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Abstract 

Methanol (MeOH) is largely used in industry but it is poisonous when ingested. A new 

microconductometric transducer is proposed for the detection of methanol vapor. The sensi-

tive part of this methanol microsensor is prepared by the encapsulation of zinc sulfide (ZnS) 

nanoparticles (NPs) in chitosan. ZnS NPs were prepared through an aqueous colloidal route, 

Artemisia Herba Alba (AHA) plant extract being used as a capping agent. ZnS AHA NPs pre-

sents an average nanocrystal size of 3.93 nm with a cubic zinc blende structure. The ZnS 

AHA NPs were well dispersed in an electrodeposited chitosan film on interdigitated elec-

trodes, for conductometric measurements. The ethanol, methanol and acetone gas-sensing 

responses of the films were measured at room temperature. The sensors’ response time (tRec) 

for methanol is from 11 to 25 s from lower to higher concentrations. The limit of detection for 

methanol is 1400 ppm in the gas phase. The methanol sensor presents 3.8 times lower sensi-

tivity for ethanol and 30 times lower sensitivity for acetone. The shelf life of the methanol 

sensor is one month. 

Keywords: Chitosan film; ZnS nanoparticles; Artemisia Herba Alba extract; conductivity; 

methanol; gas sensor. 

1. Introduction 

Methanol, the simplest alcohol, is harmless on its own, but its metabolites formic acid and formate are 

very hazardous after ingestion [1,2]. It is well known that consuming MeOH may harm the neurologi-

cal and circulatory systems permanently, leading to blindness, organ failure, or even death. It can be 

found in alcoholic drinks made by distillation or spontaneous fermentation. Blindness cases have been 

documented following the ingestion of as little as 4 mL of MeOH. It is often stated that 100 mL of 

consumed MeOH is the least deadly dosage [1]. MeOH is often employed as a cleaning agent and 
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solvent in industry, and it is an alternate energy carrier to hydrogen [3]. For repeated exposure during 

the working day without experiencing serious health consequences. It is thus necessary to create as-

says and sensors that are sensitive, reasonably priced, and easy to use for industrial laboratories, sup-

pliers, and end users. MeOH has been identified using a variety of methods, such as gas chromatog-

raphy [4], Fourier transform infrared spectrometry [5], Raman spectroscopy [6], and surface plasmon 

resonance [7]. These methods are not suited for routine usage because of their limitations, which in-

clude high costs and the requirement for skilled personnel. To address the issue, a gas sensor approach 

has been used to detect MeOH or other volatile organic chemicals (VOCs). 

Numerous sensors are based on semiconducting metal oxides such as SnO2 [8,9], ZnO 

[10,11], WO3 [12]. The main drawbacks of these nanomaterials are their high working tem-

perature and their rather poor specificity. Metal sulfides as sensing materials for gas detection 

have been poorly studied. By studying physical and chemical properties of nanostructured 

metal sulfides, it arose that such materials may be very good candidates to be further investi-

gated in the chemoresistive gas sensing field. Indeed, by using these materials, we expect an 

improvement from an energy consumption point of view, both in thermal and photo-activation 

modes, due to their lower band-gap than for metal-oxide semiconductors [13]. The compari-

son between CdO and CdS, for the detection of 5 ppm ethanol, carried out at the relative best 

working temperature (300 °C) for both sensing materials, highlights the negligible response of 

CdO with respect to CdS. The response of SnS2 sensor for 2500 ppm of methane was higher 

than the SnO2 one, and the response/recovery times of SnS2 were faster than SnO2 [13]. The 

detection of methanol, ethanol and acetone was tested on different thicknesses of In2S3, in the 

range 2000 ppm to 10000 ppm (for methanol), at a working temperature of 350°C. The higher 

sensitivty was observed for ethanol [14]. SnS was able to detect ethanol in the range 14.86 

ppm to 100 ppm at 160°C [15]. 

 

Some published gas sensors were based on ZnS nanoparticles, working as chemoresistors 

under thermoactivation. A study reports the ZnS quantum dots (QDs) synthesis by a hot-

injection method for acetone gas sensing applications. This sensor was highly selective to 

acetone, at 175°C, in the range of 20 ppm to 100 ppm [16]. Novel Au nanoparticles decorated 

wurtzite ZnS hollow spheres (Au NPs-ZnS HSs) were successfully synthesized by simple 

hydrothermal and deposition-precipitation methods. The obtained chemoresistive sensor was 

used at 260°C for the detection of ethanol, n-propanol and n-butanol for 50 ppm concentration 

[17]. 



 

3 
 

ZnS NPs have recently drawn special attention because of their abundance, low cost, good 

stability, non-toxicity, physical and chemical stability, good light UV absorption, and high 

catalytic efficiency [18-20]. Several chemical and physical methods are widely used to elabo-

rate ZnS NPs like pulsed laser deposition [21], solvothermal [22], sol-gel [23] and hydrother-

mal [24]. Researchers have developed a new approach to synthesize functionalized ZnS NPs 

using capping agents. These surface capping agents bind on the surface of the nanoparticles 

and provide colloidal stability, passivation of surface defects, and water solubility [25]. 

