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Introduction

• High Entropy Alloys; equimolar CoNiFeMnCr composition: Cantor Alloy

• Adding MC carbides → increase in mechanical resistance at H.T.

• Isothermal oxidation behavior at 1000°C and 1100°C (shown today, at 2:20 PM)

– Mass gain kinetic: parabolic but …

– Very fast for the Cantor alloys and its {+MC} derivatives

– Slowed down if ↓ Mn to 10 at.% and ↑ Cr to 30 at.% (but still worse than Ni–30 wt.%Cr)

• More or less protection by the external multi–constituted oxide scale

• THIS WORK: how does this complex scale behave if temperature varies?

→ first answers available in the cooling parts of the thermogravimetry curves
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Reminder about the synthesis route

• Targeted chemical compositions:
Common parts: Co-Ni-Fe-Mn-Cr (20 at.% 
each) or CoNiFe-10at.%Mn- 30at.%Cr

– No more elements

– or + 0.25C-3.8Ta (wt.%)

– or + 0.25C-3.7Hf (wt.%)

• Technical details:
• 40g of mix of pure elements (>99.9%)

• High frequency induction furnace, 300 millibars pure Argon

• Melting in the water–cooled copper crucible (5kV, 110kHz)

• 10’ of homogenization in the liquid state (≈1700°C), solidification 
and cooling
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Reminder of the alloys characteristics

• Obtained chemical compositions: close to the targeted ones

• Dendritic matrix and eutectic carbides (and some pre–eutectic HfC)

equimolar–based alloys

modified alloys
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Oxide scale spallation behavior
Oxidized samples observed by the naked eye

Cooling at -5 K min-1 from 1000°C
• Reminder of the mass gain isothermally achieved:

≈ 1.6 mg / cm2 for Mn0.5Cr1.5, 2.4 mg / cm2 (+TaC), 4.3 mg / cm2 (+HfC)

• No evident oxide scale loss, except along the edges and corners
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Oxide scale spallation behavior
Oxidized samples observed by the naked eye

Cooling at -5 K min-1 from 1100°C
• Reminder of the mass gain isothermally achieved:

≈ 3.1 mg / cm2 for Mn0.5Cr1.5, 4.7 mg / cm2 (+TaC), 6.4 mg / cm2 (+HfC)

• Little oxide scale loss in all cases (+TaC: slightly better behavior?)
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Oxide scale spallation behavior
Exploitation of the cooling parts of the thermogravimetry curves

Mass variations for the carbide–free alloy (compared to the Mn1Cr1 alloys)

• From 1000°C: spallation only for the equimolar alloy

• From 1100°C: oxide scales spalled off for both alloys 
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Oxide scale spallation behavior
Exploitation of the cooling parts of the thermogravimetry curves

Mass variations for the TaC–containing alloy (compared to the Mn1Cr1TaC alloy)

• From 1000°C: spallation only for the Mn1Cr1TaC alloy

• From 1100°C: spallation in both cases, but much important for Mn1Cr1TaC 
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Oxide scale spallation behavior
Exploitation of the cooling parts of the thermogravimetry curves

Mass variations for the HfC–containing alloy (compared to the Mn1Cr1HfC alloy)

• From 1000°C: (very important) spallation only for the Mn1Cr1HfC alloy

• From 1100°C: spallation in both cases, but much important for Mn1Cr1HfC 
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Oxide scale spallation behavior
Exploitation of the cooling parts of the thermogravimetry curves

Two criteria for analyzing scale spallation: 1/temperature of spallation start
• For the Mn1Cr1 alloys spallation started sooner when carbides were present in alloy 

• For the Mn1Cr1 alloys again, spallation started after a same decrease in temperature

• Very resistant against scale spallation after 50h at 1000°C the Mn0.5Cr1.5 alloys behave 
more or less as the Mn1Cr1 alloys after 50h at 1100°C
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Oxide scale spallation behavior
Exploitation of the cooling parts of the thermogravimetry curves

Two criteria for analyzing scale spallation: 2/total mass loss during cooling

• For all alloys mass loss is more important for cooling from 1100°C than from 1000°C

• For the Mn1Cr1 alloys much more mass was lost when carbides were present in alloy
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Oxide scale spallation behavior
Cross–sectional observations where oxides were still here

• Many shear rupture of the scales at cooling (and maybe also by handling even done carefully)

• Disappearance of TaC in a depth increasing with temperature for a given duration

• Internal oxidation of HfC more extended inwards for 1100°C than for 1000°C
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Conclusions / Outlooks

• ↓ Mn and ↑ Cr indisputably improve the resistance against scale spallation

• Difference probably due to scales not as thick as for Mn1Cr1 alloys

• But obvious lack of mechanical resistance of these multi–constituted scales

• Mn: ↑ isothermal oxidation, takes part to scales more than Cr, thus a double 

deleterious effect on the scales which still exists even if %Mn is lowered

→ Remove all Mn from Cantor’s alloy derivatives destined to T ≥ 1000°C

→ Testing new alloys as here and also for much faster and repeated coolings
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