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Abstract

Sampling moiré is a spatial fringe pattern analysis method which can be used to retrieve
displacement fields on the surface of deformed specimens marked by a periodic pattern.
We prove that, under mild assumptions, Sampling Moiré (SM) is equivalent to another full-
field method, namely the Localized Spectrum Analysis (LSA). The prospects opened up by
this result concern two metrological indicators, namely the measurement bias (the retrieved
displacement being affected by a systematic error) and the measurement resolution (limited
by the propagation of sensor noise to displacement maps). Previous studies on LSA yield
predictive formulas for measurement bias and displacement resolution. These formulas are
adapted here to the case of SM. Relevant numerical studies enable us to assess to what
extent those predictive formulas are satisfied, interpolation performed in SM and not in
LSA affecting the quality of the final result.
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1 Introduction

Measuring displacement and strain fields on the surface of flat specimens under test is a major
issue in experimental mechanics. Digital Image Correlation (DIC) [31, 40] is undoubtedly the
most common technique, but standard versions rely on random patterns, and the metrological
performance is not optimal in this case [2, 11]. Employing periodic patterns such as grids or
checkerboards gives better performance [14]. However, classic versions of DIC generally fail to
converge because of the multiplicity of the local minima of the function to be minimized [40].
Spectral methods are commonly used instead of DIC to process images of periodic patterns.
These methods share the same feature: the fact that phase distributions must be extracted from
images, the phase difference between deformed and reference distributions (denoted by ¢df
and ¢™, respectively) being, at first approximation, proportional to the sought displacement v
through the following equation:

__£ def _ ref
U= 27r(¢ gb) (D

where P is the period of the periodic pattern, also known as pattern pitch.

A broad literature deals with this problem, and different spectral techniques have been pro-
posed to extract phase distributions from images of periodic patterns. Assuming that the mag-
nitude of the strain remains small, the straight lines (for a grid) or the alignment of tiny squares
(for a checkerboard) forming the pattern are only slightly affected by deformation. The peri-
odic signal describing the gray level distribution can therefore be considered as a spatial carrier
with a constant period of P, this signal being locally modulated by deformation. In this case,
the most frequently used techniques to retrieve the phase distributions are the Geometric Phase
Analysis (GPA) [19, 20], its windowed version (WGPA) [6, 7], the Localized Spectrum Anal-
ysis (LSA) [12, 15] and Sampling Moiré (SM) [36, 38, 50]. The link between the first three
is discussed in [16]. For instance, it is shown that LSA can be considered a particular WGPA
case. More general approaches have also been developed in the optical metrology community
to process images of fringes [25, 41]. They are more general in the sense that the period P of
the pattern may significantly spatially change, the case of a constant value becoming a particular
case. This leads to a set of techniques such as the so-called Fourier transform method [46], the
windowed Fourier filtering [22], the windowed Fourier ridge method (WFR) [23], the spatial
carrier phase-shifting method [32], and SM again. The link between these latter techniques is
discussed in [25]. In particular, SM is shown to be a particular case of WFR [26]. The main
difference is that the Gaussian window employed with the latter is substituted by a triangular or
a cubic window with the former.

In this context, the aim of the present contribution is first to demonstrate in another way the
same result as in [25, 26] by relying on the fact that interpolation like that performed in SM
can be considered as a convolution with a suitable kernel, as explained in detail in [27]. The
present paper focuses on periodic patterns such as 2D grids modulated by small deformations.
This is a case where WFRM is equivalent to LSA, with a spatially constant period of the carrier.
Then, we take advantage of the link between SM and LSA to adapt to SM formulas quantifying
some metrological parameters of LSA in the case of 2D grids and discuss to what extent those
formulas apply to SM, since interpolation of raw data performed in SM does not appear in LSA.



The rest of the paper is organized as follows. Section 2 is a careful analysis of SM. Section 3
demonstrates a result linking SM and LSA similarly to WFR, by considering interpolation as a
convolution. Section 4 uses this result to present predictive formulas for measurement resolu-
tion and bias in SM, in the case of 2D grids deformed through small strain fields. Numerical
assessments are discussed in Section 5.

2 A primer on sampling moiré

The goal of this section is to present a careful analysis of SM.

2.1 From one 2D grid to two 1D fringe patterns

In SM, a 2D grid pattern is first reduced to two independent 1D fringe patterns by applying a
moving average filter wya, which eliminates the periodic pattern along one of the axes. As-
suming the period of the grid is an integer, a popular choice for this filter is a centered mov-
ing average [30, 36]: if the pattern pitch P is odd, the length of w is P and its coefficients
are (wma)r = 1/P for |k| < (P —1)/2, and, if P is even, the length is P + 1 and the coef-
ficients are (wwma)r = 1/P if |k| < P/2 — 1 and (wma)r = 1/(2P) if |k| = P/2. It should
be noted that, with even values of P, using a non-centered moving average would give a local-
ization error of half a pixel. In the following, we note wl‘\’,f/‘i and wy;y' these moving average
kernels, respectively. Grids with non-integer pitches may, in practice, still be processed with
these kernels, as discussed in Section 5.

In practice, 2D grids are generally not aligned with the rows of pixels of the camera sensor.
Moving average filtering must therefore be performed using a filter defined over an oblique win-
dow, as in [28, 50]. This additional operation induces some errors in the grid images. However,
the impact on the displacement field eventually retrieved by SM is challenging to assess, so we
stick here with grids aligned with the horizontal and vertical axes.

Without loss of generality, we now consider the signal obtained as the convolution of the 2D
grid by wya along one of the principal directions of the grid. This signal is a 1D fringe pattern
that can be analyzed in one direction. For simplicity, we focus in the remainder of this section
on analyzing a unidimensional fringe pattern.

Such a pattern is modeled by the following equation:

s(z) = a(z) + b(x) cos (2T fpx + Prrye()) )

where s, a, and b are the fringe pattern intensity, the background intensity, and the fringe ampli-
tude, respectively. The carrier frequency is denoted by fp. It is equal to the inverse of the fringe
pitch P. Both background and fringe intensity may smoothly vary across the imaged field, but
they are considered as constant values in the following calculation. The unknown phase to be
determined is ¢e. To alleviate the notations, we skip a(x) and b(z) in the following.

