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A POLYNOMIAL BASIS FOR THE STUFFLE ALGEBRA AND

ITS APPLICATIONS

TUAN NGO DAC, GIA VUONG NGUYEN CHU, AND LAN HUONG PHAM

Abstract. In this paper we construct a polynomial basis for the stuffle al-
gebra over a field of characteristic p > 0. As an application we derive the

transcendence degree for multiple zeta values in positive characteristic of small
weights. To our knowledge, the only known result is the case of weight 2 which

was proved by Mishiba using a completely different approach.
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1. Introduction

1.1. Motivation.

Classically multiple zeta values were introduced and studied by Euler [12] two
centuries ago. After the seminal paper of Zagier [38], these objects have been ac-
tively studied in various areas of mathematics and physics such as arithmetic geom-
etry, knot invariants, quantum field theory and Witten’s zeta functions (see [6, 38]
for further details and references). Surprisingly, there are several connections with
the well-known shuffle algebra and the stuffle algebra as explained in [15, 17], lead-
ing to the influential conjecture of Ihara-Kaneko-Zagier [17] (see for example [16, 30]
for further developments). The algebraic structure of these algebras were well un-
derstood by the work of Chen-Fox-Lyndon [9], Hoffman [16], Radford [31] among
others. In particular, Lyndon words appearing in [9, 31] are the key term in the
study of MZV’s (e.g., [2, 4, 10]).

According to Weil [37], Iwasawa [22] and Mazur-Wiles [25] there is a well es-
tablished analogy between number fields and function fields. From now on we will
switch to the function field setting. The above story has an analog in this setting:
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if A = Fq[θ] denotes the ring of regular functions over the affine line over a finite
field Fq of positive characteristic p > 0 and K its fraction field, then Carlitz [7]
and Thakur [34] introduced the notion of zeta values and MZV’s attached to A.
Although the connection with an analog of the shuffle algebra was known, to our
knowledge, the connection with the stuffle algebra was recently discovered in [18]
based on the work of the first author [28]. The study of the shuffle algebra in pos-
itive characteristic was done by Radford [31]. We note that the structure of the
algebra is quite different from that in characteristic zero (see Theorem 3.2.1 of loc.
cit. for more details).

Theorem 1.1 (Radford). The shuffle algebra over a field of characteristic p > 0
is a truncated polynomial ring.

1.2. Main results and plan of the paper.

In this paper we complete the work of Radford and study the stuffle algebra in
positive characteristic. In contrast to Radford’s result, we prove (see Theorem 4.1):

Theorem 1.2. The stuffle algebra over a field of characteristic p > 0 is a polyno-
mial algebra over the p−adic prime-to-p Lyndon words.

The proof relies on two key ingredients. The first one is an identity for the pth
power of the stuffle product. We mention that this identity is proved in a more
general context in [21]. The second ingredient is the study of variants of Lyndon
words in positive characteristic. In our approach the connection between p−adic
prime-to-p Lyndon words and Lyndon words is indirect since we have to use p−adic
Lyndon words as an intermediate bridge. A crucial point is that we use a non-trivial
connection between the stuffle algebra and the shuffle algebra in Proposition 4.2.

Combining the previous theorem with [28, Theorem B and Corollary C] we derive
some results for the transcendence degree of MZV’s of small weights (see Theorem
5.5):

Theorem 1.3. We recall that K = Fq[θ]. Then for all w < q the transcendence
degree of the K-algebra generated by MZV’s of weight at most w equals

∑w
i=1 |Di|

where |Di| is given as in Proposition 3.12.

To our knowledge, the only known result where one can determine the tran-
scendence degree of MZV’s of fixed weight w is w = 2, derived from the work of
Mishiba [26] using the powerful result of Papanikolas [29] and completely different
tools from algebraic geometry.

We note that in the classical setting there are no transcendence results for MZV’s
except for the even zeta values due to Euler and Lindemann (see [6] for more
details).

This paper is structured as follows. In Section 2 we introduce the notation, the
notion of the stuffle algebra in positive characteristic and prove the main identity
in Proposition 4.2. In Section 4.2 we define different variants of Lyndon words
and prove the connections between these variants in Proposition 3.10. In Section
4 we prove the main theorem of this paper in Theorem 4.1 which gives an explicit
polynomial basis for the stuffle algebra. In Section 5 we derive several applications
to the theory of MZV’s in positive characteristic.
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2. The stuffle algebra

2.1. Alphabet.

Throughout this paper N denotes the set of positive integers {1, 2, . . . } and Z≥0
denotes the set of non-negative integers {0, 1, 2, . . . }.

Let K be a field of characteristic p > 0. Let I be a countable set and A = {xn}n∈I
be a set of variables indexed by I, equipped with weights w(xn) ∈ N. The set A will
be called an alphabet and its elements are called letters. A word over the alphabet
A is a finite string of letters. In particular, the empty word is denoted by 1. Let
a = xa1

. . . xak
be a word. Then the depth of a denoted by depth(a) is k and by

convention depth(1) = 0. The weight of a denoted by w(a) equals a1 + · · ·+ ak and
we set w(1) = 0. Let 〈A〉 denote the set of all words over A. We endow 〈A〉 with
the concatenation product defined by the following formula:

xi1 . . . xin · xj1 . . . xjm = xi1 . . . xinxj1 . . . xjm .

Let K〈A〉 be the free K-vector space with basis 〈A〉. The concatenation product
extends to K〈A〉 by linearity. For a letter xa ∈ A and an element a ∈ K〈A〉, we
simply write xaa instead of xa · a. For each non-empty word a ∈ 〈A〉, we can write
a = xaa− where xa is the first letter of a and a− is the word obtained from a by
removing xa.

2.2. The stuffle algebra.

From now on the set I will be N and we denote by A = {xn}n∈N with weight
w(xn) = n the alphabet attached to the MZV’s. We set A = K〈A〉 which is the
free K-vector space with basis 〈A〉.