Among the capping agents most often used, we can cite layers of organic thiol ligands such as 

mercaptopropionic acid [26], β-mercaptoethanol [27], thioglycerol [28], cysteine [29], gluta-

thione [30] and thioglycolic acid [31]. However, another alternative method and technique is 

the biosynthesis of ZnS NPs by the green route due to its simplicity, non-toxicity, stability, 

and cheapness [32]. The synthesis of nanoparticles using plant extracts can potentially elimi-

nate the problem of the organic capping agents, which are expensive and toxic, by making the 

nanoparticles more biocompatible. To the best of the author’s knowledge, several researchers 

have been focused on the green synthesis of ZnS NPs by different plants like Acalypha indica 

[33], Tridax procumbens [33], Abrus precatorius [34], Ficus Johannis [35], Azadirachta 

Indica [36]. In this context, Artemisia Herba-Alba (AHA) or "desert wormwood", also known 

as ‘Chih’, is an herbaceous plant with woody, branched stems, 30–50 cm high, leafy, and a 

thick stump. Artemisia Herba-Alba is a grayish perennial dwarf shrub growing in arid cli-

mates (the Middle East and North Africa) [37].  The leaves are small, sessile, pubescent, and 

showy silver. The flowers are grouped in clusters and have ovoid flower heads [37]. Artemisia 

species have practical applications as food additives [38], antiviral agents [39], antimalarial 

agents [40], antimicrobial agents [41], anti-inflammatory agents [42], and anti-hepatotoxic 

agents [43]. Moreover, some Artemisia species have practical applications in medicine for the 

treatment of various diseases, such as stopping pain, invigorating blood, relieving cough, and 

acting as a diuretic, anthelminthic, antiallergenic, and antitoxic agent [44]. This desert worm-

wood has more than 160 individual components, including many essential oils, terpenoids, 

flavonoids, luteolin and flavones [44]. The phyto-bioactive constituents present in the aqueous 

extract of AHA play an important role in capping and stabilizing the biosynthesized ZnS NPs. 

There are several studies on green synthesis. 

In this work, a rapid and new straightforward method for the green synthesis of ZnS-AHA 

NPs, using for the first time an extract of Artemisia Herba Aba is implemented, and these 

green nanoparticles are studied for their applications in gas sensors. ZnS-AHA NPs will be 
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encapsulated in a chitosan film as a conductive film deposited on an interdigitated electrode 

for the detection of gaseous compounds. Chitosan (CS), a natural biopolymer found in the 

shells of crustaceans and insects that contains functional groups such as hydroxyl (-OH) and 

amino (-NH2), displays sufficient affinity to small analytes [45]. It has gained attention in re-

cent years due to its unique properties, such as abundance, biocompatibility, biodegradability, 

low cost, and low toxicity [46]. Chitosan can be used as a coating material for 

electrodeposition due to its ability to form a film on metal surfaces. The electrodeposition of 

chitosan is based on its local insolubility, caused by the local increase of the pH value through 

the electroreduction of protons [47]. Its biocompatibility and biodegradability also make it an 

attractive alternative, making it applicable to electrochemical sensors [47], biosensors [48], 

gas sensors [49], and volatile organic compound sensors [50,51].  It presents appropriate in-

teractions with the capped nanoparticles due to their functional groups. In this work, after 

morphological and spectroscopic  characterizations, ZnS-AHA NPs is encapsulated in an elec-

trodeposited chitosan film, allowing the electroaddressing of the chitosan/ZnS-NPs film on 

the working pair of interdigitated electrodes, the reference pair being covered with a chitosan 

film for differential measurements. The detection of methanol and other VOC (ethanol, ace-

tone) were measured in the headspace of aqueous liquid mixtures, at ambient temperature. 

2. Experimental 

Chemicals, Artemisia herba alba plant extract, synthesis of AHA-capped ZnS NPs, fabrica-

tion process and packaging of micro-conductometric chips, electrodeposition of chitosan/ZnS-

AHA films on the interdigitated electrodes, characterization techniques, and conductometric 

measurements are presented in the Supplementary Information. 

 

3. Results and discussion 

 

3.1. Nanoparticle characterization 

3.1.1. Morphological study of ZnS-AHA NAs 

       FTIR spectroscopy was used to measure the vibrational frequencies of bonds in the mole-

cules and to confirm the presence of different functional groups on the surface of ZnS nano-

particles (Fig. 1a). The absorption band at 540 cm-1 was observed due to the Zn-S stretching 

vibrations [52]. The presence of Zn-S vibration clearly indicated that ZnS NPs were success-

fully formed. The absorption peak was observed at 3319 cm-1 which is due to the alco-

hol/phenol group (-OH) stretching vibration [53]. The strong broad peak at 3665 cm-1 at-
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tributed to N-H stretching mode of the secondary amides, coming particularly from the identi-

fied molecule dihydroxanthin in plant extract [54]. The peak at 2978 cm-1 is probably as-

cribed to C-H alkene stretching, while the band at 2893 cm-1 could be assigned to the C-H 

stretching branched alkane coming particularly from the identified molecule cis-

hydroxydavanone compound of AHA extract [51]. The peak at 1575 cm-1 could be due to the 

C=O carbonyl stretching group, and the peak at 1057 cm-1 was assigned to the stretching vi-

brations of primary alcohol groups in the AHA extracts [55]. Hence, these two peaks con-

firmed the involvement of flavonoids or polyphenolic compounds in AHA-capped ZnS NPs 

[55]. The peaks at 1393 and 1259 cm-1 corresponded to CH3 and C-O stretching vibrations 

coming particularly from the identified molecule vulgarin [54]. FTIR analysis evidenced that 

green nanoparticles were stabilized with the major phytoconstituents of the AHA extract. 

