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ABSTRACT 
Damping is known to be a major parameter in the seismic 

design of nuclear facilities. Of special interest is the case of fuel 
assemblies in PWR plants, which, unlike other components, are 
submitted to axial flows: it has been known since the late 80s 
that their frequency response to lateral excitations was largely 
dependent on the flow velocity, and the issue raised by this 
observation is to determine a consistent fluid force model 
which could be used in seismic design.  

In the scientific literature, the standard model of fluid 
forces exerted upon an oscillating slender body was originally 
derived by Lighthill, and it involves a lift coefficient which, up 
to a reference frame shift, describes the force generated by a 
small angle of inclination of the body axis against the flow 
direction. Recent works by Divaret et al. have provided a value 
of this lift coefficient equal to 0.11 for a single cylinder, and to 
0.18 for a square array of 5 by 8 cylinders, the Reynolds 
numbers being in the range of 104.  

Sticking to the idea that the damping stems from the local 
angle of inclination of the structure against the flow direction, 
the present study revisits recent tests performed in the Hermes 
test rig of CEA Cadarache, where a fuel assembly was 
submitted to incipient flow velocities varying from 1.5 to 
5m.s-1, and to a lateral force exerted upon the middle grid, 
generating displacements in the ranges of a few mm and of a 
few Hz. Under the assumption that the fuel assembly behaves 
in an approximately linear manner and that it undergoes 
harmonic deformations close to its first natural mode shape, the 
dissipative fluid force can be expressed by an adequate 
combination of the hydraulic cylinder force and of the structure 
displacements. A lift coefficient equal to 0.3-0.4 is obtained 
with this procedure, which stands for the overall fuel bundle, 
rods and grids included. 

 
 

NOMENCLATURE 
C lift coefficient of the fuel assembly (-) 

D structure damping matrix (in N.s/m)  
Dadd added mass matrix (in N.s/m) 
E Young modulus of the structure (in MPa) 
f average frequency (in Hz) 
Fc force exerted by the hydraulic cylinder (in N) 
Fn

damping equivalent damping fluid force exerted upon the n-th 
grid (in N) 

Fext vector of the external forces (in N)  
I inertia of a guide tube (in m4) 
Id identity matrix (-) 
k modal stiffness of the first mode (in N/m) 
K structure stiffness matrix (in N/m)  
Kadd fluid stiffness matrix (in N/m)  
Lequ average span from one grid to the next (m) 
m modal mass (in kg) 
madd fluid added mass (in kg) 
M structure mass matrix (in kg)  
Madd added mass matrix (in kg)  
ND sum of the rod diameters (in m) 
t time (in s) 
U fluid velocity (in m/s) 
X grid displacement vector (in m) 
 
1 first natural mode of the structure (-) 
 sweeping phase of the hydraulic cylinder displacement
 fluid density (kg/m3)
 circular frequency (in Hz)
 
 

INTRODUCTION 
Tests in the late 80s have shown that an axial flow 

generates a significant damping in nuclear fuel rods submitted 
to lateral oscillations [1, 2, 3, 4]. Two procedures have been 
used by different teams, the first consists in submitting a rod to 
a forced displacement, and the second in letting it oscillate 
freely. In both cases, large damping values have been observed, 
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which increase with the flow velocity [5, 6, 7, 8]. The drawback 
of these structural mechanics approach is that the overall 
damping coefficient results from a combination of the fluid 
forces and of the structural response of the fuel assembly. One 
way to overcome this difficulty consists in elaborating a 
structure model, and, by inverse calculation, in estimating the 
fluid force distribution. This operation is in theory achievable 
[9], but it requires a carefully tuned mechanical model of the 
structure to provide accurate results.  

The purpose of the present study is to derive a direct 
estimation of the lift force exerted upon a fuel assembly in a 
series of forced displacement tests, taking benefit from the 
invariance of the deformation shape in the range of fluid 
velocities of interest. In these conditions, a theoretical 
expression of the lift force can be provided which depends only 
on measured structural data, and does not require the 
elaboration of a mechanical model of the fuel assembly. A lift 
force coefficient can on this basis be deduced from a series of 
measurements in a test rig.  
 

DISSIPATIVE FLUID FORCES EXERTED UPON A 
FUEL ASSEMBLY IN AXIAL FLOW 

Since the pioneering works of Taylor [10] and Lighthill 
[11], it is established that a slender structure oscillating in axial 
flow is submitted to a lateral fluid force, which, at least in the 
limit of the low frequencies, is equivalent to a lift force when 
the structure is slightly inclined. An illustration of this 
equivalence is provided for a straight cylinder in Fig. 1, where a 

lateral oscillation at a velocity X  appears, throughout a frame 

shift, comparable to an inclination by an angle equal to U
X . 