We recursively define two products on A as K-bilinear maps

� : A× A −→ A and ∗ : A× A −→ A

by setting 1 � a = a � 1 = a, 1 ∗ a = a ∗ 1 = a and

a � b = xa+b(a− ∗ b−),

a ∗ b = a � b + xa(a− ∗ b) + xb(a ∗ b−)

for any non-empty words a, b ∈ 〈A〉. We call � the diamond product and ∗ the
stuffle product. The unit u : K → A is given by sending 1 to the empty word. We
can show that the spaces (A, �) and (A, ∗) are commutative K-algebras (see for
example [6, 15]).

2.3. Powers of the stuffle product.

In this section we prove some identities for powers of the stuffle product. We
borrow these results from [21] where they still hold in a more general setting. We
introduce the triangle product as follows: for any non-empty word a and any word
b we write

a . b = xa(a− ∗ b).
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With this notation we can easily see that

a ∗ b = a � b + a . b + b . a.

We recall some properties of the different products ., � and ∗ by the following
lemma.

Lemma 2.1. Let a, b, c ∈ A be non-empty words, then

1) (a . b) . c = (a . c) . b = a . (b ∗ c).
2) (a � b) . c = a � (b . c) = (a . c) � b.

Proof. We use the associativity of (A, �) and (A, ∗). For Part 1 we have

(a . b) . c = (xa(a− ∗ b)) . c = xa((a− ∗ b) ∗ c) = xa(a− ∗ b ∗ c).

Similarly, (a . c) . b = a . (b ∗ c) = xa(a− ∗ b ∗ c). This completes Part 1.

For Part 2 we write

(a � b) . c = ((xa � xb)(a− ∗ b−)) . c = (xa � xb)(a− ∗ b− ∗ c).

Similarly, a � (b . c) = (a . c) � b = (xa � xb)(a− ∗ b− ∗ c). Part 2 follows. �

Let a be a word, n ∈ N. We write two nth powers of a as follows:

a∗n = a ∗ · · · ∗ a, a�n = a � · · · � a (n times).

The next lemma will be useful in the sequel.

Lemma 2.2. For a1, a2, . . . , an ∈ N and a1, a2, . . . , an ∈ 〈A〉, we have

xa1
a1 � xa2

a2 � · · · � xan
an = (xa1

� xa2
� · · · � xan

) . (a1 ∗ a2 ∗ · · · ∗ an).

Proof. We proceed the proof by induction on n. The case n = 1 is trivial. We
assume that the lemma holds for n ∈ N. We need to show that Lemma 2.2 holds
for n+ 1. It follows from the induction hypothesis that

xa1
a1 � · · · � xan+1

an+1 = (xa1
� · · · � xan

)(a1 ∗ · · · ∗ an) � xan+1
an+1

= (xa1
� · · · � xan

� xan+1
) . (a1 ∗ · · · ∗ an ∗ an+1).

This proves the lemma. �

We will introduce some new notations. Let a ∈ 〈A〉 be a non-empty word and
let n1, n2, . . . , nk ∈ N. We define recursively

a(n1) = a�n1 = a � a · · · � a︸ ︷︷ ︸
n1 times

,

a(n1,n2,...,nk) = a(n1) . a(n2,...,nk).

We note that a(1) = a.

In what follows for s ∈ N and m ∈ N, we denote by s{m} the sequence of length m
with all terms equal to s. We agree by convention that s{0} is the empty sequence.

Lemma 2.3. Let a ∈ 〈A〉 be a non-empty word. For n1, n2, . . . , nk ∈ N, we have

a(n1,n2,...,nk) ∗ a(1) = a(1,n1,n2,...,nk) + a(n1+1,n2,...,nk)

+

k∑
i=1

a(n1,...,ni,1,ni+1,...,nk) +

k∑
i=2

a(n1,...,ni−1,ni+1,ni+1,...,nk).
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Proof. We proceed the proof by induction on k ∈ N. It follows from the definition
that

a(n1) ∗ a(1) = a(n1) � a(1) + a(n1) . a(1) + a(1) . a(n1)

= a(n1+1) + a(n1)a(1) + a(1)a(n1).

Hence the lemma holds for k = 1.

We assume that Lemma 2.3 holds for k ≥ 1. We need to show that the lemma
holds for k + 1. In fact, we have

a(n1,n2,...,nk+1) ∗ a(1)
= a(n1,n2,...,nk+1) � a(1) + a(1) . a(n1,n2,...,nk+1) + a(n1,n2,...,nk+1) . a(1)

= a(n1,n2,...,nk+1) � a(1) + a(1,n1,n2,...,nk+1) + a(n1,n2,...,nk+1) . a(1).

It follows from Lemma 2.1 that

a(n1,n2,...,nk+1) . a(1) = (a(n1) . a(n2,...,nk+1)) . a(1)

= a(n1) . (a(n2,...,nk+1) ∗ a(1)).

Again by Lemma 2.1,

a(n1,n2,...,nk+1) � a(1) = (a(n1) . a(n2,...,nk+1)) � a(1)
= (a(n1) � a(1)) . a(n2,...,nk+1)

= a(n1+1) . a(n2,...,nk+1)

= a(n1+1,n2,...,nk+1).

It follows from the induction hypothesis that

a(n2,...,nk+1) ∗ a(1) = a(1,n2,...,nk+1) + a(n2+1,n3,...,nk+1)

+

k+1∑
i=2

a(n2,...,ni,1,ni+1,...,nk+1) +

k+1∑
i=3

a(n2,...,ni−1,ni+1,ni+1,...,nk+1).