      The crystal structures of the as-synthesized ZnS nanoparticles prepared using AHA as a 

capping agent were studied by X-ray diffraction (XRD), and the obtained XRD patterns are 

shown in Fig. 1b. The diffraction peaks are broad, confirming the nanometric size of the ZnS 

particles. For the phase identification, diffraction patterns of the ZnS were compared and ana-

lyzed using the diffraction standards of the wurtzite phase (JCPDS card No. 80-0020) and the 

zinc blende phase (JCPDS card No. 80-0007). XRD patterns can be indexed as a cubic zinc 

blende structure, and they appear in good agreement with JCPDS data card No. 80-0007, with 

prominent peaks corresponding to the reflections at the (111), (222), and (311) planes. The 

non-appearance of diffraction peaks related to the wurtzite phase, demonstrates that AHA 

capping favors the cubic structure. To better quantify the effect of the stabilizers, the nanopar-

ticle size was estimated through the Scherrer formula [53]: 

                                                         
  

        
                                                               (1) 

where D is the average crystallite size (Å), k = 0.9 is the Scherrer constant, λ is the wave-

length of X-ray (1.5402 Å) Cu Kα radiation, β is the full width at half maximum of the dif-

fraction peak (in radian) and θ is the Bragg diffraction angle, respectively. The estimated av-

erage sizes of the ZnS-AHA nanocrystals were equal to 3.93 nm. The smaller size of the ZnS 

crystallites encapsulated by AHA extract is most likely due to strong interaction of AHA mol-

ecules with ZnS nanocrystals which makes the growth slower [56]. On the other hand, the 

lattice constant of cubic phase of ZnS nanocrystals can be estimated using the following ex-

pressions: 

                                                                
  

  
 

        
                                                      (2) 
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where dhkl is the inter-reticular distance for the hexagonal and cubic structure; h, k, and l are 

Miller indices; λ is the wavelength of the X-ray radiation; ac, is the lattice constant of cubic 

phase of ZnS nanocrystals. The calculated average value of the lattice parameter of AHA ZnS 

nanocrystals was   a= 5.4 Å. Nevertheless, it should be kept in mind that the Scherrer formula 

considers only the size effects coming from the diffraction results, and it then offers a lower 

limit for the nanocrystals size and neglects the micro-strains [57,58].  

Specific surface area is important characteristics of nanoparticles 

The density ρ of ZnS-AHA NPs was calculated using the following expression [31]:  

                                                         
  

   
                                                                          (3) 

Where Z is the number of atoms per unit cell, M (g mol
-1

) is the molecular weight of the ZnS, 

V is the volume of the unit cell (cm
-3

) and NA is the Avogadro number. The specific surface 

area S (cm
2
 g

-1
) of ZnS nano-particles was calculated using the next equation [31]:  

                                                           
 

  
                                                                          (4) 

Where ρ (g cm-1) and D (nm) are the x-ray density of cubic or hexagonal nano-particles and 

the average particle size, respectively. 

The specific surface area of ZnS-AHA was found to be 36.82 cm
2
 g

−1
; this high specific sur-

face area is a key factor to reaching the gas adsorption process. 

Fig. 1c shows the HR-TEM images of the sample and the corresponding size distribution his-

togram. The aggregates could be due to high NPs concentrations (most likely during the sol-

vent evaporation process for HR-TEM sample preparation). AHA-capped ZnS nanocrystals 

exhibit a spherical shape. The histogram of nanocrystals size distribution shows that the aver-

age crystal size is 4.03 ± 0.5nm. The d-spacing determined from the digital micrograph of ZnS 

is 0.29 nm, which is close to the spacing of (111) diffraction plane of cubic phase [59] and 

which shows that the growth of ZnS-AHA occurs preferentially along the direction [111], in 

agreement with XRD diffraction peaks (Fig. 1b), (111) peak being higher and more acute than 

the others. Nanocrystals elemental composition was determined by EDX; the results presented 

in Fig. 1d indicate that Zn and S are the major elemental components. The presence of C was 

related to the TEM grid. Other small peaks (Si and P) are also detected, probably due to resi-

dues coming from the synthesis and from the grid.  
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Fig. 1:(a) FTIR spectra, (b) DRX patterns, (c) HR-TEM images with inset showing the 0.29 

nm lattice spacing that corresponded to the (111) plane with the size distribution of ZnS-AHA 

nanocrystals and (d) EDX results of ZnS-AHA NPs. 