2.2 Successive downsamplings and interpolation

A sampling pitch S is first chosen. Except in [49] where S = P/2 is used, its value is generally
lower than and close to P. The periodic signal s is therefore downsampled every S pixels.
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(a) First step: downsampling + successive shifts of the first sampling point Méi) at m(()i), i €{0,...,S — 1}. First
line: periodic signal to be processed. Following lines: S sparse signals obtained after downsampling and successive
shifts of the first sampling point M" ().
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(b) Second step: interpolation. Top line: periodic signal to be processed. Following lines: signals after interpolating
the sparse signals obtained at the end of the first step.
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(c) Third step: phase extraction. The phase at point M is obtained by taking the argument of the Fourier transform
of the signal along the vertical line plotted at the same abscissa in the preceding subfigure. After unwrapping, the
displacement is obtained by multiplying the phase by — 27”.
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(d) Fourth step: phase unwrapping. The argument being defined up to a multiple of 27, phase discontinuities may be
seen. 2m-jumps are eliminated by adding suitable multiples of 2. Same colorbar as in subfigure (c).

Figure 1: Principle of sampling moiré.

An important feature is that this downsampling procedure is repeated S times, the abscissa
:cg), i € {0,...,8 — 1} of the first sampling point, denoted here by Méz) (:céz)), increasing by
one pixel from one case to another, thus :L“((f) € {0,...,S5 — 1} [px]. This results in S different

sparse signals denoted by s, i € {0,...,S — 1}, such that:
sO @)+ kS) = sz’ + kS) Vkez ic{o,...,S—1}
s (z) =0 otherwise

3)

This first step of the procedure is illustrated in Figure 1-a.
The second step is to assign a value at the pixels where no information is available in the
sparse signals s e {0,...,S —1}. They are therefore completed to form 7 different signals



denoted by 30,4 e {0,...,S — 1}. These signals have the same size as the initial one s. They
are such that for any pixel = lying between the y:(()l) + kS sampling points, i € {0,...,S—1}, the
value assigned to (%) (x) is obtained by interpolation between the sampling points. As discussed
in Section 3 below, various types of interpolation can be used for this. This second step is

illustrated in Figure 1-b.

2.3 Calculation of the apparent frequency of the sampled fringes

Since the sampling pitch S is close to the fringe pitch P, the Nyquist condition is not met.
Indeed, the sampling frequency fs = 1/.5 is lower than twice the signal frequency 2fp = 2/P.
The fringe patterns corresponding to the interpolated 3%, i € {0,...,S — 1}, are called moiré
fringe patterns in the papers dealing with SM, see [30, 47] for instance. These fringes have
an apparent frequency that is much lower than the one of the initial pattern s, as can be seen in
Figure 1-b. The objective of the following calculations is to show that the value of this frequency
is [fp — fs]-

First, bearing in mind that the original signal s is modeled with a cosine function (see Equa-
tion 2), it is worth noting that the following equality holds for any m € Z and for any sampling
point x = :rg) + kSt

cos ((27‘('(fp +mfs)xr + dyue(z) — 27Tmf5x((]i)) = c08 (27 fpx + Gurue(x)) 4

Indeed, if x = :E((]i) + kS in the left-hand member of Equation 4, we have

cos ((271’(fp + mfg)(m(()i) +kS) + ¢true(:ﬂéi) +kS) — 27Tmf5l‘(()i))
— cos (27r Fr@l) + kS) + 20mfokS + duue(xl) + kS)) (5)

— cos (27r @ + kS) + bzl + kS))

since fgS = 1 and the cosine function is 27-periodic.
This means that, by definition of s (see Equation 3), for every m € Z, the function s,(fl)
defined for any value of x by

50 () = cos ((27r(fP +mfs)T + Guue(T) — QWmfsx‘()i)) ©

are indistinguishable from s(") (z) at the sampling points x = m(()i) +kS. In sampling theory [29],

the sﬁ,? functions are called aliases. Interpolation gives an approximation of one of these aliases.
We will see now that interpolation retrieves an approximation of the alias with the smallest
frequency.

According to the Shannon-Nyquist interpolation theorem [29], if the Nyquist condition is
satisfied, band-limited signals whose spectra are supported by the interval (—fs/2, f5/2) are
perfectly reconstructed from their samples by i- first multiplying the discrete Fourier transform
of the sampled signal by a Heaviside step of width fs/2, and ii- then taking the inverse Fourier



transform of the result. Interpolation kernels are thus designed so that their Fourier transform
approximates this Heaviside step. However, the Nyquist condition is not satisfied here. Conse-
quently, the s() functions have frequency components outside the (—fs/2, fs/2) interval which
are removed by interpolation. Equation 6 shows that interpolation retrieves an approximation
of one of the aliases s(, of frequency |fp + mfs|. Only one of the values of |fp + mfs|
with m € Z lies in (—fs/2, fs/2), namely the smallest value. One can see that the smallest
value of |fp + mfs| when m € Z is the carrier frequency fp if and only if fg > 2fp. In
other words, when the Nyquist condition is satisfied, downsampling gives an interpolated signal
with the same frequency as the original one. In SM, the sampling pitch S is chosen to be ap-
proximately equal to the fringe pitch P, so this condition is not satisfied, as mentioned above.
Consequently, in SM, the sampled signal has a frequency equal to |fp — fg| since the smallest
value of | fp + mfs]| is attained for m = —1.

We can conclude that the interpolation of each s() (denoted by 3()) is approximately s$}')
with m = —1, that is,

5@ (z) ~ cos ((27T(fp — fs)T + Puue(x) + 27rf5xg)> @)

This approximation can potentially have a detrimental effect on the displacement returned by
SM. This is not the case with temporal phase shifting (as long as the phase shift is well-controlled
in practice), for which complete fringe maps are obtained without interpolation. It is claimed
in [47] that interpolation has high accuracy because the frequency |fp — fs| is usually very
small, the moiré fringes being thus easier to interpolate than the original fringe pattern since their
frequency is much lower. This accuracy is quantified in [37] in the case of linear interpolation,
and a phase compensation method is also proposed to correct the systematic estimation bias. We
shall return to this point in Section 3.3.

