local informa-
tion of nodes while forwarding packets, resulting in superior performance in
terms of Packet Delivery Ratio (PDR), throughput, and packet transmission
time compared to traditional routing protocols such as AOMDV-MCA or
SR-MQMR.

5.2. Resilience

The resilience of a network refers to its ability to recover from faults when
they occur. The extensive literature on system resilience and sustainabil-
ity spans various domains, including communication networks (referenced in
Rak and Hutchison (2020)), transportation networks (referenced in Sun et al.
(2020)), environmental sustainability (referenced in Sarkis and Zhu (2018)),
and socio-ecological systems (referenced in Biggs et al. (2015)). Despite
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differences across these domains, the definitions of resilience and the mea-
surement methods remain consistent. The Internet serves as an example of a
communication network with low resilience. Sterbenz et al. (2010) introduce
an architectural framework that enhances communication network resilience
by incorporating resilience strategies and principles into the analysis. The au-
thors underscore the importance of considering resilience in communication
network design. In complex networks, Kharrazi et al. (2020) present met-
rics for evaluating resilience, particularly in resource trade networks. Their
evaluation involves statistically characterizing resilience through redundancy
(the number of duplicate elements), diversity (variety, distribution, and dis-
parity of elements), and modularity (a system’s capacity to fragment into
distinct communities to contain shocks or stress). For MANETs, Ladas et al.
(2016) propose the Multipath-ChaMeLeon (M-CML) resilient routing proto-
col. M-CML, based on a multipath approach, reduces end-to-end delay and
improves the PDR compared to the Optimized Link State Protocol (OLSR),
albeit with a higher number of redundant packets. Resilience in MANETs
also plays a crucial role in disaster management. Molla et al. (2019) intro-
duce a hybrid Wireless Multi-Hop Network (WMHN) architecture, combin-
ing Flying Mesh Networks (FMN) and opportunistic MANETs to enhance
connectivity with survivors, reduce packet loss, and decrease end-to-end de-
lay. To evaluate the resilience of public transportation networks, Jing et al.
(2019) assesses the number and availability of alternative paths. A resilient
transportation network, defined by extensive route redundancy, is character-
ized by efficient and reasonably short alternative paths that consider travel
costs. In addition, the authors evaluate the connectivity and accessibility of
the studied metro networks.

Our position in this literature review is to analyze the impact of a given
mechanism and/or algorithm (in our case, graph division) on both robustness
and resilience. We consider that these two properties should not be studied
separately because they have a mutual influence on each other. Hence, we
propose a general methodology to combine the assessment of robustness and
resilience levels in MANETs. This methodology can be a great help for
researchers conducting comprehensive studies of robustness and resilience
levels in complex systems.

19



6. Conclusion and future research

Optimization of robustness and resilience is crucial in Mobile Ad Hoc
Networks (MANETs). A robust network withstands internal and external
faults, while a resilient network maintains functionality despite faults. This
study focuses on enhancing the robustness and resilience of MANETs, which
are treated as temporal graphs, through network architecture optimization.
Our approach involves graph division by assigning each vertex to a group
without isolating them. We examine the impact of random selection algo-
rithms (RND) and exploration algorithms (MIRW and FFD) on the original
graph by analyzing flow robustness, routing cost, network efficiency, path
redundancy, path disparity, and node criticity. Applying this evaluation pro-
tocol to a practical application —a nanosatellite swarm orbiting the Moon
acting as a distributed radio-telescope—, we demonstrate that random se-
lection and exploration algorithms significantly improve system robustness
by reducing routing costs. Notably, MIRW outperforms FFD and RND in
reducing routing costs. Exploration algorithms, overall, excel in robustness
optimization compared with random selection algorithms. With respect to
network resilience, exploration algorithms decrease the number of critical
vertices but also decrease path redundancy and disparity. Random selection
algorithms neither improve nor reduce resilience. In conclusion, graph di-
vision positively impacts MANETs’ robustness and resilience. Exploration
algorithms enhance robustness but affect specific resilience metrics, whereas
random selection algorithms are practical for robustness optimization.

Future research should explore the impact of a time-varying number of
vertices in the graph, considering additions and deletions over time. Our
work assumes a faultless model with a constant number of vertices and aims
to investigate weighted graphs, where the data transmission cost depends on
the distance between MANET nodes. This scenario is crucial, considering
each node’s ability to contact others while considering transmission cost.
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