3.1.2. Optical study of ZnS-AHA NPs 

In order to investigate the optical properties and the impact of the ligand on the stability and 

size distribution of the nanoparticles, the optical absorption spectra of the ZnS NPs dispersed 

in water were recorded (Fig. 2a). The UV-visible absorption spectrum of ZnS NPs suspension 

shows an absorption band at 325 nm related to the first electronic transition 1Se-1Sh [60]. The 

blue shift as compared to bulk ZnS (344 nm, Eg = 3.6 eV) is due to the quantum confinement 
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of charge carriers as a result of the small particle size. This tendency is characteristic of semi-

conductors II-VI, and is mainly associated with the nanocrystal size distribution and sub-band 

gap transitions arising from the intrinsic–extrinsic defect states. We have determined graph-

ically the value of the optical and band-gap energy Eg using the following relation of Tauc 

[61]: 

                                                                                                                             (3) 

Here, α is the absorption coefficient, A is a constant,   is the Planck constant, ν is the frequen-

cy of radiated photons and n is a transition-dependent factor (n = 1/2 for direct semiconduc-

tors). The optical gap energy of the capped ZnS NPs is obtained by extrapolating the plot of 

the function (αhν)² to the value α = 0. The intersection of the line with the horizontal axis 

gives the value of the band gap energy, see insert in Fig. 2a. The estimated band gap energy 

for the green ZnS is 3.70 eV. It is clear that the gap energy of these NPs shifts towards the 

blue compared to the bulk ZnS (Eg = 3.6 eV) due to the very small size of NPs, which induces 

a quantum confinement effect (QCE) [62].   

Fig. 2b shows the emission spectra of ZnS NPs obtained with an excitation wavelength λexc= 

325 nm at room temperature. An intense and wide band centered at 450 nm dominates the 

spectrum. The obtained emission spectra are deconvoluted using three Gaussian profiles asso-

ciated with three main bands. The first band is the less intense and has a spectral width of a 

few nm, which is strongly correlated with the size of the nanoparticles. This band was at-

tributed to the direct band-to-band recombination of excitons. The second emission band in 

the blue region (450 nm), which dominates the spectrum, was attributed to recombination 

between electrons and holes at the edges of the conduction and valence bands, respectively, or 

involved very shallow recombination centers (sulfur vacancies) [63]. Finally, the green emis-

sion band (500 nm) was attributed to the interstitial zinc atom (IZn) [22]. The FWHM of the 

main emission is equal to 62 nm, which is related to the size dispersion of the ZnS-AHA NPs. 
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Fig. 2: (a) Absorption spectra and (b) Gaussian adjustment of PL spectra of ZnS-AHA NPs. 

 

3.1.3. The EDS mapping of CS/ZnS  

CS/ZnS is a composite consisting of a chitosan (CS) matrix combined with zinc sulfide (ZnS) 

nanoparticles. EDS mapping can be used to determine the spatial distribution of these ele-

ments on the micro-conductometric chips. According to Fig. 3a, we observe the presence of 

different chemical elements such as Au, Si, Ti, C, Zn, and S, which are at the origin of the 

deposit of CS/ZnS on the electrodes, which are already based on Au, Si, and Ti. Zn mapping 

(Fig. 3b) was obtained when focusing on the ZnKa2 Xray at 8.639 keV, which is at the foot of 

the AuLL Xray at 8.484 keV. A contribution of Au is then observed on the interdigitated elec-

trodes. The dispersion of Zn is well observed between the interdigitated electrodes, in the in-

sert of Fig. 3b. S mapping (Fig. 3c) was obtained when focusing on the Ska Xray at 2.307 

keV, which is partly covered by the AuMb Xray at 2,203 keV. A contribution of Au is then 

observed on the interdigitated electrodes. The dispersion of S is well observed between the 

interdigitated electrodes, in the insert of Fig. 3c. EDS elemental mapping results suggest that 

Zn and S are homogeneously distributed on the micro-conductometric chips, showing that the 

AHA-ZnS NPs are well dispersed in the chitosan film. 
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Fig.3: The EDS mapping of Chitosan/ZnS composite for atomic distribution of Zn and S. (a) 

EDS spectrum, (b) Zn EDS mapping, (c) S EDS mapping. 

 

3.2. The conductometric measurements 

3.2.1. Conductimetric response to vapors and proposed mechanism 

The preparation of the standard solution and calculation of the gas phase content through 

Henry’s law [64,65] are presented in section 8 of the Supplementary Information. 

To evaluate the response to target gas and to find the best gas sensing, the conductometric 

detection of several volatile organic compounds ’VOCs’ (methanol, ethanol, acetone, chloro-

form and water) were performed.  

The conductivity of the Chitosan-ZnS composite-based sensor, read in differential mode by the lock-in 

amplifier, increased dramatically when exposed to the headspace of pure solvents, as it is observed in 

Fig. 4. As clearly seen, the response of the sensor shows a higher response to methanol compared to 
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the other VOCs. It can be supposed that AHA-capped ZnS NPs promote surface defect formation with 

the creation of more active sites, which consequently enhances the gas sensing performances. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Detection of gas-phase concentration for pure liquid phase of methanol, acetone, chlo-

roform, ethanol, water 

 

Fig. 5 describes the proposed schematic illustration of methanol gas sensing using ZnS-AHA 

NPs sensor. The sensing mechanism occurring during methanol detection on chitosan/ZnS-

NPs sensor, can be described as follows: The first step is the oxygen adsorption on the sen-

sor’s surface, adsorbed from the outside air. The oxygen ions adsorbed on the surface of the 

AHA-capped ZnS NPs (Reaction (5)) and can form a depletion layer, withdrawing electrons 

from the bulk, which leads to an increase in the electrical resistance. O
-
 species are then 

formed (Reaction (6)). Once exposed to reducing gas (methanol, CH3OH), O
-
 species will 

react with the gas (Reaction (7)) and enable the electrons injected back into the active materi-

al, causing an increase in electronic conductivity [66]. Recombination e
-
/h

+
 will then occur 

(Reaction (8)). 

