
HAL Id: hal-04496897
https://hal.science/hal-04496897

Submitted on 9 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive Review on Non-Neural Networks
Collaborative Filtering Recommendation Systems

Carmel Wenga, Majirus Fansi, Sébastien Chabrier, Jean-Martial Mari, Alban
Gabillon

To cite this version:
Carmel Wenga, Majirus Fansi, Sébastien Chabrier, Jean-Martial Mari, Alban Gabillon. A Compre-
hensive Review on Non-Neural Networks Collaborative Filtering Recommendation Systems. Journal
of Machine Learning Theory Applications and Practice, 2023, 1, �10.13052/jmltapissn.2023.001�. �hal-
04496897�

https://hal.science/hal-04496897
https://hal.archives-ouvertes.fr

A Comprehensive Review on Non-Neural
Networks Collaborative Filtering

Recommendation Systems

Carmel Wenga1,∗, Majirus Fansi2, Sébastien Chabrier1,
Jean-Martial Mari1 and Alban Gabillon1

1Université de la Polynésie Française, Tahiti, French Polynesia
2NzhinuSoft, Evry, Grand Paris Sud, France
E-mail: carmel.wenga@nzhinusoft.com; majirus.fansi@nzhinusoft.com;
sebastien.chabrier@upf.pf; jean-martial.mari@upf.pf; alban.gabillon@upf.pf
∗Corresponding Author

Received 12 May 2021; Accepted 22 March 2022;
Publication 31 January 2023

Abstract

Over the past two decades, recommendation systems have attracted a lot of
interest due to the massive rise of online applications. A particular attention
has been paid to collaborative filtering, which is the most widely used in
applications that involve information recommendations. Collaborative Filter-
ing (CF) uses the known preference of a group of users to make predictions
and recommendations about the unknown preferences of other users (recom-
mendations are made based on the past behavior of users). First introduced
in the 1990s, a wide variety of increasingly successful models have been
proposed. Due to the success of machine learning techniques in many areas,
there has been a growing emphasis on the application of such algorithms
in recommendation systems. In this article, we present an overview of the
CF approaches for recommendation systems, their two main categories, and
their evaluation metrics. We focus on the application of classical Machine
Learning algorithms to CF recommendation systems by presenting their

Journal of Machine Learning Theory, Applications and Practice, Vol. 1, 1–44.
doi: 10.13052/jmltapissn.2023.001
This is an Open Access publication. © 2023 the Author(s). All rights reserved.

2 C. Wenga et al.

evolution from their first use-cases to advanced Machine Learning models.
We attempt to provide a comprehensive and comparative overview of CF
systems (with python implementations) that can serve as a guideline for
research and practice in this area.

Keywords: Recommendation systems, collaborative filtering, user-based
collaborative filtering, item-based collaborative filtering, matrix factoriza-
tion, non-negative matrix factorization, explainable matrix factorization,
evaluation metrics.

1 Introduction

In everyday life, people often refer to the opinions and advice of others when
they want to buy a service from a company, purchase an item in a market
or store, watch a movie in a cinema, etc. In general, they are influenced by
the appreciation of their neighborhood before purchasing (or not) an item.
In some cases, they may explicitly receive recommendations from others on
what to buy or not. This natural and social process is a recommendation flow
that involves different actors collaborating to filter their interests based on
the experience of others. It is a collaborative filtering process, in which par-
ticipants collaborate to help each other filter information based on recorded
reviews of items they have purchased. In 1992, Goldberg et al. introduced the
Collaborative Filtering algorithm to help people filtering their emails or doc-
uments according to the evaluations of others on these documents (Goldberg
et al., 1992). Today, recommendation systems implement and amplify this
simple process which is applied it to many areas such as e-commerce web-
site (Amazon), social networks (Facebook), streaming applications (Netflix),
etc.

In 2000, K. Goldberg et al. defined the term Collaborative Filtering (CF)
as “techniques that use the known preferences of a group of users to predict
the unknown preferences of a new user” (Goldberg et al., 2001). According to
(Breese et al., 1998), CF recommendation systems are built on the assumption
that a good way to find interesting content is to find other peoples who have
similar interests, and then recommend titles that those similar users like. The
fundamental concept of CF can then be defined as: if users u and v rate n
items similarly or have similar behaviors, they share similar tastes and will
hence rate other items similarly (Goldberg et al., 2001). User’s preferences
can be expressed through ratings, likes, clicks, etc. CF algorithms hence
use databases of such preferences records made by users on different items.