Putting it all together gives the lemma. �

Proposition 2.4. For any word a ∈ 〈A〉, we have

a∗n = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n times

=
∑

(n1,n2,...,nk)∈An

(
n

n1, . . . , nk

)
a(n1,n2,...,nk)

where

An = {(n1, . . . , nk) ∈ Nk | k ∈ N, n1 + · · ·+ nk = n}.

Proof. We proceed the proof by induction on n ∈ N. We see that the lemma holds
for n = 1. We assume that Lemma 2.4 holds for n ∈ N. We need to show that the
lemma holds for n+ 1. In fact, we let k ∈ N and (s1, . . . , sk) ∈ An+1 and set

J ′ = {j ∈ {1, 2, . . . , k} | sj > 1},
J = {1, 2, . . . , k} \ J ′.
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If J ′ = ∅, then k = n + 1 and (s1, s2, . . . , sk) = (1, 1, . . . , 1︸ ︷︷ ︸
n+1 times

)=1{n+1}. It follows

from Lemma 2.3 that

a1{n} ∗ a(1) = (n+ 1)a1{n+1} + a2,1{n−1} +

n∑
j=1

a(1{j},2,1{n−j}).

Thus a1{n+1} appears in the expression of the stuffle product a∗(n+1) with the coef-
ficient c1{n+1} = (n+ 1).n! = (n+ 1)!.

If J ′ 6= ∅, then we assume that J ′ = {j1, j2, . . . , jm} for some m ∈ N. It follows
from the definition that (s1, s2, . . . , sj1−1, sj1 − 1, sj1+1, . . . , sk) ∈ An and by using
Lemma 2.3 again we obtain

a(s1,s2,...,sj1−1,sj1−1,sj1+1,...,sk) ∗ a(1) = a(s1,s2,...,sj1−1,sj1 ,sj1+1,...,sk) + other terms.

Thus a(s1,...,sj1−1,sj1 ,sj1+1,...,sk) appears in the expansion of a(s1,...,sj1−1,sj1−1,sj1+1,...,sk)∗
a(1). Similarly, we see that a(s1,...,sji−1,sji ,sji+1,...,sk) appears in a(s1,...,sji−1,sji−1,sji+1,...,sk)∗
a(1) for all i. From the induction hypothesis and Lemma 2.3, we derive the coefficient

cs1,s2,...,sk =

(
n

s1, s2, . . . , sj1−1, sj1 − 1, sj1+1, . . . , sk

)
+ · · ·+

+

(
n

s1, s2, . . . , sjm−1, sjm − 1, sjm+1, . . . , sk

)
+

(
n

s1, s2, . . . , sk

)
|J |

=

(
n+ 1

s1, s2, . . . , sk

)
.

The last equality follows from the fact that s1 + · · · + sk = n + 1. This completes
the proof. �

As a corollary we get

Corollary 2.5. For all words a ∈ 〈A〉, we have

a∗p = a(p) = a�p.

Proof. We apply Lemma 2.3 for n = p. As we are working over the field K of
characteristic p, all the coefficients except cp vanish. Thus the corollary follows. �

Definition 2.6. Let a = xa1 . . . xan be a word. We define a ? p as the word
xpa1 . . . xpan .

The main result of this sections is as follows.

Proposition 2.7. For all words a ∈ 〈A〉, we have

a∗p = a ? p.

Proof. The proof is by induction on the weight w = w(a).

For w = 1, we see that Proposition 2.7 holds by using Corollary 2.5 and the
definition of the diamond product

x∗p1 = x�p1 = x1 ? p.
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For the induction step let w be an integer strictly greater than 1. We suppose
that for all a ∈ 〈A〉 such that w(a) < w, we have

a∗p = a ? p.

We now show that for all a ∈ 〈A〉 with w(a) = w,

a∗p = a ? p.

The proof is divided into two cases.

Case 1: If a = xw, then Corollary 2.5 and Lemma 2.2 imply

x∗pw = x�pw = xw ? p.

Case 2: If a = xua− where u ∈ N and a− ∈ 〈A〉, then by Corollary 2.5 and Lemma
2.2, we have

a∗p = a�p = (xua−)�p = x�pu . a�p− = x∗pu . a∗p− .

We clearly see that u < w and w(a−) < w. It follows from the induction hypothesis
that x∗pu = xpu = xu ? p and a∗p− = a− ? p. So we get

a∗p = (xu ? p)(a− ? p) = (xu ? p)(a− ? p) = (xua−) ? p = a ? p.

The proof is finished. �

3. Lyndon words and variants

In this section we will introduce the notion of Lyndon words. We will study
several variants that are useful in positive characteristic.

3.1. Lyndon words.

From now on we consider the total order

x1 � x2 � x3 � . . .

We use the lexicographic order for words with letters in A. For a, b ∈ A we also
write a ≺ b if b � a.

Definition 3.1. We say that a nontrivial word s is a Lyndon word if s ≺ s1 for
any nontrivial factorization s = s0s1.

We denote by D the set of all Lyndon words.

The famous theorem of Chen-Fox-Lyndon [9] reads

Theorem 3.2. Every word s has a unique factorization into Lyndon words:

s = s1 . . . sn

where s1 � · · · � sn is a decreasing sequence of Lyndon words.

Henceforth, for any word s, this factorization is called the Chen-Fox-Lyndon
(CFL) factorization of s.
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3.2. Variants of Lyndon words.

Definition 3.3. 1) A non-negative integer p-power of a Lyndon word is called a
p−adic Lyndon word; denote by D′ the set of such words.

2) We say that a non-empty word s = xi1 . . . xik is prime-to-p if for some 1 ≤ j ≤
k we have p - xij . We denote by D′′ the set of prime-to-p, p−adic Lyndon words.

We now define two maps, the p−index map and the p−reduction map on the
set of non-empty words as follows. For any non-empty word s = xi1xi2 . . . xin ,
let indp(s) denote the largest non-negative integer r such that pr divides each
index i1, i2, . . . , in. The p−reduction of the word s is the word red(s) obtained from
s = xi1xi2 . . . xin by replacing each letter xik , 1 ≤ k ≤ n, by xi′k where i′k = ik

pindp(s) .