                                            O2 (gas) → O2 adsorbed                                                         (5) 

                               O2 adsorbed + 2e
-
 ↔ 2O

-
 (adsorption)                                               (6) 

                        CH3OH (vapor) + 3O
-
 (adsorption) ↔ CO2 + 2H2O + 3e

-
                          (7) 

                                                 e
-
 + h

+
 → null + energy                                                        (8) 
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The h
+
 means the holes with positive charge. 

After the methanol vapor is introduced, the oxygen species containing O
-
 will react with gas 

molecules, resulting in an increase in sensor sensitivity. The high response and short response 

and recovery times of chitosan and ZnS-NPs are mainly based on the large surface-to-volume 

ratio of ZnS-AHA NPs, which is a vital factor for high sensing performance. In addition, the 

quantity of sulfur vacancies on ZnS-AHA NPs is also increased due to the large concentration 

of AHA ligand on the NPs surface. The high content of sulfide vacancies is confirmed by the 

photoluminescence spectra (Fig. 2), which are dominated by the recombination between sul-

fur vacancies (Vs) and the valence band. Thus, more oxygen species were adsorbed on the 

surface of chitosan/ZnS-NPs which yielded a greater response. The sensor response towards 

methanol is much higher than that towards ethanol, acetone due to the fact that the sensor 

works on the principle of adsorption, in which methanol has a higher polarity and less steric 

hindrance than ethanol or acetone. This more favorable interaction with the sensor is achieved 

through hydrogen bonding [67].  

 

 

 

Fig. 5: Schematic illustration of methanol gas sensing using chitosan/ZnS-NPs sensor. 
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3.2.2. Analytical performance 

Microconductometric measurements in the headspace of different methanol/water solutions 

are given in Fig. 6. It is clear that the sensor conductance increases with an increase in the 

concentration of methanol in the gas phase. When MeOH concentration was zero, the sensor 

was exposed to pure water, the recorded conductivity is 25 µS. The observed signal at 9v/v% 

MeOH is 450 µS/cm, the contribution of humidity would then be 5 µS/cm (20% of water in 

the solution (Table S1), corresponding to 1% of the total signal, which is lower than the 

measured RSD. This low contribution of the water signal is due to the differential measure-

ment system which cancel the contribution of the chitosan behaviour. 

The response time (tRes) of the chitosan/ZnS-NPs based conductometric sensor varies from 11 

to 25 s from lower to higher concentrations (Fig. 7). Whereas the time to be recovered (tRec) 

back to the baseline, immediately after removal from the headspace, varies from 5 to 11 s. The 

calibration curve of the chitosan/ZnS-NPs based sensor for methanol, ethanol, and acetone are 

presented in Fig. 8. Calibration curve for methanol sensor presents the best linearity (R
2
 = 

0.99988) and the highest sensitivity S: 52.42 μS.cm
-1

(v/v), 3.8 times higher than that of etha-

nol (13.8 μS.cm
-1

(v/v)) and 30 times higher that of acetone (1.75 μS.cm
-1

(v/v)). The sensor-

based on chitosan/ZnS-NPs presents a detection limit for methanol of 0.14 v/v% (1400 ppm) 

in the gas phase, this concentration corresponds to 0.31 M in the aqueous phase, the detection 

limit being calculated according to the following expression: 2σ/S, σ being the noise from the 

blank. The relative standard deviation for the described sensor, over ten determinations, 

ranged from 2% for higher concentrations to around 8 % for lower concentrations. The repro-

ducibility was studied, using 5 different methanol sensors. The obtained relative standard de-

viation ranges from 10 % for all concentrations.  

The reusability experiment for the CS/ZnS-AHA film sensor was performed in 4 cycles with a 

time interval of 15 days using the absolute methanol . The main object of reusability was to 

investigate the results reproducibility of a methanol gas sensor. The optimum response given 

by CS/ZnS-AHA for methanol was 498 μS.cm
-1

(v/v) (85 %), whether the same results are 

reproduced by the film sensor was investigated in the experiment. With a time interval of 15 

days in four turns, a slight decrease in response was observed for methanol due to visible deg-

radation in the homogeneity of the prepared film sensor of CS/ZnS-AHA. The results ob-

tained in the experiment are expressed in Fig. 9. The sensor keeps its sensitivity of detection 

for two months, when kept in the fridge at 4 °C between the measurements. 
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Fig. 6: Detection of gas-phase concentration for different methanol/water solutions chi-

tosan/ZnS-NPs sensor, using a lock-in amplifier 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Response time (tRes) and recovery time (tRec) on the real-time registration of the etha-

nol sensor response 
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Fig. 8: Calibration curve of the gas-phase concentrations of acetone, ethanol, and methanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: Reusability for Chitosan/ZnS-NPs sensor for the detection of methanol vapour in the 

headspace of absolute methanol 

 

To confirm the sensor selectivity, methanol was measured in the presence of ethanol and ace-

tone (Fig. S5). It is observed that the methanol signal is increased by a factor of 10% in the 

presence of ethanol (2%) and by a factor of 4 % in the presence of acetone (2%), which is in 

the range of relative standard deviation. We noticed from Fig. 4 that the detection signal of the 

pure methanol gaseous phase is 587 μS.cm
-1

 and that of pure water is 63 μS.cm
-1

. Even 
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though chitosan is hygroscopic, the differential measurement decreases the signal from the 

water and limits its interfering effect.  