2.4 Retrieving the phase distribution

Finally, in SM, the phase 27(fp — fs)Z + duue () is retrieved as the argument of the discrete
Fourier transform taken at frequency fg as follows:

S

1 .
50(z) ¢S @®)

<.
Il
o

where j is the imaginary unit.
Indeed, by replacing 5 by the approximated value given by Equation 7, Equation 8 reads
with Euler’s formula:

127, (i) ~ (i) @
S <€J (2n(p—fo)etome(@tonfsey)) | =i(2n(fp—fs)o+ome(e)+2mfsa; )) o—2imfsal
2 =0
S S—1 )
= SACTUPIs)otbnn(a) | ST fIwtnale)) 5 o—dinfsa) ()
1=0

_ S ien(fp—fs)utbme(x)
2



since ZS Le=4imfsey’ — 0 when fs =1/S and x ) e {0,. — 1}. Taking the argument
of Equation 8 thus gives the phase estimated by SM.

¢SM(«T) = 27T(fP - fS)x + ¢true($)- (10)

This third step is illustrated in Figure 1-c. Note that ¢y () is wrapped if the displacement
spans an interval greater than one period P, as illustrated in the example in Figure 1-c where one
phase jump is observed. Hence, the fourth step consists in unwrapping the phase distribution by
adding multiples of 27. Different algorithms are available to perform this task, see [9, 18, 21].
This fourth step is illustrated in Figure 1-d. A continuous phase distribution is finally obtained.

2.5 Accounting for the displacement between the coordinate systems of the refer-
ence and deformed configurations

The raw phase ¢sm(z) retrieved by SM is different from ¢yye (), which eventually gives the
sought displacement by using Equation 1, as in the usual SM method. The difference between
dsm(z) and Pyye () is equal to 270(fp — fg)x according to Equation 10. It is the same for both
the reference and the deformed configurations, thus

{qﬁmf (x) = 21 (fp — fs)x + ¢Sk ()
ot (z) = 2n(fp — fs)z + 6% (2)

It means that deducing the displacement by merely subtracting pixel by pixel the phases
given by SM for the deformed and reference configurations gives the phase difference, which
is proportional to the displacement according to Equation 1, 27 (fp — fg)x vanishing after this
subtraction. However, as discussed for instance in [15], subtracting the phases at the same
physical point instead of pixel by pixel improves the quality of the displacement and strain fields
eventually returned by spectral techniques. Indeed, this procedure enables us to eliminate, within
certain limits, local defects, which always impair periodic patterns, and thus the displacement
and strain fields returned by the measuring technique. This gives in the 1D case:

(11

-pP
u(@) = —— (dne(@ + u(®)) = ie(®)) (12)
In this case, the sought displacement u appears in both the left- and the right-hand sides
of the preceding equality. Displacement « is therefore found using a fixed-point algorithm, as
explained in [15] for instance. Hence, Equation 11 above reads as follows

{qsfef (@) = 2n(fp — fs)x + Pt (2)

def def (13)

dsm(z +u(z)) = 27(fp — fs)(z + u(z)) + die(z + u())

The consequence is that 27 ( fp — fg)x shall be subtracted from the phase distributions qﬁref

and ¢ returned by SM before resolving Equation 12, the quantity 27 (fp — fs)(z + u(x)) —

27 ( fp — fs)z no longer vanishing from ¢&f(z + u(x)) — ¢k () if directly calculating the
displacement with def and qbref with the fixed-point algorithm in Equation 12.



3 Link between SM and LSA

In this section, a finer analysis shows that SM and LSA are equivalent windowed Fourier meth-
ods which mainly differ in the choice of the analysis window.

3.1 Interpolation as a convolution

An important remark is that numerous interpolation schemes can be described as a convolution
with a kernel denoted here by wjnterp, see [8, 27] for instance. Sampled values on a discrete grid
of each s(*) being available, the interpolation of each of them (thus 3(*)) writes as follows:

5D(2) =Y s (n)wigierp (2 — 1) (14)
nez
forany x € R.
For example and as explained in [27], linear interpolation corresponds to the following tri-
angular kernel:
; al—m> for |z| € [0,S
wilgzerp(x> = < s ’ | . [ ] (15)
0 otherwise

with a = 1, such that w! (0) = 1. See Figure 2.

interp
Cubic interpolation corresponds to the following cubic kernel:

B 3 3
B g%—g%+1) for |z| € [0, ]
b
Wi () =1 8 _%@+g¢_4%+z) for |z € [S, 28] (16)
0 otherwise

with § = 1. Kernels corresponding to other types of interpolations, such as cubic spline and
nearest neighbor interpolation, are given in [27]. In all cases, interpolation kernels are (most
usually) even functions.

Linear and cubic-spline interpolations are used in [36, 48], respectively, but it seems that no
exhaustive study on the impact of the nature of the interpolation is available in the SM literature
except for linear intensity interpolation in [37].

Any interpolated moiré fringe pattern 5(?) writes as follows for i € {0,..., 5 —1}:
30 (x) = Z 50 (xg) + kS) Winterp (T — x(()i) —kS) (17)
keZ

In practice, the size of the kernel support (thus the sum in Equation 17) is finite and depends
on the sampling pitch S. For instance, the triangular kernel above has a support length of 2.5
(k € {—1,0,1} in Equation 17) while this support length is equal to 4S5 with the cubic one
(ke {-2,-1,0,1,2}.



moving window

. . . . . hn . . .
Figure 2: Triangular moving window Winterp used as a kernel to perform linear interpolation

by convolution. Bottom: typical sparse signal s(*) obtained after downsampling the original
signal s. Top: gray level distribution 3(*) obtained after convolution, by the triangular kernel, of
the sparse signal s(?) depicted at the bottom.

3.2 Fourier analysis of interpolated moiré fringe pattern

By definition of s(*), we have s() (x(()i) +kS) = s(xéi) + kS). Plugging Equation 17 into the
Fourier transform given by Equation 8 thus gives:

5—1 .
Z Z s(m(()z) + kS) Winterp (T — l‘éz) — k:S)e_Qjﬂme(()l) (18)
i=0 keZ

which also writes as follows:

S—1 ‘
Z Z s(x(()l) + kS) Wingerp (z — x(()z) - ks)e—mfs(xé”+k5) (19)
xéwzo keZ

since f¢S = 1 and l‘(()i) spans the same interval as 4.