A Comprehensive Review on Non-Neural Networks Collaborative 3

Table 1 An example of user-item rating matrix R of dimension m × n, where m is the
number of users and n the number of items. Each row represents all ratings of a given user
and each column, the ratings given to a particular item. Ru,i is the rating score of user u on
item i

i1 i2 . . . ij . . . in

u1 5 3 2 1

u2 2 4
...

ui 3 4 2 ?
...

un 2 5

Typically, preferences of a list of users on a list of items are recorded into
a user-item preferences matrix. Table 1 presents an example of user-item
preferences matrix R, where preferences are ratings scores made by users
on items and each cell Ru,i denotes the rating score of user u on item i. CF
algorithms use such user-item observed interactions to predict the unobserved
ones (Vucetic and Obradovic, 2005).

There are two majors types of CF recommendation systems: Memory-
based CF (Section 2) and Model-based CF (Section 3). Memory-based CF
operates over the entire database of users’ preferences and performs compu-
tations on it each time a new prediction is needed (Breese et al., 1998; Vucetic
and Obradovic, 2005). The most common representative algorithms for Mem-
ory based CF are neighborhood-based algorithms. Those algorithms compute
similarities between users in order to predict what to recommend. A typical
neighborhood-based CF is the GroupLens system (Resnick et al., 1994) in
which numerical ratings assigned by users on articles are correlated in order
to determine which users’ ratings are most similar to each other. Based on
these similarities, GroupLens predicts how well users will like new articles.
Memory-based CF can produce quite good predictions and recommendations,
provided that a suitable function is used to measure similarities between users
(Hernando et al., 2016). According to Ansari et al. (Ansari et al., 2000), such
algorithms can also increase customer loyalty, sales, advertising revenues,
and the benefit of targeted promotions. However, an important drawback of
Memory-based CF is that they do not use scalable algorithms (Resnick et al.,
1994; Hernando et al., 2016). Therefore, they would have high latency in

4 C. Wenga et al.

giving predictions for active users in a system with a large number of requests
that should be processed in real-time (Vucetic and Obradovic, 2005).

While Memory-based algorithms perform computations over the entire
database each time a new prediction is needed, Model-based algorithms
(Section 3) in contrast, use the user-item interactions to estimate or learn a
model, which is used for predictions and recommendations (Breese et al.,
1998; Parhi et al., 2017). Most common Model-based approaches include
Dimensionality Reduction models (Billsus and Pazzani, 1998; Sarwar et al.,
2000; Koren et al., 2009; Hernando et al., 2016), Clustering models (Ungar
and Foster, 1998; Chee et al., 2001), Bayesian models (Breese et al., 1998) or
Regression models (Mild and Natter, 2002; Kunegis and Albayrak, 2007).
Most recent Model-based CF are based on Neural Networks and Deep
Learning algorithms (Sedhain et al., 2015; Rawat and Wang, 2017; He et al.,
2017b,a, 2018; Mu, 2018; Zhang et al., 2019; Yu et al., 2019). However, in
this review, we do not present CF recommendation systems based on Neural
Networks and Deep Learning approaches which deserve complete separate
study.

One of the major challenges of CF algorithms is the cold start problem,
which is the lack of information necessary to produce recommendations
for new users or new items (Su and Khoshgoftaar, 2009). Beside collabo-
rative filtering, content-based filtering (Pazzani and Billsus, 2007; Khalifeh
and Al-Mousa, 2021) is another powerful recommendation approach. While
CF recommendation systems use interactions between users and items,
content-based filtering uses users’ profiles (gender, age, profession, . . .)
or items’ contents (title, description, images, . . .) to produce recommen-
dations. Combining collaborative filtering to content-based filtering in a
hybrid model helps to address the cold start problem and thereby improve
recommendation’s performances (Su and Khoshgoftaar, 2009).

Previous Works

In (Su and Khoshgoftaar, 2009; Ali and Majeed, 2021), the authors present an
overview of collaborative filtering algorithms built before 2009. They present
the basics of CF algorithms as well as their two main techniques. However,
(Su and Khoshgoftaar, 2009) do not present advanced machine learning tech-
niques such as Matrix Factorization models (Mnih and Salakhutdinov, 2008;
Koren et al., 2009; Lakshminarayanan et al., 2011; Hernando et al., 2016)
which are highly used in today’s recommendation systems. In (Herlocker
et al., 2004; Mnih and Salakhutdinov, 2008; Ekstrand et al., 2011; Bobadilla

A Comprehensive Review on Non-Neural Networks Collaborative 5

et al., 2013), the authors present a few classical dimensionality reduction
models applied to recommendation systems. However, more complex dimen-
sionality reduction models have been proposed, such as Non-negative Matrix
Factorization (Gillis, 2014; Hernando et al., 2016) and Explainable Matrix
Factorization (Abdollahi and Nasraoui, 2017; Wang et al., 2018).