A lot of methanol sensors have been fabricated (Table 1) but this is the first time that green 

synthesized ZnS-AHA is used for the conductometric detection of methanol. The obtained 

sensor works at ambient temperature and has a short response time. The interferences of water 

and of ethanol are quite limited. 

 

Table 1: Response times and detection limits of previously published methanol sensors based 

on various materials. 

Methanol sensors Operating temperature 

(°C) 

Response time (tRes) Detection limit 

(ppm) 

Refs 

TiO2 doped CdS/amperometry 360 10 s 0.18 [68] 
ADH/Amperometry 36 5 s 10 [69] 

Pd doped SnO2 nanoparticles/ 

conductivity  
350 25s-10s 1 [70] 

graphene oxide/polyindole / 

conductivity 
26 7 0.015 [71] 

Pd–Pt–In2O3/SnO2 160 32 0.1 [72] 
ZnO/MoO3 200 54 34 [73] 

rGO–TiO2 nanotubes 110 41  [74] 
dPIn pellet 26 26 48 [75] 

PVC-NiPc nanofibers 25 13 15 [76] 
Chitosan-NiPc/Conductometry 25 32s-25s 700 [77] 
Chitosan-ZnS/Conductometry 25 25s-11s 1400 This work 

 

3.2.3. Application of methanol sensor 

The new standard 10% methanol ice washer is a product made from 10% methanol and used 

as a degreaser and windshield cleaner. After detection in the gas phase of an absolute and of a 

20% methanol solution, the detection in the gas phase of the new standard 10% methanol ice 

washer was carried out (Fig. S6). The conductivity found in the ice washer gas phase was 

67.1 μS/cm. This value corresponds to 1.27 ± 0.16 v/v% in the gas phase. The determined 

concentration of ice washer is then 2.79 ± 0.35 M, corresponding to 11.29 ± 2.83 %, which is 

in good agreement with the value given by the producer, 10%. 

In the same domain of gas/vapor sensors, previously published, a chemiresistor sensor based 

on palladium nanoparticles allows the detection of methanol in perfumes and dyes and pre-

sents a detection range of 0.31 mM–3.5 mM [78]. Our fabricated microconductometric meth-

anol sensor is comparatively less sensitive, with a relatively large detection limit (310 mM). 

In order to improve the sensor's sensitivity, the gas detection could be done under UV light 

illumination, which may enhance the production of O- species. 
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4. Conclusion 

In summary, the present findings demonstrate the new synthesized AHA-capped ZnS NPs via 

a stable, simple, colloidal route at room temperature. Therefore, for the first time, an innova-

tive green method for preparing luminescent ZnS nanoparticles was developed using Artemi-

sia Herba Alba. FTIR results confirmed the functionalization of nanoparticle surfaces by 

AHA ligands. XRD analysis indicated the formation of nanocrystals with a cubic phase. The 

average size of AHA-capped ZnS nanocrystals calculated using the Debye-Scherrer formula 

and measured by HRTEM was around 4 nm. These new nanoparticles were used for methanol 

vapor detection, after their introduction in a chitosan film. The new sensor shows excellent 

sensitivity toward methanol—3.8 times higher than toward ethanol, 30 times higher than to-

ward acetone. The response time (t90) of the sensor varies from 11 to 25 s for lower to higher 

concentrations. The detection limit is 1400 ppm in the gas phase, corresponding to 0.31 M in 

the liquid phase. This detection limit could be improved under UV light illumination, and this 

sensor could then be used for the measurements of methanol in exhaled breath. 
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Experimental section 

1. Chemicals and Reagents 

Analytical grade chemicals were used from commercial sources without any further purifica-

tion. Zinc (II) acetate dihydrate (Zn [CH3COO]2.2H2O ≥ 98%), sodium sulfide (Na2S ≥ 98%), 

sodium hydroxide (NaOH, 99%), Chitosan lower molecular weight (deacetylated chitin, de-

gree of acetylation 85-95% Mw=230 kDa) and glacial acetic acid (99.9%) were purchased 

from Sigma-Aldrich. Ultra-pure water (UPW) from Millipore System was employed in all 

aqueous solutions (resistivity ˃18 MOhm.com). 

 

2. Artemisia Herba Alba extraction 

Artemisia Herba Alba (AHA) leaves were collected in Tunisia. The selected parts of AHA 

plants were washed with deionized water, dried in the shade at room temperature, and ground 

into powder. 11.5 g of powder was added to 200 mL of distilled water. The mixtures were 

boiled at 100 °C for 2h and filtrated at room temperature. The filtrated aqueous solution is the 

extract of A. herba-alba, which is used for ZnS nanoparticle fabrication in the present study. 

Fig. S1 shows a picture of A. herba-alba leaves and their extract. 
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Fig.S1: Artemisia Herba Alba plant and its extract. 