We see that the p−reduction of a word is a prime-to-p word.

Lemma 3.4. 1) For any non-empty word s and positive integer n, indp(sn) =
indp(s) and red(sn) = red(s)n.

2) A word s is Lyndon if and only if red(s) is Lyndon.

3) A word s is p−adic Lyndon if and only if red(s) is p−adic Lyndon.

Proof. 1) For a non-empty word s = xi1xi2 . . . xik and a positive integer n, we have
sn = xi1xi2 . . . xik . . . xi1xi2 . . . xik︸ ︷︷ ︸

n times

. By definition, indp(s) and indp(s)n are the expo-

nents of p in the greatest common divisors of i1, . . . , ik and i1, . . . , ik, . . . , i1, . . . , ik︸ ︷︷ ︸
n times

respectively. But these greatest common divisors are obviously equal, so indp(sn) =
indp(s).

Similarly, if r = indp(sn) = indp(s) then red(s) and red(sn) are the words ob-
tained from xi1xi2 . . . xik and xi1xi2 . . . xik . . . xi1xi2 . . . xik︸ ︷︷ ︸

n times

by replacing each letter

xis by xi′s , where i′s = is
pr . So red(sn) = xi′1xi′2 . . . xi′k . . . xi′1xi′2 . . . xi′k︸ ︷︷ ︸

n times

= red(s)n.

2) Let s = xi1xi2 . . . xik be a non-empty word with p−adic index s; red(s) =

xi′1xi′2 . . . xi′k , where i′j =
ij
ps for 1 ≤ j ≤ k.

Any nontrivial factorization s = (xi1 . . . xil)(xil+1
. . . xk), 1 < l < k, corresponds

to a nontrivial factorization red(s) = (xi′1xi′2 . . . xi′l)(xi′l+1
. . . xi′k). Since ij = psi′j

for all 1 ≤ j ≤ l, we have xis1 ≺ xis2 if and only if xi′s1 ≺ xi′s2 . It follows that

xi1 . . . xik ≺ xil+1
. . . xk if and only if xi′1 . . . xi′k ≺ xi′l+1

. . . x′k. This shows that s is

Lyndon if and only if red(s) is Lyndon.

3) Suppose that t is Lyndon andm is a non-negative integer. By Part 1, red
(
tp

m)
=

(red(t))p
m

is Lyndon since red(t) is Lyndon. Conversely, suppose that s is a non-
empty word such that red(s) = ap

m

where a is Lyndon and m is a non-negative
integer. Set b = a ? ps, where s = indp(s). Then we have red(b) = a, s = bp

m

. Since
a is Lyndon, so is b. This shows that s is p−adic Lyndon. �

Remark 3.5. Note that since the p−reduction of a non-empty word is a prime-
to-p word, the previous lemma implies that the p−reduction of a Lyndon word is a
prime-to-p Lyndon word. Similarly, the p−reduction of a p−adic Lyndon word is a
prime-to-p, p-adic Lyndon word.
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Note that the CFL factorization has the following p−adic variant:

Lemma 3.6. Any non-empty s word can be uniquely written as s = sm1
1 sm2

2 · · · smn
n ,

where s1 � s2 � · · · � sn are p-adic Lyndon words and m1,m2, . . . ,mn are positive
integers smaller than p.

This factorization is called the p-adic Chen-Fox-Lyndon factorization of s.

Proof. Let t be a Lyndon word and m ∈ N. We write the p-adic expansion of m:

m = m0 +m1p+ · · ·+mnp
n

where 0 ≤ mi < p for all i and mn 6= 0. Then the p-adic Chen-Fox-Lyndon factor-
ization of tm is given by

tm = (tp
n

)mn . . . (tp)m1 tm0 .

Now for any word s we write the Chen-Fox-Lyndon factorization of s:

s = sm1
1 . . . smn

n

where mi ∈ N for all i and s1 � · · · � sn is a strictly decreasing sequence of Lyndon
words. Then the product of the p-adic Chen-Fox-Lyndon factorizations of smi

i is
the p-adic Chen-Fox-Lyndon factorization of s. �

3.3. A key bijection.

In the sequence, we will work with multisets over the sets D,D′,D′′.

Definition 3.7. 1) A multiset over a set S is a function m : S → Z≥0 such that
its support {s ∈ S | m(s) 6= 0} is a finite subset of S. For s ∈ S, m(s) is called the
multiplicity of s.

2) A multiset is called M−bounbed, where M is a fixed positive integer, if
m(s) < M for all s. We denote the sets of multisets and M -bounded multisets over
a fixed set S by Mult(S) and Mult<M (S) respectively.

The addition of two multisets is the defined in a natural way. For two multisets
m1,m2 over the same set S, their sum m1 + m2 is the multiset over S defined by
(m1 +m2)(s) = m1(s) +m2(s) for all s ∈ S. More generally, we can form the sum
any finite number of multisets over S. It’s obvious that Mult(S), equipped with this
addition law, is a free commutative monoid with basis S.

Usually, a multiset will be written as {m1 · s1, . . . ,mn · sn} where s1, s2, . . . , sn
are elements of its support with the corresponding multiplicities m1,m2, . . . ,mn.
Sometimes we also use the additive notation for a multiset where m1 ·s1 +m2 ·s2 +
· · · + mn · sn denotes the sum of the multisets m1 · s1, m2 · s2, . . ., mn · sn where
mi · si, 1 ≤ i ≤ n, is the multiset whose the support is the singleton {si} and the
multiplicity of si is mi. More specifically, we use the notation {m1 · s1, . . . ,mn · sn}
to emphasize that s1, s2, . . . , sn are distinct, whereas in the additive notation m1 ·
s1 +m2 · s2 + · · ·+mn · sn the elements s1, s2, . . . , sn need not be distinct.