A major feature of such a lift force is that it cannot be 
deduced from an ideal potential flow, so that following 
Lighthill, the most achieved theories of axial flow instability 
incorporate a dissipative force term based on this very angle 
[12]. It is proposed to adapt the same procedure to a fuel 
assembly, as illustrated in Fig. 2. 

 

 
Fig. 1: Equivalence of an oscillating structure in axial flow 

and of a steady inclined structure in the limit of low 
frequencies, after Divaret et al. [13]  

 

 
Fig. 2: Fuel assembly submitted to a forced displacement of 

its fifth grid in axial flow, and lift forces induced by its 
oscillation 

 
 
In the representation of Fig. 2, the fluid generates point 

forces localized at each grid. Though the actual pressure forces 
are distributed along each fuel rod and each grid, it is 
convenient to replace them by these averaged forces. Indeed, as 
long as the displacement of each grid is reasonably close to its 
neighbor, the fuel assembly can be split in a thought experiment 
into eight series of grids with two half spans of rods, all 
elements being identical, and moving as a series of rigid bodies. 
Within these approximations, all damping fluid forces can be 
described by a lumped model, as shown in Fig. 2: 

nequ
damping XLNDCUiF
n

  0.5  (1)  

To avoid any confusion in the following, it should be 
highlighted that the fluid generates also forces related to the 
inclination angles of the rods, because during one oscillation 
cycle, the fuel assembly alternatively undergoes a deformation 
without lateral velocity and a lateral velocity with the same 
profile, while in straight position. The forces related to the 
deformation are in phase with the structure displacement, so 
that they do not contribute to the overall damping, and they can 
hence be discarded in the framework of the present study 
without consequences. 
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EXPERIMENTAL PROCEDURE 
Experiments were performed in HERMES T, a single 

phase hydraulic loop in CEA Cadarache designed for testing 
full scale PWR fuel assemblies. During the tests, a 14 feet fuel 
assembly was arranged inside the rig, with its upper and lower 
ends clamped. This fuel assembly is made up of 25 guide tubes 
and 264 fuel rods in a square array, for a total height of 4.5m. 
At regular spacing intervals, the guide tubes are welded to ten 
grids, which firmly hold the fuel rods. Each fuel rod has a 
diameter equal to 9.5mm and a pitch equal to 12.5mm.  

The assembly cross section is square, with a width equal to 
about 210mm. The test section is 20mm wider than the fuel 
assembly in the excitation direction and either 5mm or 10mm 
wider in the orthogonal direction in order to test the influence 
of a reduced confinement, as shown in Fig. 3.  

A swept sine displacement ranging from 0.2 to 3 Hertz is 
imposed to the fifth grid, which is approximately in the middle 
of the fuel assembly. This displacement is controlled by a 
hydraulic actuator, also called hydraulic cylinder in the 
following. The tests are carried out with displacement 
amplitudes ranging from 1 to 10mm. An illustration is provided 
in Fig.4, where the force is divided by a reference stiffness term 
for the sake of readability. 

A load cell arranged between the fuel assembly and the 
hydraulic actuator measures the force applied to the grid. The 
displacements of the 2nd to the 9th grid are simultaneously 
recorded by Linear Variable Differential Transformer sensors. 

Tests are performed at 50°C in still water, and under axial 
flow for average fluid velocities equal to 1.5m/s, 3m/s and 
5m/s. Further details about the experiments can be found in the 
references [14, 15]. 

 
Fig. 3: Horizontal confinements of the fuel assembly during 

the different tests 

 
Fig.4: Example of a sweep sine measured force envelope 

during a test (upper curve), and samples of cycles at 
different frequencies: hydraulic cylinder displacement 
(middle plot) and reduced force (lower plot) against the 

phase during several cycles  
 
 

The sweeping sine technique performed during the 
experiments requires some data processing in order to elaborate 
a consistent harmonic analysis. Furthermore, it is assumed that 
the non-linear behavior of the fuel rod, illustrated by the lower 
curve in Fig.4 does not have an influence on the estimation of 
the lift coefficient. One argument in favor of this assumption is 
that the overall dissipation during one cycle is estimated by the 
average value of the product of the force and of the hydraulic 
cylinder velocity. As this latter term is an almost perfect sine 
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(see Fig.4), the non-linear components of the force do not 
interfere with an estimation of the lift coefficient. It may be 
worth mentioning here that the non-linear behavior is in large 
proportions due to the mechanical friction inside the grids, a 
phenomenon easy to observe by performing a slow cycle of 
deformation, which generates a hysteretic displacement against 
force curve [5]: an accurate description of this effect ranges far 
beyond the scope of the current study, so that it is not detailed 
any further.  