In this article, we present a comprehensive review of collaborative
filtering recommendation systems based on classical Machine Learning tech-
niques. The goal of this review is to present the evolution of collaborative
filtering recommendation systems, from their first use cases to advanced
machine learning techniques. We provide an overview of collaborative fil-
tering techniques and the most important evaluation metrics to be considered
when building a recommendation system. The particularity of this review,
comparing to the others, is that we provide detailed Python implementations
and tutorials (freely available on github1 for the models considered in this
article, as well as the comparison of their performances on the Movie Lens
2 benchmark datasets. These implementations and tutorials aim at providing
guidance for researchers and engineers who are new to these areas.

In the rest of this paper, we introduce the two main approaches to Col-
laborative Filtering Recommendation Systems: Memory-based Collaborative
Filtering (Section 2) and Model-based Collaborative Filtering (Section 3).
Next, we present Evaluation Metrics in Section 4. Then, we present the
experimental results of the models explored in the paper in Section 5 and
conclude the study in Section 6. Section 7 presents the resources used in our
experimentation

2 Memory-based Collaborative Filtering

Memory-based algorithms compute predictions using the entire user-item
interactions directly on the basis of similarity measures. They can be divided
into two categories, User-based CF (Herlocker et al., 1999) and Item-based
CF (Sarwar et al., 2001; Su and Khoshgoftaar, 2009; Desrosiers and Karypis,
2011). In User-based model, a user u is identified by his ratings Ru on
the overall items while in Item-based model, an item i is identified by all
the ratings Ri attributed by users on that item. For instance, in Table 2,

1Numpy/Pandas implementation of models presented in this paper (https://github.com/nzh
inusoftcm/review-on-collaborative-filtering)

2MovieLens (https://grouplens.org/datasets/movielens/) is a benchmark dataset collected
and made available in several sizes (100k, 1M, 25M) by the GroupLens Research team.

https://github.com/nzhinusoftcm/review-on-collaborative-filtering
https://github.com/nzhinusoftcm/review-on-collaborative-filtering
https://grouplens.org/datasets/movielens/

6 C. Wenga et al.

Table 2 A sample matrix of ratings
i1 i2 i3 i4 i5 i6

u1 1 5 2 4 ?
u2 4 2 5 1 2
u3 2 4 3 5
u4 2 4 5 1 ?

Ru1 = {1, 5, 0, 2, 4, 0} and Ri4 = {2, 5, 0, 5}; Empty cells represents non-
observed values. More generally, with m users and n items, users and items
ratings are respectively Rn and Rm vectors.

Memory-based recommendation systems (both User-based and Item-
based collaborative filtering) usually proceeds in three stages: Similarity
computations, Ratings predictions and Top-N recommendations.

2.1 Similarity Computation

In either User-based or Item-based CF, users and items are modeled with
vector-spaces. In User-based CF (resp. Item-based CF), users are treated
as vectors of n-dimensional items (resp. m-dimensional users) space. The
similarity between two users (or two items) is known by computing the
similarity between their corresponding vectors. For User-based CF, the idea
is to compute the similarity wu,v between users u and v who have both
rated the same items. In contrast, Item-based CF performs similarity wi,j
between items i and j which have both been rated by the same users (Sarwar
et al., 2001; Su and Khoshgoftaar, 2009; Ali and Majeed, 2021). Similarity
computation methods include Correlation-based similarity such as Pearson
correlation (Resnick et al., 1994), Cosine-based similarity (Dillon, 1983),
Adjusted Cosine Similarity (Sarwar et al., 2001). This section presents the
most widely used similarity metrics for CF algorithms.

2.1.1 Pearson correlation similarity
The correlation between users u and v (or between items i and j) is a
weighted value that ranges between −1 and 1 and indicates how much
user u would agree with each of the ratings of user v (Resnick et al.,
1994). Correlations are mostly performed with the Pearson correlation metric
(Equation (1)). The idea here is to measure the extent to which there is a
linear relationship between the two users u and v. It’s the covariance (the

A Comprehensive Review on Non-Neural Networks Collaborative 7

joint variability) of u and v.

wu,v =

∑
i∈I(Ru,i − R̄u)(Rv,i − R̄v)√∑

i∈I(Ru,i − R̄u)2
√∑

i∈I(Rv,i − R̄v)2
, (1)

where I is the set of items that have both been rated by users u and v,Ru,i the
rating score of user u on item i and R̄u is the average rating of co-rated items
of user u. For example, according to Table 2, wu1,u2 = −0.8, wu1,u3 = 1 and
wu1,u4 = 0. This means that, user u1 tends to disagree with u2, agree with u3
and that his ratings are not correlated at all with those of u4.