Let s = sm1
1 sm2

2 · · · smn
n be the p−adic CFL factorization of a non-empty word

s ∈ 〈A〉. We define the multiset f(s) by

f(s) = {m1 · s1, . . . ,mn · sn}.

Then f(s) ∈ Mult<p(D′).
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Conversely, for a p−bounded multiset m in Mult<p(D′), we define the word g(m)
as follows. We first arrange its elements in decreasing order as m = {m1 ·s1, . . . ,mn ·
sn} so that 1 ≤ mi < p for all i = 1, 2, . . . , n, and s1 � s2 � · · · � sn, then we set

g(m) = sm1
1 sm2

2 · · · smn
n .

Obviously g(m) ∈ 〈A〉.
We can restate Lemma 3.6 in the following terms.

Corollary 3.8. The maps f : 〈A〉 → Mult<p(D′) and g : Mult<p(D′) → 〈A〉 are
inverses of each other.

For a multiset m = {m1 · s1, . . . ,mn · sn} ∈ Mult<p(D′), we set

F (m) = m1p
indp(s1) · red(s1) + · · ·+mnp

indp(sn) red(sn).

Since each red(si) belongs to D′′, the right hand side defines an element of Mult(D′′).

Conversely, for a multiset n = {n1 · t1, . . . , nk · tk} in Mult(D′′), we define a

multiset G(n) in Mult<p(D′) as follows. For each i, let ni =
∑+∞

j=0 ni,jp
j be the

p−adic expansion of ni where 0 ≤ ni,j ≤ p−1 and ni,j = 0 for all but finitely many
j. We then set

G(n) =

k∑
i=1

+∞∑
j=0

ni,j · (ti ? pj).

Note that according to our convention for notating of the multiset {n1·t1, . . . , nk·tk},
the words t1, t2, . . . , tk are pairwise distinct in D′′. It follows that the words ti ? p

j

are also pairwise distinct elements of D′ and 0 ≤ ni,j < p, the expression on the
right hand side defines a multiset in Mult<p(D′).

Lemma 3.9. The maps F : Mult<p(D′)→ Mult(D′′) and G : Mult(D′′)→ Mult<p(D′)
are inverses of each other.

Proof. It follows from the definitions of F and G. �

Let us summarize the previous results in the following proposition:

Proposition 3.10. There are natural bijections between:

1) The set of words 〈A〉;
2) The set of p−bounded multisets of p−adic Lyndon words Mult<p(D′);

3) The set of multisets of prime-to-p, p−adic Lyndon words Mult(D′′).

Proof. The bijections between 〈A〉 and Mult<p(D′) are given by f and g. The
bijections between Mult<p(D′) and Mult(D′′) are given by F and G. Finally, the
bijections between 〈A〉 and Mult(D′′) are given by F ◦ f and g ◦G. �

As a corollary, we get

Corollary 3.11. For all w we denote by Dw (resp. D′w,D
′′
w) the set of elements

of weight w in D (resp. D′,D′′). Then |Dw| = |D′′w|.



POLYNOMIAL BASIS FOR THE STUFFLE ALGEBRA 11

3.4. Number of generators.

We end this section by recalling the cardinality of |Dw| for all w. We follow
closely the presentation given as in [6, §1.4]. Since A is a graded K-algebra with
A0 = K, we consider its Hilbert-Poincaré series given by

HA(t) =
∑
w≥0

dimAw t
w.

We see that

dimAw =

{
1 if w = 0,

2w−1 if w > 0.

So

HA(t) =
1− t
1− 2t

.

Next we express the logarithm of HA(t) as follows:

logHA(t) =
∑
w≥1

hwt
w.

Recall that the Môbius function µ takes the value 1 (resp. −1) on square-free
integers with an even (resp. odd) number of prime factors, and 0 for non-square-
free integers. In particular, µ(1) = 1. Then Theorem 3.2 and the Möbius inversion
formula imply that

Proposition 3.12. For all w we have

|Dw| =
∑
d|w

µ(d)hw/d.

Proof. Since A is a graded K-algebra with A0 = K, we consider its Hilbert-Poincaré
series given by

HA(t) =
∑
w≥0

dimAw t
w.

By definition, dimAw is the number of words with weight w. A word s = xi1 . . . xik
of weight w corresponds to a decomposition of w into a sum of positive integers
w = i1 + . . . + ik, that is, a composition of w. It is known that the number of
compositions of an integer w > 1 is 2w−1. Thus

dimAw =

{
1 if w = 0,

2w−1 if w > 0.

It follows that

HA(t) = 1 + t+ 2t+ 22t3 + · · ·

Consider the following power series for the ∗−product:

S =
∏

s∈D′′
(1 + s + s∗2 + · · · )

=
∏
w≥1

∏
s∈D′′w

(1 + s + s∗2 + · · · ).
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After the expansion, the expression S contains every ∗−monomial, each with
coefficient 1. By Theorem 4.1, D′′ is a polynomial basis of A. This implies that the
expression S, when evaluated at s = tw, for all s ∈ Dw, agrees with HA(t):

HA(t) =
∏
w≥1

∏
s∈D′′w

(1 + tw + t2w + · · · )

=
∏
w≥1

(1 + tw + t2w + · · · )d
′′
w

=
∏
w≥1

(1 + tw + t2w + · · · )d
′′
w

=
∏
w≥1

1

(1− tw)d
′′
w
.

Now, by differentiating both sides, then multiplying both sides by t we get

td logHA(t) =
∑
w≥1

wd′′w
tw

1− tw

=
∑
w≥1

wd′′w(tw + t2w + · · · )

=
∑
n≥1

∑
w|n

wd′′w

 tn.