 

3. Synthesis of AHA-capped ZnS NPs 

The detailed preparation method of ZnS nanoparticles was reported elsewhere using the col-

loidal wet chemical route [1,2]. Artemisia Herba Alba (AHA) was used as a stabilizer for pre-

paring the green ZnS NPs. The typical synthesis process of AHA capped ZnS NPs is the fol-

lowing one: 20ml of Artemisia Herba Alba aqueous extract were mixed with 3mM of 

Zn[OOCCH3]2·2H2O solution. The mixture was agitated and degassed in the presence of N2 

for 30 min. In a second step, 1.2 mM of Na2S solution was added to the solution containing 

Zn-AHA complexes at room temperature under stirring. Then, the mixture was heated under 

N2 reflux at 100 °C for 3 h to obtain the final AHA-capped ZnS NPs.  

In general, a temperature of 100°C is commonly used in hydrothermal synthesis because it is 

a relatively mild temperature that can be achieved using simple laboratory equipment, while 

still being high enough to promote the desired chemical reactions. Additionally, 100°C is 

close to the boiling point of water, which means that the solution can be maintained in a liquid 

state, avoiding issues with evaporation and loss of solvents. Furthermore, at 100°C, the reac-

tion rate is fast enough to produce nanoparticles within a reasonable time frame, but not so 

fast that it becomes difficult to control the size, shape, and composition of the particles. This 

makes it an ideal temperature for the synthesis of a wide range of nanoparticle types, includ-

ing metal oxides, sulfides, and hydroxides. Overall, 100°C is a commonly used temperature in 

hydrothermal synthesis due to its ease of use, controllability, and suitability for a wide range 

of nanoparticle synthesis applications. The 3 h of synthesis is chosen after preliminary study 

to fix to optimum conditions like time, molar ratio and pH. It was confirmed that maximum of 

photoluminescence intensity was obtained with 3 h of synthesis with is very important in ap-

plications of our nanoparticles like the photocatalysis activity [3]. 

 

The dried precipitate was allowed to cool down naturally at room temperature in order to stop 

the growth of NPs. A nanocolloidal suspension was formed and centrifuged at 2500 rpm for 

20 min; After removing the supernatant and replacing it with ethanol, the suspension was cen-
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trifuged, and after removing the supernatant, the obtained nanoparticles were stored at room 

temperature. 

4. Fabrication process and packaging of micro-conductometric chips  

The interdigitated microelectrode chip was fabricated using UV lithography and thin film e-

beam evaporation deposition. The fabrication procedures were carried out at the Institute of 

Nanotechnology of Lyon (INL), Lyon, France. The size of the interdigitated chip was 5x 28.7 

mm. Finger width was 20 μm, the finger distance was also 20 µm. The flowchart for the pro-

cess of fabrication of the microconductometric chip is presented in Fig. S2. 

 

                      Fig.S2: Flow-chart for the process of fabrication of microconductometric chips 

 

 

 

5. Electrodeposition of chitosan/ZnS-AHA films on the interdigitated electrodes 

The fabricated microelectrode chips were cleaned through sonicating in ethanol for 15 min, in 

acetone for 15 min, rinsed in water, dried under a nitrogen flow, and then exposed to UV-

Ozone Pro Cleaner (BioForce) for 30 min before electrodeposition of chitosan/ZnS-AHA on 

the electrode surfaces. The chemical composition of the ZnS-AHA NPs suspension was: 1% 
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(v/v) of acetic acid, 1% (w/w) of chitosan; (lower molecular weight). The pH was adjusted at 

7 by carefully adding drops of 0.1M NaOH into the chitosan suspension while agitating using 

a magnetic. The electrodeposition process for the fabrication of the conductimetric sensor is 

presented in Fig. S3.  

For the chronoamperometric deposition technique, a three-electrode format was used: the 

working sensor as a working electrode, an Ag/AgCl as reference electrode, and a platinum 

wire as counter electrode. The next step was carried out by putting the three electrodes in a 5 

mL beaker of Chitosan + ZnS NPs solution (working electrode). The chronoamperometric 

deposition was conducted at an applied potential of -1.4 V for 4 min by using an EC LAB 

potentiostat [3]. The cathodic current at the electrode, measured as a function of time, fluctu-

ated according to the diffusion of H
+
 from the bulk solution towards the sensor surface. The 

current (mA) continued to decrease until it became stable within 4 min, which assumes the 

(chitosan/chitosan + NPs) film is well deposited on the gold surface to form a film. A current 

of 50 µA is observed through the proton reduction, and then a decrease in this current is ob-

served, due to the deposition of the chitosan (chitosan/ZnS-NPs) film on the interdigitated 

electrodes (IDEs). A stable value of 3 µA is observed after the first minute (Fig. S4). The 

same procedure is used for the reference sensor, a chitosan film is deposited without ZnS-

NPs. After electrodeposition, the chips were carefully rinsed in ultrapure water (UPW), kept 

dry in air for 45 min, and then stored in the fridge at 4 °C before use. The fabricated sensor 

from chitosan/ZnS-AHA is ready for gas detection using conductometric measurements in the 

differential mode. 
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Fig. S3: Flow-chart for the process of fabrication of microconductometric chips 

 

 

 

 

 

 

 

 

 

Fig. S4: Chronoamperometric measurement monitoring of electrodeposition of chitosan 

 

6. Characterization techniques 
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Various techniques were applied to characterize AHA-capped ZnS NPs. XRD measurements 

were performed using Panalytical X’ Pert Pro diffractometer with a CuKα radiation source 

(λ=1,542Å).  

