Isothermal High Temperature Oxidation of Cantor's-based MC-reinforced HEAs versus their Mn and Cr Contents

Pauline Spaeter, Nassima Chenikha, Corentin Gay, Lionel Aranda, Patrice Berthod

Institut Jean Lamour / Université de Lorraine

About the Presenter

Patrice BERTHOD – Institut Jean Lamour, Univ. Lorraine, Nancy, FRANCE

Associate Professor in Materials Chemistry

CV highlights and research interests:

- Mech. Eng. Ecole Centrale de Lille, PhD Mater. Sci., Habil. Chemistry
- Foundry, metallurgy, corrosion, microstructures and properties of superalloys at high temperature

"Surface & Interfaces: Chemical Reactivity of Materials" research group

Work achieved without funding sources

No conflict of interest

Email: patrice.berthod@univ-lorraine.fr

Outlines

- Introduction
- Casting of the MC–containing HEA–based alloys
- Chemical compositions and microstructures
- Behavior in isothermal oxidation at high temperature
 - Mass gain kinetics (thermo-balance)
 - Oxidation products (metallography characterization)
- Conclusions
- Outlooks

Introduction

- High Entropy Alloys / the equimolar CoNiFeMnCr composition (Cantor)
- Adding MC carbides \rightarrow enhancement of the H.T. mechanical resistance
- Unfortunately: bad oxidation behavior at 1000°C and beyond
 - Fast mass gains; Thick oxides scales after less than 100 hours
 - Only minor role of chromium; Oxide scales involving Mn more than Cr
- Possible way for improving resistance against oxidation: \downarrow Mn and \uparrow Cr
- THIS WORK: investigation of H.T. oxidation of new alloys with less Mn and more Cr

Casting of the MC–containing HEA–based alloys

- Previous chemical compositions:
 - Co-Ni-Fe-Mn-Cr (20 at.% each)
 - 0.25C-3.8Ta-CoNiFeMnCr (bal.)
 - 0.25C-3.7Hf-CoNiFeMnCr (bal.)

 \rightarrow "equimolar–based alloys"

- New chemical compositions:
 - 20 at.% Co 20 at.% Ni 20 at.% Fe 20 10 at.%Mn – 20 30at.%Cr
 - The same + 0.25 wt.%C-3.8 wt.%Ta
 - The same + 0.25 wt.%C-3.7 wt.% Hf
 - \rightarrow "modified alloys"

Casting of the MC–containing HEA–based alloys

- 40g of mix of pure elements (>99.9%)
- High frequency induction furnace
- 300 millibars pure Argon
- Melting in the water-cooled copper crucible (5kV, 110kHz)
- 10' of homogenization in the liquid state (≈1700°C), solidification and cooling

Obtained chemical compositions

Alloys ↓	Со	Ni	Fe	Mn	Cr	Та	Hf	С
Mn1Cr1	20.0 ±0.5	21.5 ±0.5	19.5 ±0.5	19.5 ±0.5	20.5 ±0.5	/	/	/
Mn0.5Cr1.5	20.0 ±0.1	20.5 ±0.3	19.8 ±0.2	8.3 ±0.5	31.3 ±0.4	/	/	/
Mn1Cr1TaC	19.3 ±0.2	20.1 ±0.5	18.6 ±0.5	18.3 ±0.3	19.2 ±0.3	4.5 ±0.4	/	0.25
Mn0.5Cr1.5TaC	19.5 ±0.2	20 ±0.5	19.1 ±0.3	8.4 ±0.2	28.5 ±0.3	4.6 ±0.2	/	0.25
Mn1Cr1HfC	19.9 ±0.3	20.2 ±0.6	18.4 ±0.4	18.2 ±0.2	19.3 ±0.5	/	4 ±1.9	0.25
Mn0.5Cr1.5HfC	19.7 ±0.4	20.1 ±0.3	19.1 ±0.3	8.8 ±0.3	27.8 ±0.7	/	4.5 ±0.6	0.25

Obtained microstructures (MC–contain^{ing} only)

• Dendritic matrix and eutectic carbides (HfC: also some pre-eutectic ones)

TMS 2024 153RD ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2024 · #TMSAnnualMeeting

• No clear influence of the changes in Mn and Cr; a little more carbides?