The set of all mél) + k.S for all integer values 0 < mg) < S and k € Z being simply Z, this
latter expression further simplifies into:

> 5(E) Winterp (& — w)e”HsE (20)

ez

since Winterp (€ — &) = Winterp(§ — ), the interpolation kernel being symmetric.

This is simply the discrete windowed Fourier transform (WFT) of the signal s at the fre-
quency fs, except that the interpolation kernel wjnerp does not integrate to 1 as the kernels used
in WFT. It should be noted that this does not affect the argument of Equation 20 (which is a
simple rewriting of Equation 8) to obtain ¢sy, namely the phase estimated through SM. In other
terms, the value of « (resp. 8) in Equation 15 (resp. 16) does not change the phase estimation
by SM.

3.3 Comparison between SM and LSA

SM basically relies on the fact that the approximation given by the interpolation in Equation 7 is
accurate enough to deduce the phase ¢y by Fourier transform. Taking the equality as granted



permits to obtain the estimation: ¢sv(z) = 27(fp — fs)T + duue(x); and ultimately an estima-
tion of ¢uye(x) as explained in Section 2.5.

A demonstration similar to that of Section 2 is already available in [26], and numerical
experiments in [35]. In [26], SM is shown to be a special windowed Fourier ridge (WFR)
algorithm, where the ridge frequency is not sought as the maximum in the amplitude spectrum
of the signal but is set to the sampling frequency. The authors of [26] analyze the estimation
error caused by the mismatch between both frequencies and conclude that a locally linear phase
gives an error-free estimation. This explains why SM can be used even with a rough estimation
of the fringe pitch giving a small difference between fp and fs.

For its part, LSA [15] simply consists in taking the argument of the windowed Fourier trans-
form:

> s(@uw(E —z)e ¥ 21)
¢€z.
where f = fp is the frequency of the carrier fringe, and w is usually a Gaussian analysis
window, noted wgayss here. Other types of windows can be used, but it has been shown in [45]
that a Gaussian window leads to the best trade-off between various constraints.
Noting

Hla(r) = arg | Y 5(E)winerp (€ — x)e 2™E | | (22)
EET

then gb{}; A () is the classic LSA estimation with winerp instead of wgayss, and q{g A(T) = dsm(x)
if Equation 7 is actually an equality instead of an approximation.
Let us write a first-order expansion of the phase around z as

¢true(gj + 5) = ¢true (.%‘) + Qbirue(x)g + ¢CE (5) (23)

with ¢/, the derivative of ¢yye. The complex signal s writes s(£) = el 2T/PE+ome(©)) thus:

éf){sA(fU) = arg Z Winterp (& — 2) eI ATFPEHdme(€)) o =2 (24)
ez
= arg Zwimerp(g)ej(QW(fP—f)(ﬂf+§)+¢tme($+§)) (25)
=/
¢z
= 27(fp — f)T + Puue(2) + Purue(2) 27)

where Guye () = arg (dez wimerp(5)ej@w(fp—f>+¢:m<x>>sej¢z<s>),

When ¢, in Equation 23 is a null function (i.e., when ¢y is locally linear around ), one
has ¢we = O since, for any real value v, dez Wingerp (§ )ed¥€ is a real number as the value of
the discrete Fourier transform of a real even function.

10



Consequently, with a locally linear phase, Equations 27 and 10 give:

¢1%, (x) = dsm(z) (28)

which is another demonstration of the result in [26]. In addition, substituting f by fp in Equa-
tion 27 shows that the standard LSA method gives in this case:

¢{§A (:L') = ¢true(x) (29)

Consequently,
dsu(z) = 2m(fp — fs) + ¢{§a (@) (30)

under the locally-linear phase assumption.

Besides, in the same spirit as in [26], it can be noted that LSA is a WFR method where the
ridge frequency is set to the pattern frequency value, which is the maximum in the amplitude
spectrum of the signal. From this point of view, the three methods (SM, WFR, LSA) are basi-
cally the same since they rely on phase estimation from a quasi-periodic pattern with windowed
Fourier transform. However, SM introduces an additional bias when the sampling frequency fg
differs from the pattern frequency fp and the phase is not locally linear (which is the case in
practice), as the phase is no longer estimated from the maximum of the amplitude spectrum,
contrary to WFR and LSA.

3.4 Back to 2D grids

The preceding mathematical derivation was achieved with 1D fringe patterns along the x-axis.
As Section 2.1 explains, the input signal is a 2D grid pattern convolved with a moving average
kernel wys along the y-axis. Let us denote by s(x,y) the 2D grid pattern. The fringe pattern
along the x-axis thus reads as follows:

s(a,y) = s(@,n)wmaly —n) (31)

nez

where wya 18 the window corresponding to the centered moving average discussed in Sec-
tion 2.1. As explained above, for any value of y, s(x, y) is then processed by SM.

Processing the grid image s with SM thus consists in estimating ¢sm(x, y) at any (z,y) by
taking the argument of

Z 25(5a n)wma (y — n)wimerp(x — g)e—%rfss

EEL nEL ) (32)
- Z 5(5’ n)wSM(l' —&y— 77)67 JTfs€
(&m)ez?
where

is the separable filter obtained as the tensor product of the 1D interpolation kernel wiyeerp along
the z-axis and of the 1D moving average kernel wya along the y-axis.

11



SM LSA
interpolation
yes no
of raw data
wLSA(xa y) = WGauss ($7 y)
k 1 = wj
erne wsm(z,y) Winterp (2)wma(y) as an optimal window [45]
size of the kernel stepwisely changes continuously changes

Table 1: Main differences between SM and LSA.

4 Insights on SM based on the equivalence with LSA

The preceding section shows that SM and LSA are equivalent under the hypothesis of locally
linear phase maps, cf. Equation 30. Both methods require, however, practical choices that
explain differences in the numerical estimation of displacements and strain maps. They are
explained in Section 4.1

As mentioned earlier, the fundamental assumption of SM is that the interpolation is accurate
enough so that Equation 7 is strictly (and not only approximately) satisfied. Regarding LSA, we
can go beyond this assumption and show that a systematic measurement bias is inherent to the
method. The remainder of this section is dedicated to the estimation of the measurement bias
of SM (Section 4.2) and its displacement resolution (Section 4.3) from earlier results on LSA.
To the best of our knowledge, the predictive formulas obtained in this section are not available
in the SM literature. Concerning the noise transfer, only numerical comparisons between SM or
other Fourier methods are given in [35].