The Fourier transform infrared (FTIR) spectrum of ZnS-AHA NPs was obtained in the trans-

mission mode at room temperature using a Perkin Elmer version 5.3 spectrophotometer in the 

spectral range of 400–4000 cm
−1

 using KBr pellet disks.  

HR-TEM images were obtained using a JEM-2100 analytical electron microscope operating 

at an accelerating voltage of 200 kV and equipped with an Energy Dispersive X-ray (EDX) 

system for elemental chemical analysis. A drop of nanocrystal solution was poured on carbon-

coated copper grids to obtain HR-TEM samples after the excess solvent was evaporated. The 

nanocrystal size and size distribution data were obtained based on the HR-TEM images by 

measuring at least 100 randomly selected nanocrystals using an image processing program 

(ImageJ, version 1.50). 

SEM images were obtained using a Tescan Vega SBU scanning electron microscope, opera-

ting at an accelerating voltage of 20 kV, equipped with a Bruker Esprit Compact EDS detec-

tor.  

Absorbance spectra were recorded using a SPECORD 210 Plus spectrophotometer with a 

quartz cuvette in the range of 200-800 nm at room temperature. Photoluminescence (PL) 

spectroscopy was applied to analyze the defects and emission properties of the ZnS using as 

exciting source the 325 nm of a helium-cadmium laser source. 

 

7. Conductometric measurements 

Conductometric detection was achieved by applying to each pair of interdigitated electrodes 

(sensors) a small-amplitude sinusoidal voltage (10 mV peak-to-peak at 0 V) at a 10 kHz fre-

quency generated by "VigiZMeter" conductometer which is manufactured by the company 

“Covarians”, and the responses of the gas sensor were recorded as a function of time. These 

conditions were used to reduce faradaic processes, multi-layer charging, and polarization at 

the microelectrode surface [4]. The differential output signal was recorded between the wor-

king and the reference pairs of interdigitated electrodes. The working sensor was obtained by 

electro-deposition of a chitosan/ZnS-AHA NPs film and the reference sensor was obtained by 

the electro-deposition of a chitosan film. Conductometric measurements were done by intro-

ducing the working sensor and the reference sensor in the headspace over the liquid phase in a 

cylindrical container for one minute and then by withdrawing it (Fig. S5). The differential 

measurement of conductance (ΔG) was recorded versus time. The response time (tRes) des-
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cribes the time necessary to reach 90% of the total change of conductance and the recovery 

time (tRec) characterizes the time necessary to recover 10% of the total change in conductance. 

 

 

 

Figure S5. Diagram of the experimental setup 

 

8. Preparation of VOC samples 

The gas sensor performance was tested methanol, ethanol and acetone samples which were 

collected from the headspace above aqueous solutions with known concentrations of (0-

100%). The as-mentioned gas phase concentration depends on Henry’s law constants of the 

given analyte in water and was calculated from Henry’s law following the equation announ-

ced at 25°C by Sander in 1999 [4]. 

                                                               
  

  

  
                                                                    (4) 

Where   
  is the Henry’s law constant for standard conditions; [  

 ] = M/atm,    is the 

aqueous concentration of the analyte; [ca] = M and    is the partial pressure of the analyte in 

the gas phase; [pg] = atm. 

For the gas analytes listed above at (25°C) i.e, methanol, ethanol, and acetone; the Henry’s 

law constants value of 2.2 × 10
2
 M/atm, 1.9 × 10

2
 M/atm, and 0.24 × 10

2
 M/atm were consi-

dered respectively [5]. In Table S1, the calculated equilibrium gas-phase concentrations of 

methanol, ethanol and acetone above the aqueous phase are listed. 
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Table S1: Equilibrium gaseous phase concentrations above aqueous methanol, ethanol, and 

acetone solution at 25 ◦C per Henry’s law constants reported by Sander et al [5]. 

S/N % Volumetric         Concentration of                      Concentration of              Concentration of 

concentration      methanol in the gaseous          ethanol in the gaseous         acetone in the gaseous 

                     phase (% v/v)                          phase (%v/v)                     phase (% v/v) 

1 0%                                 0                                           0                                           0 

2              20%                                2.25                                      1.79                                      11.26 

3              40%                                4.5                                        3.58                                      22.52 

4              60%                                6.75                                      5.37                                      33.78 

5              80%                                9                                           7.16                                      45.04 

6             100%                               11.25                                    8.95                                      56.03 

 

 

 

 

6. Selectivity of the methanol detection 

To confirm the sensor selectivity, in addition of the methanol/water solutions we have tested 

the Measurement of methanol when ethanol and acetone are presented. From Fig. S5, it is 

observed that the methanol signal is increased by a factor of 10% in the presence of ethanol 

(2%) and by a factor of 4 % in the presence of acetone (2%). 

 

 

 

 

 

 

 

 

Fig. S5: Effect of the presence of 1/5 of ethanol and of acetone compared to methanol on the 

sensor signal 
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Fig. S6: Detection of gas-phase concentrations for different methanol/water solutions and 

commercial ice washer product, with the chitosan/ZnS-NPs sensor 
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