THE WORLD COMES HERE.

FMS

Behavior in isothermal oxidation at 1000°C Mass gain kinetics

- Kinetics: globally parabolic
- Plot vs. square root of time: no linear loss, a little part of linear mass gain?
- Mn0.5Cr1.5 alloys: much more resistant than Mn1Cr1 alloys
- Mn0.5Cr1.5 simple or with TaC: worse than (but not far from) Ni–30Cr

Behavior in isothermal oxidation at 1100°C Mass gain kinetics

- Kinetics: parabolic
- Plot vs. square root of time: linear
- Again: Mn0.5Cr1.5 alloys: much more resistant than Mn1Cr1 alloys
- Again: Mn0.5Cr1.5 simple or with TaC: worse than (but not far from) Ni–30Cr

Behavior in isothermal oxidation at H.T.

Oxidation products: SEM/BSE imaging

- Continuous oxide scales covering the alloys; multi–constituted; ± porous
- MC–cont^{ing} alloys: TaC dissolution close to front, internal oxidation of HfC

TMS 2024 153RD ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2024 · #TMSAnnualMeeting

11

THE WORLD COMES HERE

IMS

Behavior in isothermal oxidation at H.T.

Oxidation products: elemental maps (example of the Mn0.5Cr1.5TaC alloy)

- Outward diffusion of Mn and Cr to be oxidized; no participation of Co, Ni, Fe
- Outward diffusion of Ta to be oxidized at the interface; HfC oxidized in situ

TMS 2024 153RD ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2024 · #TMSAnnualMeeting

12

THE WORLD COMES HERE.

MS

Behavior in isothermal oxidation at H.T.

Oxidation products: elemental maps (example of the Mn0.5Cr1.5TaC alloy)

- In some cases: formation of an internal continuous Cr₂O₃ scale
- Internal chromia scale: continuous but very thin; nevertheless an efficient contribution to the protection brought by the whole scale?

FMS 2024 153RD ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2024 · #TMSAnnualMeeting

Behavior in isothermal oxidation at H.T. Oxidation products: EDS spot analyses

Alloys ↓	Oxides at 1000°C (50h)	Oxides at 1100°C (50h)		
Mn1Cr1	(Mn,Cr) ₃ O ₄ and/or (Mn,Cr) ₂ O ₃ MO, Cr ₂ O ₃	(Mn,Cr) ₂ O ₃ Cr ₂ O ₃		
Mn0.5Cr1.5	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄		
Mn1Cr1TaC	(Mn,Cr) ₃ O ₄ and/or (Mn,Cr) ₂ O ₃ MO, Cr ₂ O ₃ , CrTaO ₄	(Mn,Cr) ₂ O ₃ Cr ₂ O ₃ , CrTaO ₄		
Mn0.5Cr1.5TaC	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄ / CrTaO ₄	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄ / CrTaO ₄		
Mn1Cr1HfC	(Mn,Cr) ₃ O ₄ and/or (Mn,Cr) ₂ O ₃ MO, Cr ₂ O ₃ , HfO ₂	(Mn,Cr) ₂ O ₃ Cr ₂ O ₃ , HfO ₂		
Mn0.5Cr1.5HfC	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄ / HfO ₂	(<u>Mn</u> ,Cr) ₂ O ₃ / Cr ₂ O ₃ / MnCr ₂ O ₄ / HfO ₂		

- Mn still more involved in the oxide scales than Cr; Co, Ni, Fe: no role
- Outward diffusion of Ta to be oxidized; HfC oxidized in situ

Conclusions / Outlooks

- \downarrow Mn and \uparrow Cr indisputably improve the H.T. oxidation behavior
- The new oxidation resistances are still below the Ni–30Cr's one
- MC carbides degrade oxidation resistance (especially HfC)
- Oxides scales are multi-constituted and too porous to be really protective

\rightarrow Removing all Mn and testing CoNiFeCr + MC alloys

(alloys at the frontier between Cantor's alloy and Co-based/Ni-based alloys)

or

 \rightarrow Replacing Mn by M' and testing CoNiFeM'Cr + MC alloys

(e.g. starting from the already existing CoNiFeCuCr HEAs)