Note that if logHA(t) =
∑

n≥0 hnt
n then td logHA(t) =

∑
n≥1 nhnt

n. Therefore,
the previous identity shows that, for all positive integers n,∑

w|n

wd′′w = nhn.

This recursive formula allows us to compute dw using the coefficients of the series
logHA(t).

It follows from the Mobius inversion formula that, for all positive integers n,

d′′w =
∑
d|w

µ(d)hw/d.

Note that, by Corollary 3.11, dw = d′′w. This gives us the desired formula for dw. �

4. Generators of the stuffle algebra

4.1. The main result.

In this section we will prove the following theorem:

Theorem 4.1. The algebra (A, ∗) is a polynomial algebra over the p−adic prime-
to-p Lyndon words.

Theorem 4.1 is a consequence of the following proposition:

Proposition 4.2. Let n = {n1 · t1, n2 · t2, . . . , nk · tk} be a multiset in D′′. Let
{m1 · s1,m2 · s2, . . . ,ml · sl} = G(n) and s = g ◦G(n) be the corresponding multiset
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in Mult<p(D′) and word in 〈A〉. Then the expansion of the ∗monomial t∗n1
1 ∗ t∗n2

2 ∗
· · · ∗ t∗nk

k in A has the form:

t∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k =
∑

s′≤s,w(s′)=w(s)

cs′s
′.

The coefficients cs′ are in Fp.

Furthermore, cs = m1! m2! · · · ms!. In partticular, cs 6= 0.

We postpone the proof of Proposition 4.2 until the end of this section (see §4.2)
and explain why it implies Theorem 4.1.

Proof of Theorem 4.1. First, let us show that (A, ∗) can be generated as an algebra
by D′′. Indeed, it suffices to show that any word s in 〈A〉 can be expressed as a
∗−polynomial with coefficients in Fp of elements of D′′. If w(s) = 0, that is s is the
empty word, then the conclusion is trivial. Suppose that w = w(s) > 0.

By Proposition 4.2, we can express

css = t∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k −
∑

s′<s,wt(s′)=w

cs′s
′.

Note that the subset of 〈A〉 of words with weight w is finite whose smallest element
is xw. Therefore, if s = xw then the sum on the right hand side is empty and the
conclusion is immediate as cs 6= 0. Suppose that the conclusion holds for every
word s′ of weight w such that s′ < s. Then each term cs′s

′ can be expressed as
a ∗−polynomials of elements of D′′ with coefficients in Fp and the above identity
shows that s can also be expressed as a ∗−polynomials of elements of D′′ with
coefficients in Fp.

It remains to show that the elements of D′′ are algebraically independent over
Fp. Suppose the contrary, that there are some linear dependence relations among
the ∗− monomials: ∑

n∈S
bnt
∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k = 0,

where the sum is taken over a finite, non-empty subset S of Mult(D′′); and by abuse
of notation, we identify the ∗−monomial t∗n1

1 ∗ t∗n2
2 ∗ · · · ∗ t∗nk

k with the element
n = {n1 · t1, . . . , nk · tk} of Mult(D′′) and the coefficients bn of t∗n1

1 ∗ t∗n2
2 ∗ · · · ∗ t∗nk

k

are nonzero. By Proposition 4.2, each term bnt
∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k has an expansion
in A of the form

bnt
∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k = bncs(n)s(n) + bn

 ∑
s′<s(n),wt(s′)=wt(s(n))

cs′s
′


where s(n) = g ◦ G(n). Since g ◦ G a bijection between Mult(D′′) and 〈A〉, the
words g ◦G(n) (n ∈ S) are pairwise distinct. It follows that if we denote by s(n0) =
g ◦G(n0) the largest element among them then we have an expansion of the form∑

n∈S
bnt
∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k = bn0cs(n0)s(n0) +
∑

s′<s(n0)

ds′s
′.

Since bn0
cs(n0) 6= 0, the right hand side does not vanish, while the left hand side is

equal to 0, contradiction. �

4.2. Proof of Proposition 4.2.
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4.2.1. Premilinaries.

Let us recall the stuffle and shuffle algebras over the integers Z as follows.

Definition 4.3. Let AZ the free Z-module with basis 〈A〉. Then we recursively
define two products on AZ as Z-bilinear maps

� : AZ × AZ −→ AZ and ∗ : AZ × AZ −→ AZ

by setting 1� a = a� 1 = a, 1 ∗ a = a ∗ 1 = a and

a� b = xa(a− � b) + xb(a� b−),

a ∗ b = xa(a− ∗ b) + xb(a ∗ b−) + xa+b(a− ∗ b−).

Note that the algebra (A, ∗) is simply a reduction modulo p of (AZ, ∗).

Definition 4.4. Let s1, s2 be two words. Suppose that the expansions of s1 ∗ s2
and s1 � s2 in the algebra AZ are of the form

s1 ∗ s2 =
∑
s≤a

css,

s1 � s2 =
∑
s≤b

dss

where ca, db are nonzero integers. Then we say that caa, dbb are the largest terms
of s1 ∗ s2 and s1 � s2 respectively. For simplicity, we denote them by LT (s1 ∗ s2)
and LT (s1 � s2). This definition and notation naturally generalize to products of
more than two words.

Proposition 4.5. Over Z, we have, for any words s1, s2, . . . , sk ∈ 〈A〉, we have

LT (s1 ∗ s2 ∗ · · · ∗ sk) = LT (s1 � s2 � · · ·� sk).

Proof. First we consider the case when k = 2. Let us prove that LT (a ∗ b) =
LT (a� b) by induction on the sum of the lengths |a| + |b|. If |a| + |b| = 0, then
both a, b are empty words and we are done. More generally, the identity holds if
one of the words a, b is empty, since the ∗− product and the �− product of any
word s with the empty word are both equal to s. So we can assume that a, b are
not empty, and that the identity holds for any two words whose the sum of lengths
is less than |a|+ |b|. Let us write a = xaa−, b = xbb−, so that

a� b = xa(a− � b) + xb(a� b−),

a ∗ b = xa(a− ∗ b) + xb(a ∗ b−) + xa+b(a− ∗ b−).