Let then the reference displacement be assumed to follow a 
sine-like law: 

 xref (t) = Xref cos (t)  

where the phase  increases approximately as the second power 
of time, so that the instantaneous frequency can be 
conveniently defined by: 

 
dt

d
tf





2

1
)(     

For practical purposes, the phase  can be approximated by 
a spline function, increasing by  each time a zero of xref is 
found. The key idea consists in using  as a time-like variable 
instead of the usual Fourier term t, every measurement being 
expanded in a series of harmonic terms: 
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the coefficients being determined by a straightforward 
integration upon the variable , turned into an integration upon 
time by replacing the increment d by ’(t)dt:    

  





 dt
dt

d
txpipX n

p
n )(sincos

1
 (2) 

This procedure provides the best estimation of the 
harmonic amplitude of the n-th grid displacement, the 
associated frequency being the average value of f along the 
cycle. 

 

LUMPED MODEL ESTIMATION OF THE LIFT 
COEFFICIENT 

Keeping in mind that the objective consists in deriving a 
model of fluid damping, the mechanical behavior of the fuel 
assembly is assumed to be linear, for the sake of simplicity. 

Moreover, as only the grid displacements and the hydraulic 
cylinder force are recorded, a lumped model is proposed in 
order to match the degrees of freedom with the available data. 
Let then the positions of the grids be assembled into a state 
vector X = (X1, … X10), the dynamic equation of the fuel 
assembly in the presence of flow and under the effect of the 
hydraulic cylinder force Fc can be a priori written in harmonic 
regime by a Galerkin approach: 

 (-(M + Madd)2 + i(D + Dadd) + (K + Kadd)) X = Fext  (3)  

where M and Madd, D and Dadd and K and Kadd are the mass and 
the added mass matrices, the structure and fluid damping 
matrices and the stiffness and the added stiffness matrices, 
respectively, and where the external force vector Fext has only 
one non-vanishing component, associated with the hydraulic 
cylinder. Such a representation overlooks the non-linear 
behavior of the grids which is the root cause of the hysteretic 
damping in the absence of flow. Some authors have tried to 
grasp this effect by introducing a complex stiffness, yet this 
approach raises the issue of causality [16], and special care 
must be taken to match the real and the imaginary parts of the 
transfer function in Eq. (3). Fortunately, it is here enough to 
assume that the structural matrices K and D have such values 
that the hysteretic damping is adequately described, without 
entering into further details. For the sake of completeness, it 
may be worth mentioning that the local force equations 
proposed by Païdoussis [12] for axial flow instabilities are more 
general than Eq. (3), this latter can be considered as a low order 
expansion in powers of  of the dynamics of fluid-coupled 
beams.  

Sticking to the low frequency lumped model approach, the 
mass matrices can fairly be assumed to be proportional to the 
identity matrix, because the spans between the grids are 
practically identical. Hence, each degree of freedom carries the 
same mass of structure and of water, which is denoted m + madd 
in the following. As regards the fluid damping, the lift force 
described in the third section scales with the lateral velocity of 
the structure, which implies that the fluid damping matrix is 
also proportional to the identity matrix: 

 Dadd = 0.5 UC ND LequId  (4)  

where Lequ is the average span from one grid to the next, where 
ND stands for the summation of the rod diameters, C being the 
lift coefficient defined in such a way that it can easily be 
compared to the single cylinder one. 

The identification approach relies on the assumption that 
the deformation shape generated by the hydraulic cylinder 
displacement is very close to the first natural mode of the fuel 
assembly, and that this deformation remains unchanged in the 
frequency range close to the first natural and for various fluid 
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flows. Such an assumption is sound in the sense that the first 
natural mode of a fixed-fixed beam is known to be close to the 
static deformation due to a point force applied in its middle, 
and it can be validated by comparing all the deformations in the 
range of parameters of interest. Let in the framework of this 
assumption  be the first natural mode of the structure, 
normalized by equating the displacement of the hydraulic 
cylinder to unity. By definition,  is an eigenmode of both the 
mass and the stiffness matrices [17]:  

 (M + Madd)1 = (m + madd)1   and  (5)  

 K 1 = k11  

Furthermore, a similar relation holds for the fluid damping 
matrix: 

 Dadd 1 = 0.5 UC ND Lequ1  (6)  

Unfortunately, no theoretical reason supports a similar 
relation for the added mass matrix nor for the structure 
damping matrix. One further approximation is now needed to 
provide an estimation of the damping coefficient: let the added 
stiffness generate a real term Kadd 1. Hence, provided that the 
deformation X remains proportional to the natural mode 1, the 
matrix projection of Eq. (3) along the displacement X has an 
imaginary part equal to: 

 Im(i tXDX ) + 0.5  UC ND LequtXX = Im(tXFext ) (7)  

Assuming that the structure dissipation term tXDX does 
not depend on the flow velocity, and observing that the scalar 
product tXFext is simply equal to the product of the grid 
displacement with the hydraulic cylinder force, the lift 
coefficient can be estimated by a straightforward difference 
between a transfer function in the presence of flow and in 
quiescent fluid: 

 





  )0()(Im 0.5

XXXX t
cc

t
cc

equ
FX

U
FX

LNDCU  (8)  

Eq. (8) provides a direct estimation of the lift coefficient of 
a grid to grid span inside a fuel assembly. Its main interest is 
that it is based on measured data and does not require any 
explicit modeling of the structure.  