For the Item-based CF, all summations and averages are computed over
the set U of users who both rated items i and j (Sarwar et al., 2001). The
correlations similarity for Item-based CF is then given by Equation (2).

wi,j =

∑
u∈U (Ru,i − R̄i)(Ru,j − R̄j)√∑

u∈U (Ru,i − R̄i)2
√∑

u∈U (Ru,j − R̄j)2
. (2)

Correlation based algorithms work well when data are not highly sparse.
However, when having a huge number of users and items, the user-item
interaction matrix is extremely sparse. This makes predictions based on the
Pearson correlation less accurate. In (Su et al., 2008), the authors proposed
an Imputation-Boosted CF (IBCF) which first predicts and fills-in missing
data before using the Pearson Correlation formula to compute the similarity
between two users or two items and then, make predictions. Another popular
similarity-based metric is Cosine similarity.

2.1.2 Cosine-based similarity
The cosine similarity between users u and v (modeled by their ratings vectors
~Ru and ~Rv) is measured by computing the cosine of the angle between these
two vectors (Sarwar et al., 2001). If R is the m× n user-item ratings matrix,
then the similarity between users u and v, denoted by wu,v is computed by
Equation (3):

wu,v =
~Ru · ~Rv

‖~Ru‖2 ∗ ‖~Rv‖2
=

∑
i∈I Ru,iRv,i√∑

i∈I(Ru,i)
2
√∑

i∈I(Rv,i)
2
, (3)

where Ru,i denotes the rating of user u on item i.

8 C. Wenga et al.

The basic cosine measure given previously can easily be adapted for
item’s similarities. However, when applied to Item-based cases, it has an
important drawback due to the fact that the differences in ratings scale
between different users are not taken into account (Sarwar et al., 2001).
Indeed, some users would tend to give higher ratings than others, making their
ratings scales to be different (Sarwar et al., 2001; Su and Khoshgoftaar, 2009;
Srifi et al., 2020). The Adjusted Cosine Similarity addresses this drawback by
subtracting the corresponding user’s mean rating r̄u from each co-rated pair
(Sarwar et al., 2001). Formally, the similarity between items i and j using the
Adjusted Cosine Similarity is given by Equation (4).

wi,j =

∑
u∈U (Ru,i − R̄u)(Ru,j − R̄u)√∑

u∈U (Ru,i − R̄u)2
√∑

u∈U (Ru,j − R̄u)2
. (4)

Conditional Probability (Karypis, 2001; Deshpande and Karypis, 2004) is an
alternative way of computing the similarity between pairs of items i and j.
The conditional probability of i given j denoted by P (i|j), is the probability
of purchasing item i given that item j has already been purchased (Karypis,
2001). The idea is to use P (i|j) when computing wi,j . However, since the
conditional probability is not symmetric, P (i|j) may not be equivalent to
P (j|i), wi,j and wj,i will not be equal either. So, a particular attention must
be taken that this similarity metric is used in the correct orientation (Karypis,
2001; Ekstrand et al., 2011).

Correlations or Similarities between users and/or items are used in the
ratings predictions formula. In this subsection, we presented commonly
used correlation metrics: Pearson correlation, Cosine similarity and Adjusted
cosine similarity. Due to the simplicity and the efficiency of the Cosine
similarity, it is widely used in various domains compared to the Pearson
Correlation and the Adjusted Cosine similarity.

2.2 Prediction and Recommendation

Memory-based algorithms provide two types of recommendations pipelines:
Predictions and Top-N recommendations (Sarwar et al., 2001). Predictions
and recommendation are the most important steps in collaborative filtering
algorithms (Sarwar et al., 2001). They are generated from the average of the
nearest users’ ratings, weighted by their corresponding correlations with the
referenced user (Su and Khoshgoftaar, 2009; Srifi et al., 2020).

A Comprehensive Review on Non-Neural Networks Collaborative 9

2.2.1 Prediction with weighted sum
Predictions for an active user u, on a certain item i is obtained by computing
the weighted average of all the ratings of his nearest users on the target items
(Resnick et al., 1994; Su and Khoshgoftaar, 2009). The goal is to determine
how much user u will like item i. Let us denote by R̂u,i the predicted rating
that user u would have given to item i according to the recommendation
system. R̂u,i is computed using Equation (5),

R̂u,i = R̄u +

∑
v∈U (Rv,i − R̄v) · wu,v∑

v∈U |wu,v|
, (5)

where R̄u and R̄v are the average ratings of users u and v on all the other
items, and wu,v is the weight or the similarity between users u and v.
Summation is made over all the users who have rated item i. As example,
using the user-item ratings of Table 2, let us predict the score for user u1 on
item i6 with Equation (6).