Since a, b are not empty words, a, b are positive integers. By the definition of the
order on the alphabet, xa+b ≺ xa, xa+b ≺ xb so that the largest term of a ∗ b has
no contribution from the expansion of xa+b(a− ∗ b−), that is

LT (a ∗ b) = LT (xa(a− ∗ b) + xb(a ∗ b−)).

Suppose a < b. Then xb ≺ xa and the largest term of a ∗ b must come from
xa(a− ∗b), i.e., LT (a∗b) = LT (xa(a− ∗b)) = xaLT (a− ∗b). Similarly, LT (a�b) =
LT (xa(a−� b)) = xaLT (a−� b). But, by the induction hypothesis, LT (a− ∗ b) =
LT (a−� b). It follows that LT (a− ∗ b) = LT (a−� b). Similar arguments apply to
the case a > b (or by swapping the order of a and b and using the commutativity
of the shuffle and stuffle products).
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Suppose that a = b. In this case, if the largest words in the expansions of a− ∗ b
and a ∗ b− are equal then LT (a ∗ b) = LT (a− ∗ b) + LT (a ∗ b−), and by induction
hypothesis LT (a− ∗ b) = LT (a− � b), LT (a ∗ b−) = LT (a� b−), which, in turn,
implies that the largest words in a− � b and a� b− are equal and LT (a� b) =
LT (a− � b) + LT (a� b−), giving the desired identity. If the largest words in the
expansions of a− ∗b and a∗b− are not equal, e.g., the largest word in a− ∗b is larger
than the one in a∗b−, then LT (a∗b) = xaLT (a− ∗b). By the induction hypothesis,
LT (a− ∗ b) = LT (a−� b), LT (a ∗ b−) = LT (a� b−), which shows that the largest
word in a− � b is larger than the one in a� b−, thus LT (a� b) = LT (a− � b),
implying LT (a ∗ b) = LT (a� b). This completes the proof for the case k = 2.

The general case follows immediately by induction on k, using the associativity
of the shuffle and stuffle products. �

The following result is due to Radford (see [31, Theorem 3.2.1, Part a]):

Proposition 4.6. Let s1 � s2 � · · · � sk be a decreasing sequence of p−adic
Lyndon words and m1,m2, . . . ,mk a sequence of positive integers strictly less than
p. Then

LT (s�m1
1 � s�m2

2 � · · ·� s�mk

k ) = m1! m2! · · · mk! sm1
1 · · · s

mk

k .

4.2.2. Proof of Proposition 4.2. Let n = {n1 · t1, n2 · t2, . . . , nk · tk} be a multiset in

D′′. For each i, let ni =
∑+∞

j=0 ki,jp
j be the p−adic expansion of ni (0 ≤ ki,j ≤ p−1

and ki,j = 0 for all but finitely many j). Then

t∗ni
i = t

∗ki,0

i ∗ t∗ki,1p
i ∗ t∗ki,2p

2

i ∗ · · ·

Thanks to Proposition 2.7, each factor t
∗ki,jp

j

i simplifies to

t
∗ki,jp

j

i = t∗p
j

i ∗ t∗p
j

i ∗ · · · ∗ t∗p
j

i︸ ︷︷ ︸
ki,j times

= (ti ? p
j) ∗ (ti ? p

j) ∗ · · · ∗ (ti ? p
j)︸ ︷︷ ︸

ki,j times

It follows that t∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k is equal to the ∗-product of ti ? p
j , 1 ≤ i ≤

k, 0 ≤ j < +∞, where each factor ti ? p
j appears with multiplicity ki,j . Recall that,

by definition,

G(n) =

l∑
i=1

+∞∑
j=0

ki,j · (ti ? pj).

We arrange the elements of the multiset m = G(n) ∈ Mult<p(D′) in decreasing
order m = {m1 · s1,m2 · s2, . . . ,m` · s`} where s1 � s2 � · · · � s`. Then,

t∗n1
1 ∗ t∗n2

2 ∗ · · · ∗ t∗nk

k = s∗m1
1 ∗ s∗m2

2 ∗ · · · ∗ s∗m`

` .

Now, Propostion 4.5, combined with Proposition 4.6, states that the expansion of
s∗m1
1 ∗ s∗m2

2 ∗ · · · ∗ s∗m`

` in A, is an integral linear combination of words in 〈A〉, the
largest of which is s, appearing with a nonzero coefficient. This concludes the proof
of Proposition 4.2.

5. Applications

In this section we present an application of Theorem 4.1 to multiple zeta values
in positive characteristic which is the starting point of this work.
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5.1. Motivation and setup.

In the classical setting, zeta values and multiple zeta values were studied by
Euler in the 18th century. They were resurrected by Zagier in his seminal paper
[38] and then by physicists such as Broadhurst, Kreimer [3]. Since then, they have
become ubiquitous in many branches in mathematics and physics (see for example
[1, 4, 11, 13, 17, 23, 24, 33]). We refer the reader to [5, 6, 38] for more details and
further references.

By the analogy between number fields and function fields, there exists the notion
of zeta values and multiple zeta values in positive characteristic which has attracted
growing interest in recent years (see for example [8, 14, 28, 32, 34]). We briefly recall
these objects and collect some results from [18, 19, 20, 28].

Let q be a power of prime p and Fq be a finite field of order q. Let A = Fq[θ]
be the polynomial ring in θ over Fq and A+ the set of monic polynomials in A. We
denote by K = Fq(θ) the fraction field of A equipped with the rational point ∞.
Let K∞ = k((1/θ)) be the completion of K at ∞ and C∞ be the completion of a
fixed algebraic closure K of K at ∞. Further, let v∞ be the discrete valuation on
K associated to the place ∞ normalized as v∞(θ) = −1 and | · |∞ = q−v∞(·) be the
corresponding norm on K.