4.1 Practical differences between SM and LSA

First, the kernels used in SM and LSA differ. Concerning LSA, differences can be seen depend-
ing on the analysis kernel, the Gaussian kernel presenting the best trade-off between different
constraints [45]. The choice of the interpolation scheme certainly plays a role that is, to the
best of our knowledge, not analyzed in the framework of SM. It should be noted that Gaussian
kernels are also used in WFR [24].

Second, while the size of Gaussian windows used in LSA and WFR can continuously
change, both the triangular and the cubic windows used in SM span a fixed interval ([-S S] and
[-2S 28], respectively), which can only be set by stepwisely changing the sampling period S.
The same remark holds for the moving average filter wp removing the periodic component.

Table 1 gathers the main differences between SM and LSA.

4.2 Measurement bias

It is shown in [44] that the phase estimated with LSA is not exactly the true phase @ye, as
assumed in Equation 29, but the convolution of ¢y and the analysis kernel. It is therefore

12



affected by a systematic bias, which manifests itself by a blur of the displacement and mainly
the strain maps. This property is valid under the small strain assumption (basically, under small
phase derivatives), which is a less restrictive assumption than affine phases, as required by SM.

Let us assume that Equation 30, which holds rigorously under the locally affine phase as-
sumption, permits to transfer this result to the phase estimation by SM. The kernel wgy defined
in Equation 33 must be normalized such that it integrates to 1 from the remark after Equation 20
(anormalized kernel is indeed required so that the following equation holds true), which amounts
to choosing the right values for o and 8 in Equations 15 and 16. This does not change ¢sm as
explained just after Equation 20. Thus

dsm = 27 (fp — fs) + Wsm * Prrue (34)

where * denotes the convolution product, and Wgy is wsm/ f WSM.-

As a sanity check, it can be noted that, in the case of a locally-affine phase, Equation 34 boils
down to Equation 10. Indeed, the convolution of any affine function by an odd kernel is still the
original affine function,

Therefore, when the phase difference is performed pixel by pixel to obtain the displacement
(see Equation 1), the displacement obtained by SM is not directly the true displacement, but the
true displacement convolved by wgsy. Thus

USM = WSM * Utrue (35)

When the phase difference is calculated at the same physical point, a fixed-point algorithm
deduces u from the phases (see Equation 12), which induces a non-linear relation between dis-
placement and phase change. However, it has been observed in the case of Gaussian kernels that,
at first approximation, Equation 35 remains valid in this case. From a practical point of view, the
consequence of this property is the same for SM and LSA, namely, the displacement and strain
maps are blurred by this convolution. In a similar way to LSA [10, 13] this property also paves
the way for further studies on deconvolution of the phase maps to enhance the spatial resolution
of SM, the spatial resolution representing the lowest distance between independent measure-
ments in a displacement or strain map for a given measurement bias [52]. The difference with
LSA would be the nature of the kernel to be used (rectangular-triangular or rectangular-cubic
instead of Gaussian). Examining these points is, however, out of the scope of the present study.

An alternative interpretation of the preceding remark can be drawn by comparing SM with
the way fringes are processed with temporal phase shifting in interferometry. Temporal phase
shifting consists in slightly changing the difference in the optical path length between two laser
beams which are combined to form a fringe pattern [5, 17, 39]. This phase shift can be obtained
by moving a mirror or a grating, or by tilting a glass plate, for instance, these optical components
being parts of the interferometric setup under consideration. The idea is to apply this shift NV
times, so that the difference in phase between the two beams increases each time by QW” Each
phase shift provides a new fringe pattern, with fringes slightly moving from one case to another.
These different fringe patterns are the analogs of the () functions, i € {0,...,S — 1}, repre-
sented by the successive horizontal lines in Figure 1-b in the 1D case, and which are obtained
with SM by downsampling and interpolation. Taking the argument of the Fourier transform to
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retrieve the phase of any pixel of the first fringe pattern obtained by interferometry is equiva-
lent to considering any point M on the first line representing the case ¢+ = 0 and retrieving the
original phase of the 1D signal found along direction ¢ in Figure 1-b, by crossing the different
signals obtained with subsequent values of 7. No interpolation is performed with classic tem-
poral phase shifting to obtain the successive fringe patterns. Consequently, the argument of the
Fourier transform of this set of patterns provides a phase at any pixel, independent from one
pixel to another. This is not the case with SM since, with this technique, the phase returned by
the procedure is the true phase convolved by the interpolation kernel instead of the true phase,
the successive lines being obtained by interpolating sparse experimental data.

4.3 Propagation of sensor noise to displacement maps: displacement resolution

Noise is inherent to data acquisition with digital sensors. Noise transfers to the estimated dis-
placement and limits its resolution. Concerning LSA, a complete discussion of the role of the
analysis kernel is available in [45], assuming that image pixels are affected by Gaussian white
noise. In this case, displacement maps are affected by a noise field well approximated by a spa-
tially correlated Gaussian noise. Equation 30 shows that ¢gy is affected by the same additive
noise as ¢Ls A

The variance of the noise 7 in the phase map ¢Ls A 1s given by the following relation [45]:

A A
2K?

Var(n) = L

HwMA H meterp H Vimage (36)

where vimage 18 the variance of the noise affecting the images (caused by sensor noise but also
by quantization), A, A, is the size of a pixel, K is the modulus of Equation 20, and ||-|| denotes
the L? norm of a function. The reader is kindly reminded that Wy is the normalized moving
average kernel along one direction (Section 2.1) and that Wiperp 1s the normalized interpola-
tion kernel along the orthogonal direction (Section 3.1). Normalized kernels (that is, kernels
integrating to 1) are required to obtain Equation 36.

The covariance function of the noise, which characterizes the shape of the noise pattern in
the phase maps, is also available in [45].