 
 

RESULTS AND DISCUSSION 
For assessing its performance, the previous procedure is 

first applied step by step to an example of test, performed with 
the nominal confinement at a prescribed amplitude of 10mm. 

The transfer function shown in Fig.5 illustrates the considerable 
influence of the flow velocity upon the overall damping 
coefficient, a result coherent with the scientific literature given 
in introduction.  

A very satisfying result is the independence of the 
deformation with the flow and the frequency, illustrated by 
Fig.6, which supports the fundamental assumption of the 
procedure. The slight phase variation observed in the lower 
curve is less than a few degrees, and is mostly due to the 
frequency variation during one cycle. Hence, it can reasonably 
be assessed that the deformation during the tests is invariant, 
and it is assumed to be very close to the first natural mode 
shape. 

 

Fig. 5: Transfer function of the fuel assembly in quiescent 
flow and for three fluid velocities. Upper plot: modulus, 

lower plot: argument. Continuous line: successive cycles 
of the sweeping process, circles: selection of frequencies 

for further illustrations 
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Fig. 6: Deformations of the fuel assembly, with the same 
color code as in Fig. 5  

 

 

Fig. 7: Imaginary part of the hydraulic cylinder force, with 
the same color code as in Fig. 5  

 

Fig. 8: Linear fit of the reduced force vs. frequency graph, 
with the same color code as in Fig. 5  

 
 
The damping effect of the flow is easily highlighted by 

plotting the imaginary part of the force: as is well known in 
vibrations, the conservative forces associated with stiffness and 
inertia are in phase with the displacement, and the dissipative 
forces which are the root cause of damping exhibit a phase shift 
of /2. As can be seen in Fig. 7, for a prescribed displacement 
of the hydraulic cylinder, the dissipative force increases with 
the frequency, and also with the flow rate. 

The contribution of the mechanical friction to the 
dissipative force can be removed by subtracting the imaginary 
force in quiescent fluid to the imaginary forces measured in 
flow regime. Following this procedure, the r.h.s. term of Eq. (8) 
can be plotted as shown in Fig. 8. As can be seen, the three 
curves fairly follow a linear trend, with a slope depending on 
the flow velocity. A least square estimation of the lift 
coefficient can easily be obtained, and an overall value of this 
coefficient equal to 0.3 is obtained. Such a value is significantly 
higher than the one obtained by Divaret et al. with an array of 
cylinders [13], a result which makes sense because the grid 
generates an extra contribution to the fluid force.   

 
Similar figures can be obtained with other tests, which are 

not reproduced here. Be it enough to mention that in most 
cases, the deformations have the same constant shape, 
exceptions being due to gripping effects caused by mechanical 
friction and not related to the fluid forces. All the results of 
these other tests are compiled in Fig. 9, which represents the 
least-square lift coefficients as a function of the forced 
displacement amplitudes for various flow rates.  
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Fig. 9: Lift coefficients against the hydraulic cylinder 

amplitude for different flow velocities (same color code as 
in Fig. 5). Circles: two series of tests with a nominal 
confinement, stars: one series of test with a small 

confinement 
 
As can be seen, the lift coefficient associated to the fuel 

assembly is in the range 0.3-0.5 for all test conditions. It 
decreases with the oscillations amplitude, and to a lesser extent, 
with the flow rate. Furthermore, a reduction of the lateral 
confinement significantly increases the lift coefficient, an effect 
which can reasonably be explained by an increase of the 
oscillation-driven fluid velocity around the grids, and, in 
smaller proportions, around the rod bundle.    

 

PERSPECTIVES 
An experimental procedure has provided a series of values 

of the equivalent lift coefficient for a PWR 14 ft fuel assembly. 
These values range from 0.3 to 0.4 in the case of nominal 
confinement, and it is proposed that they should be considered 
for seismic design purposes.  

For future studies, a more elaborate modelling of the fuel 
assembly could be undertaken, based on the Païdoussis 
representation [12]. The measurements could be further 
processed, beyond the first natural frequency, when other 
modes contribute to the deformation. A challenging task will be 

to revisit the combination of friction related non linearities and 
of unsteady flow effects. 

From a more academic perspective, further investigations 
should be undertaken to examine the flow pattern along slender 
structures, in order to confirm the validity of the lift coefficient 
approach: it was found by Divaret et al. [13] that the pressure 
distribution was not perfectly uniform along a single cylinder in 
axial flow.  
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