Let s = (s1, . . . , sn) be a tuple of positive integers. Then w(s) = s1 + · · · + sn
(resp. n) is called the weight (resp. the depth) of s. We introduce the multiple zeta
value (MZV for short) attached to s given by the convergent series

ζA(s) =
∑ 1

as11 . . . asrr
∈ K∞

where the sum is over all tuples (a1, . . . , ar) ∈ Ar
+ with deg(a1) > · · · > deg(ar).

We also call w(s) (resp. n) the weight (resp. the depth) of ζA(s). Then it is proved
that ζA(s) does not vanish. Furthermore, it is known that the product of two MZV’s
is a K-linear combination of MZV’s, but the formula is complicated. We denote by
Z (resp. Zw) the K-vector space spanned by all the MZV’s (resp. all the MZV’s of
fixed weight w).

Theorem 5.1. We keep the above notation. Then Z is a commutative graded K-
algebra.

Proof. The commutativity of Z is easy to prove (see for example [36]). The fact that
Z is graded was proved in [8]. The associativity of Z was proved in [19, Theorem
A]. �

5.2. The stuffle algebra structure of MZV’s.

We now review the notion of multiple polylogarithms (or Carlitz multiple poly-

logarithms) in positive characteristic. We put `0 := 1 and `d :=
∏d

i=1(θ−θqi) for all
d ∈ N. For s = (s1, . . . , sn) ∈ Nn, we introduce the Carlitz multiple polylogarithm
at roots of unity (CMPL at roots of unity for short) as follows:

Li(s) =
∑

d1>···>dn≥0

1

`s1d1
. . . `sndn

∈ K∞.

We denote by L (resp. Lw) the K-vector space spanned by all the CMPL’s (resp.
all the MZV’s of fixed weight w). An advantage when working with CMPL’s is that
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we can equip L with the stuffle product described as in the previous sections. Then
one proves that L is also a commutative graded K-algebra.

The following result explains the connection between MZV’s and CMPL’s:

Lemma 5.2. For all s = (s1, . . . , sn) ∈ Nn such that si ≤ q for all i, we have
ζA(s) = Li(s).

Proof. We refer the reader to [35] for a proof. �

Combining the above lemma with the techniques of [28, §2 and §3] we get

Theorem 5.3. For all w, the K-vector spaces Zw and Lw are spanned by Li(s)
where s runs through the set of s = (s1, . . . , sn) ∈ Nn such that si ≤ q for all i and
sn < q. In particular, they are equal.

Proof. We outline the proof. Theorem A of [28] says that Zw is spanned by Li(s)
where s runs through the set of s = (s1, . . . , sn) ∈ Nn such that si ≤ q for all i and
sn < q. We extend the techniques developed in its proof to obtain the statement
for Lw. Combining these results with Lemma 5.2 gives the theorem. We refer the
reader to [18, Theorem 4.3] for more details. �

We define the stuffle map in positive characteristic by the K-linear map

ϕ : A→ Z,

which sends a word s ∈ 〈A〉 to Li(s). We have proved that this is a homomorphism
of graded K-algebras: for all words a, b ∈ A,

Li(a ∗ b) = Li(a) Li(b).

5.3. An application of Theorem 4.1.

We present an application of Theorem 4.1 to study the transcendence degree of
MZV’s of small weights. We recall Theorem B and Corollary C of [28] which state
that

Theorem 5.4. For w < q the induced map ϕ : Aw → Zw is an isomorphism of
K-vector spaces.

We derive the following result:

Theorem 5.5. For all w < q the transcendence degree of the K-algebra generated
by MZV’s of weight at most w equals

∑w
i=1 |Di| where |Di| is given as in Proposition

3.12.

Proof. Since w < q, Theorem 5.4 states that the K-algebra generated by MZV’s
of weight at most w can be identified with the K-algebra generated by the words
s ∈ A of weight at most w. By Theorem 4.1 the latter is the polynomial algebra over
the p−adic prime-to-p Lyndon words of weight at most w. Thus the transcendence
degree of the K-algebra generated by MZV’s of weight at most w is

∑w
i=1 |D′′i |.

Combining this with Corollary 3.11 gives the theorem and we are done. �

Remark 5.6. Mishiba [26, 27] studied the transcendence degree of the K-algebra
of two particular sets of MZV’s:

• In [26] he considered the set consisting of two MZV’s ζA(2n) and ζA(n, n)
for fixed n. If n = 1, we get the previous theorem for w = 2.
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• In [27] he considered distinct positive integers n1, . . . , nd such that q−1 - ni
and ni/nj is not a power of p for i 6= j. Then the set of MZV’s consists of
all ζA(ni, ni+1, . . . , nj) for 1 ≤ i ≤ j ≤ d.

His method is completely different from ours and based on the techniques from
algebraic geometry and the powerful tool developed in [29].
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Math. Inst. Hautes Études Sci., (95):185–231, 2002.
[31] D. Radford. A natural ring basis for the shuffle algebra and an application to group schemes.

J. Algebra, 58(2):432–454, 1979.

[32] F. Pellarin. Values of certain L-series in positive characteristic. Ann. of Math. (2),
176(3):2055–2093, 2012.

[33] T. Terasoma. Mixed Tate motives and multiple zeta values. Invent. Math., 149(2):339–369,

2002.
[34] D. Thakur. Function field arithmetic. World Scientific Publishing Co., Inc., River Edge, NJ,

2004.

[35] D. Thakur. Relations between multizeta values for Fq [t]. Int. Math. Res. Not., (12):2318–2346,
2009.

[36] D. Thakur. Multizeta values for function fields: a survey. J. Théor. Nombres Bordeaux,
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