Concerning the normalized moving average filter wwma, one has from Section 2.1, if P is
odd:

(P-1)/2 1 1
@Al = > m==% (37)
—(P-1)/2
and if P is even: )
P/2—1
. 1 2P —1
I = 5pr Y = gpr @)
—P/2+1

Concerning the interpolation kernel wineerp (€ither linear or cubic in Section 2.2), Appendix A

shows that one has either:
| ——=lin
interp

2
2_ 2 39
| 35 (39)
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linear interpolation

cubic interpolation

AA, BTALA,

odd P mvlmage m%mage
(2P — 1)A, A 57(2P — 1) A, A

even P | oo pager Ui | ogqapaper Ui

Table 2: Variance Var(72) of the noise in the phase map retrieved by SM, with a pattern pitch P
and a sampling pitch S.

with linear interpolation, or: .
w5l = (40)
with cubic interpolation.
Table 2 summarizes the equations of the noise variance in the phase maps retrieved by SM
in the four cases studied here.
Finally, an estimation of the standard deviation o,, of the noise affecting the displacement

field is obtained from Equation 1:

P — — VWPALA, 1 1
0w = —/Var(Tiee) + Var(figer) = +
Y om b ¢ 21/ S Kie Ky

with w = 1/3 with linear interpolation and w = 57,/140 with cubic interpolation, P = P with
anodd P and P = P — 1/2 with an even P, K. and Kger being the modulus of Equation 20 in
the reference and deformed states, respectively.

Since the size of the support of the cubic kernel is larger than that of the linear kernel, we
could expect that the noise is smaller in the cubic case, as noisy information is averaged over
a larger number of pixels. However, the w parameter is larger in the cubic case than in the
linear case. The noise level also depends on the Kg.r and K .f parameters, which themselves
seem to depend on the interpolation kernel and the pattern pitch. It is shown in [44] that these
parameters vary slightly around the value |d;|yA/2, where + is the contrast of the fringe pattern,
A is the global illumination level (in Equation 2, a = A and b = vA/2), and d; is the first
coefficient of the Fourier series decomposition of the periodic fringe pattern. The Kger and
Ker parameters are consequently considered as constant values intrinsic to the fringe pattern;
they depend on the pattern pitch but do not depend on the interpolation method. This property
was verified experimentally in [33]. We conclude from Equation 41 that, for given pattern and
sampling pitches, the ratio between noise level for linear interpolation and noise level for cubic

571/1340 ~ (.9048. The noise level is thus larger for cubic interpolation than

for linear interpolation. This result is, at first glance, counter-intuitive since a cubic kernel has a
larger support than a linear one, but noise propagation also depends on the shape of the kernel.

(41)

interpolation is
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5 Numerical simulations

This section aims to verify the theoretical predictions of Section 4 on the displacement maps
retrieved by SM, in terms of both the attenuation of the amplitude of the displacement and noise
propagation. Pairs of synthetic noiseless and noisy reference and deformed images were con-
sidered for this comparison. We first briefly explain how these synthetic images were obtained
and justify the choice of the reference displacement field used to deform the reference image.
This displacement field then serves as a ground-truth reference to assess the quality of the dis-
placement field returned by SM with different settings. Two points are examined here in turn:
i- the theoretical prediction of the attenuation of the displacement as a function of the spatial
frequency, and ii- the propagation of image noise to the final displacement field returned by SM
and given by Equation 41. The attenuation in Point i- is the displacement bias studied in [11] for
LSA, and the standard deviation of the noise affecting the displacement maps is also referred to
as the displacement resolution [1, 4].

Software programs to reproduce the numerical simulations are freely available at the follow-
ing URL:
https://members.loria.fr/FSur/software/resolutionSM/

5.1 Synthetic image rendering program

The synthetic images of a 2D grid with lines aligned along the horizontal and vertical directions
were obtained with 2DGridRender. This program was developed to render images of unde-
formed and deformed periodic patterns. It is a simple adaptation of BSpekleRender introduced
in [43] to render random speckles suitable for DIC. This program is available online!. The
reference displacement field being given, the main benefit of this program is that the image
of the deformed configuration is not affected by interpolation bias. Fifteen sampling densi-
ties of the periodic pattern were considered, the pattern pitch being chosen in such a way that
P e {6,6.5,7,10,10.5,11,14,14.5,15,18,18.5,19, 22, 22.5, 23} [px]. Note that P takes odd
and even values, which requires using wl‘\’,?g or wy - Grids with non-integer values are pro-
cessed using the moving average filter that would be used with the rounded value of P (thus
wﬁfg here). Consequently, these 2D grids give 1D fringes in which the influence of the orthogo-
nal 1D fringes is not properly discarded, especially for small values of P, the relative difference
between P and its rounded value being larger in this case.

As explained in [43], the image in the reference state is the image of the deformed grid, and
the image in the deformed state is the image of the non-deformed grid, so that the output of
SM can be compared with the ground-truth reference displacement field instead of the inverse

displacement field.

5.2 Ground-truth reference displacement field

The idea here is to deform a synthetic 2D grid through a controlled displacement field. The 2D
grid images are 2000x501 pixels in size for the fifteen sampling densities considered in this

'https://members.loria.fr/FSur/software/BSpeckleRender/
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Figure 3: Reference vertical displacement field u, (u, = 0). Throughout the paper, the cross-
section of the different uo displacement fields will be given along the midline A.

study. The reference displacement field chosen here is null along the horizontal axis x. Along
the vertical direction y, this is a sine wave featuring a period gently linearly decreasing from the
left to the right, see Figure 3. The minimum value of the period of the wave is equal to twice
the period P of the 2D grid, and the maximum value to a quantity that depends on the sampling
density because the size of the images remains the same for all values of P.

This reference displacement field has already been employed in previous studies dealing with
the metrological performance of full-field measurement techniques, see [3, 11, 14, 34, 3, 51].
It was christened the “STAR” displacement field in [34]. Processing a pair of reference and
deformed images deformed through this reference displacement field enables us to quantify the
actual progressive attenuation of the amplitude of the sine wave modeling the u, displacement
when going to the left of the field, thus to the highest frequencies. This is a direct effect of
the convolution of the actual displacement field by a triangular or a cubic kernel, as claimed in
Section 4.2 above.

5.3 Setting the parameters governing sampling moiré

The synthetic images were processed following the same methodology as that discussed in Sec-
tion 5.1. The sampling pitch .S was chosen to be equal to S = P — 1, P being the period of
the two 1D grids, but other integer values smaller than but close to P can potentially be chosen.
Two interpolation methods were considered: linear and cubic.

Note finally that, as proposed in [47] and in line with Equation 8, the two phase distributions
®,,i € {x,y} were extracted pixelwise from the S successive fringe patterns by using the
following equation:

®;(z,y) = —arctan 0 5 (2, ) sin(2kn /)
| Siz0 59 (@, y) cos(2km/9)

) , i€ {z,y}, (42)

where §§k) denotes the kth alias along direction ¢, i € {x,y}, and arctan the four-quadrant
inverse tangent function.

17



5.4 Simulation #1: bias in SM caused by the attenuation of the displacement field

The first simulation deals with the attenuation of the spatial frequencies involved in the dis-
placement to be measured. The main steps of the SM procedure are first briefly illustrated in
Figures 4-(a) to (g) successively show a close-up view of:

e The 2D grid in the case P = 11 [px] (-a).

* The two 1D grids obtained after convolving the 2D grid with the moving average kernel
odd

wypa»> s described in Section 2.1, along the = (b) and y (¢) directions.
* Two typical successive fringe patterns along x ((d)-(f)) and y ((e)-(g)) retrieved after
downsampling and interpolation.

* u; (h) and u, (i) found at the end of the procedure.

A difference between the reference vertical displacement field and its counterpart returned
by SM can be observed by comparing the maps shown in Figures 4-(i) and 3, especially for
the highest spatial frequencies (on the left of the displacement field). The same remark holds
with u,, for which the reference displacement is null. This attenuation of the u,, displacement
becomes clearer when plotting the cross-section of the u, displacement map along the midline
(denoted by A in Figure 3). The same cases as above are considered: linear and cubic interpola-
tions, and P € {6,6.5,7,10,10.5,11,14,14.5,15,18,18.5,19,22,22.5,23} [px]. The curves
obtained with these different settings are reported in Figure 5, subfigures (a) and (b) showing
the results for linear and cubic interpolation, respectively. The curve given by the theoretical
prediction in Equation 35 is also superposed in each case for comparison purposes. In this lat-
ter equation, wsy is built upon wma = WS or wid, depending on the parity of P (or of
the rounded value of P), and upon winerp = wilg{erp or wfr‘llt';rp, depending on the interpolation
scheme.

Several lessons can be drawn from Figure 5. One can see that the displacement retrieved
by SM with linear interpolation is lower than the one obtained with cubic interpolation. This
means that, all other things being equal, cubic interpolation gives a lower (thus better) measure-
ment bias. Besides, the general shape of the curves given by the output of SM and the predicted
curves are alike. More precisely, the measurement bias is correctly estimated for linear inter-
polation, and also for cubic interpolation when the pattern pitch (or the sampling density) is
significant. This validates the proposed predictive formula. However, some differences can be
seen. Both in the linear and the cubic interpolation cases, one can see, in the case of a pixel
density larger than 18 pixels per period, that high-frequency displacements (left-hand side of the
curves) are not correctly retrieved by SM, with a quite different estimation from the predicted
displacement. The reason is probably that the approximation of Equation 7 is too coarse, the
sampling frequency being too low to interpolate the SM fringe with an accuracy sufficient to
correctly represent the high-frequency displacement. Another difference is that the retrieved
displacements generally slightly undermatch the predicted ones. Several factors explain these
differences. First, Equation 30 is valid under the linear-phase assumption. While ¢ sa is shown
to be well approximated by the convolution product between the kernel and the true phase un-
der the less restrictive small strain assumption, Equation 30 may not give an accurate equality.
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(a) 2D grid, P =11 [p

=

l

(b) 1D grid along z after averaging along y (c) 1D grid along y after averaging along x
(d) 2nd fringe pattern along x (e) 2nd fringe pattern along y

(f) 3rd fringe pattern along x (g) 3rd fringe pattern along y

(h) u,, same colorbar as in Figure 3 (i) uy, same colorbar as in Figure 3

Figure 4: Illustration of the different steps of SM in a typical case. (a): 2D grid with pitch
P = 11 [px], (b): 1D grid obtained by applying a vertical mean filer of length P = 11 [px],
(c): 1D grid obtained by applying a horizontal mean filer of length P = 11 [px], (d)(f): two
successive fringe patterns obtained after downsampling with a period S = P — 1 = 10 [px]
and cubic interpolation. A one-pixel shift is applied rightwards from one case to another, see
Figure 1-(a). (e)(g): two successive fringe patterns obtained after downsampling and cubic
interpolation. A one-pixel shift is applied downwards from one case to the other. (h)(i): u, and
u, displacement fields retrieved by SM (same colorbar as in Figure 3).

Second, and probably more importantly, grids are not pure sine functions. Real grids are indeed
the superposition of harmonics of the pitch frequency fp. It is shown in [45] that the influence
of these harmonics is not suppressed by using triangular or rectangular windows in windowed
Fourier analysis. This gives spurious displacement estimations, contrary to the Gaussian window
used in LSA and WFR.

Concerning non-integer pitches P, one can see that using the moving average filter wya
parameterized by the rounded value of P gives curves below the curve for the nearest odd value
and above the curve for the nearest even value, except for the smallest values of P. The pre-
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Figure 5:  Cross-section along line A (defined in Figure 3) of the displace-
ment wu, obtained for various settings: linear and cubic interpolations, P €
{6,6.5,7,10,10.5,11,14,14.5,15,18,18.5,19,22,22.5,23} [px]. The red plain line is
the ground-truth value, the dashed and dotted lines are the output of SM (dashed for integer P
and dotted for non-integer P), and the plain lines (model) are the displacement predicted by
Equation 35. The output of SM has to be compared with the corresponding predicted curve.
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dictive formula is thus still valid with non-integer pitches, despite grids processed by wya yield
1D fringes with residual components of the orthogonal fringes. As P increases, the curves for
non-integer P get closer to the corresponding curves with an odd P, as the residuals become
smaller.

5.5 Simulation #2: sensor noise propagation to the displacement maps in SM

The propagation of sensor noise to the final displacement maps is examined here. The objec-
tive is to compare the value given by the theoretical prediction of the standard deviation of the
displacement noise given by Equation 41, and the standard deviation estimated from simulated
data.

We consider here the same 2D grid as that depicted in Figure 4-(a). A Gaussian white noise
of standard deviation ojnage = 2.5 [gray level] is added before quantization to the synthetic
images of the reference and deformed configurations. This is a common and realistic value for
camera sensors featuring a gray depth equal to 8 bits, giving a pixel intensity between 0 and
255 [gray level]. Strictly speaking, sensor noise is a mixture of Poisson and Gaussian processes,
but a transform as the generalized Anscombe transform [42] reduces the noise to a Gaussian
white noise as assumed here. The standard deviation of the noise affecting the displacement
field retrieved with SM from synthetic noisy images is denoted by afjim, i € {x,y}, while their
counterparts deduced from Equation 41 are denoted by agi.ed, i €{z,y}.

The values of af}f‘ and 05}3‘ are estimated by subtracting the displacement fields obtained
from N = 100 noisy images on the one hand and from the noiseless image on the other hand,
by calculating the variance at each pixel of the distribution of the NV resulting noise samples, by
averaging this variance over the resulting field, and by eventually taking the square root of the
result.

The standard deviation o< of the noise in the w; displacement field, i € {x,y}, is obtained
with Equation 41, with w and P set in line with the parity of P and the interpolation scheme.

For the grid depicted in Figure 4-(a), the quantities involved in the latter equation are esti-
mated as follows:

* The unit being the pixel for the lengths, we have A, = A, =1 [px].

* The variance vimage Of image noise is equal to Vimage = O'izmage = 2.52 [(gray level)?].

* The same ten values for the pitch P as in Section 5.4 above were considered (P €
{6,7,10,11,14, 15,18, 19, 22, 23} [px]), and the sampling pitch was equal to S = P — 1.

* The modulus of each windowed Fourier transform K™ and K was obtained numeri-
cally with a Matlab code for both the reference and the deformed images: the norm of the
Fourier transform was computed, then averaged over the whole maps to obtain estimations
of K and K.

Figure 6 gives the estimation of K| {ef and K Z‘-i"’f, i € {x,y}, which are nearly superposed. As
predicted in Section 4.3, only the pattern pitch has an influence. One can see that the larger the
pitch, the larger Kfef and Kfet. This was also seen in real experiments and discussed in [33]:
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Figure 6: K fef and K fef (¢ = x,y) as a function of the number of pixels per period, with linear
and cubic interpolation. For better readability, values for non-integer pitches are not connected
to other values.

images with large pattern pitches show higher contrast y (while small pitches give blurred details
when reaching the pixel scale), thus higher K values as mentioned in Section 4.3. One can also
see that values of K for non-integer pitches are slightly off the trend.

To illustrate noise affecting displacement fields, Figure 7 shows the difference between u,,
obtained from a noise-free image (as in Figure 4) and u, obtained from a noisy image. The
close-up view shows a correlated noise, characterized in [45]. It is worth noting that the “blobs”
represented in this figure are elongated along y. This is because the corresponding kernel is also
elongated along direction y for this calculation.

Figure 8(a) shows the predicted agrfd noise level in the x— and y— displacement maps for
linear and cubic interpolation. No difference can be observed between these two directions, the
corresponding curves being nearly superposed. Cubic interpolation yields a larger noise than
linear interpolation. The ratio between the predicted noise level in the linear and cubic cases
is 0.9048 in both directions and for any value of the number of pixels per period, as predicted
in Section 4.3. In both cases, increasing the number of pixels per period causes the noise level
to decrease. Figure 8(b) shows the af}im noise level evaluated on simulated data. The same
observations apply. Figure 8(c) shows the ratio between aﬂrfd and 03}?‘, which is close to 1.
We can see a larger difference when linear interpolation is used, but the standard deviation is
generally predicted with a relative accuracy smaller than 1. Non-integer pitches systematically
give a smaller noise level than expected, which is caused by the fact that the moving average
filter, parameterized by the rounded value of the pitch, is here larger than needed. Despite
transforming 2D grids in 1D fringe patterns should probably be achieved through a dedicated
filter, the simple moving average filter used here gives consistent results.
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Figure 7: (a) Difference between u, obtained from a pair of noise-free images (as in Figure 4)
and u, obtained from a pair of noisy images. (b) Close-up view on the region marked by a black
rectangle in (a).

6 Conclusion

The link between two techniques aimed at processing images of periodic patterns to extract dis-
placement fields under the small strain hypothesis, namely Localized Spectrum Analysis (LSA)
and Sampling Moiré (SM), was established in this paper. As already discussed in previous stud-
ies of the optical metrology literature, it was demonstrated here, but in a different way, that the
latter is a particular case of the former. We relied here on the fact that interpolation performed
in SM can be interpreted as a convolution with specific kernels. Predictive formulas for some
parameters characterizing the metrological parameters of LSA being available and validated in
the literature, we explored then their applicability to SM. Numerical experiments show that the
measurement bias is correctly estimated for linear interpolation, and that it is as correctly esti-
mated, in the cubic interpolation case, if the sampling density of the images is high. Concerning
the measurement resolution, it is shown that predictive formulas derived from LSA are accurate
for SM. As far as the interpolation scheme in SM is concerned, one of the findings of this study
is that cubic interpolation gives a lower (thus better) measurement bias than linear interpolation
but also gives a larger (thus worse) measurement resolution.
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A Calculations for Equations 39 and 40

We approximate the discrete sum with an integral to retrieve simpler closed-form expression, as
in [45].
With linear interpolation:

. S 2 2k29
—din (2 _ 6.2 z _ 4k
| winterp” =2K /0 (1 - g) dr = 3 (43)

where 1/k = ffs k(z)dz =28 fol (1—z)dx=S5.
This gives Equation 39.
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With cubic interpolation (not addressed in [45]):
ot =2 (1 (275 (2) 1)
L E) S @) ) )
=228 (/01 (;x?’ — gx2 + 1>2dﬂc+ /12 (—;x?’ + ng —4x+2>2da:>

(45)
57k2S

= 21785 (17/42 + 1/420) = =

(40)

where 1 /k = Egsk:( )dx—2S (fo (323 — §x2+1)d:c+f1 (=323 + 32 —4x+2)dx> =
25(13/24 —1/24) =
This gives Equation 40.
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