R̂u1,i6 = R̄u1 +

∑
k∈{2,3}(Ruk,6 − R̄uk) · wu1,uk∑

k∈{2,3} |wu1,uk |

= 3 +
0.8 + 2

| − 0.8|+ |1|
≈ 4.56. (6)

This predicted value is reasonable for u1, since he tends to agree with u3 and
disagree with u2 (Section 2.1.1). So, the predicted value is closer to 5 (rating
of u3 on i6) than 2 (rating of u2 on i6). For Item-based CF, the prediction step
uses the simple weighted average to predict ratings. The idea is to identify
how the active user rated items similar to i and then make a prediction on
item i by computing the sum of the ratings (weighted by their corresponding
similarities) given by the user on those similar items (Sarwar et al., 2001).
For Item-based CF, Ru,i is computed by Equation (7):

R̂u,i =

∑
j∈S(i) Ru,j · wi,j∑
j∈S(i) |wi,j |

, (7)

where S(i) is the set of items similar to item i, wi,j is the correlation between
items i and j and Ru,j is the rating of user u on item j.

2.2.2 Top-N recommendation
The Top-N recommendation algorithm aims to return the list of the most
relevant items for a particular user. To recommend items that will be of

10 C. Wenga et al.

interest to a given user, the algorithm determines the Top-N items that the user
would like. The computation of these Top-N recommendations depends on
whether the recommendation system is a User-based CF or an Item-based CF.

User-based Top-N recommendation
In User-based CF, the set U of all users is divided into many groups UG in
which users in the same group behave similarly. When computing the Top-
N items to recommend to an active user u, the algorithm first identify the
group UG to which the user u belongs to (k most similar users of u). Then
it aggregates the ratings of all users in UG to identify the set C of items
purchased by the group as well as the frequency. User-based CF techniques
then recommends the N most relevant items in C according to user u, and
that u has not already purchased (Karypis, 2001; Sarwar et al., 2001; Ekstrand
et al., 2011).

Despite their popularity, User-based recommendation systems have a
number of limitations related to data sparsity, scalability and real-time perfor-
mance (Karypis, 2001; Sarwar et al., 2001; Ekstrand et al., 2011). Indeed, the
computational complexity of these methods grows linearly with the number
of users and items which can grow up to several millions in typical e-
commerce websites. In such systems, even active users typically interact
with under 1% of the items (Sarwar et al., 2001), leading to a high data-
sparsity problem. Furthermore, as a user rates and re-rates items, their rating
vector will change, along with their similarity to other users. This makes it
difficult to find similar users in advance. For this reason, most User-based CF
find neighborhoods at run time (Ekstrand et al., 2011), hence the scalability
concern.

Item-based Top-N recommendation
Item-based CF, also known as item-to-item CF algorithms have been devel-
oped to address the scalability concerns of User-based CF (Khalifeh and
Al-Mousa, 2021; Sarwar et al., 2001; Linden et al., 2003; Ekstrand et al.,
2011). They analyze the user-item matrix to identify relations between the
different items, and then use these relations to compute the list of top-N
recommendations. The key idea of this strategy is that a customer is more
likely to buy items that are similar or related to items he/she has already
purchased (Sarwar et al., 2001). Since this doesn’t need to identify the
neighborhood of similar customers when a recommendation is requested,
they lead to much faster recommendation engines.

Item-based CF first compute the k most similar items for each item
and the corresponding similarities are recorded. The Top-N recommendation

A Comprehensive Review on Non-Neural Networks Collaborative 11

algorithm for an active user u that has purchased a set Iu of items is defined
by the following steps: (a) Identify the set C of candidate items by taking the
union of the k most similar items of Iu and removing items already purchased
by user u (items in the set Iu). (b) Compute the similarities between each item
c ∈ C and the set Iu as the sum of similarities between all items in Iu and
c, using only the k most similar item of i, ∀i ∈ Iu. (c) Sort the remaining
items in C in decreasing order of similarity, to obtain the Item-based Top-N
recommendation list (Karypis, 2001; Sarwar et al., 2001; Linden et al., 2003;
Su and Khoshgoftaar, 2009).

Item-based algorithms are suitable to make recommendations to users
who have purchased a set of items. For example, this algorithm can be
applied to make top-N recommendations for items in a user shopping cart
(Linden et al., 2003). The effectiveness of Item-based CF depends on the
method used to compute similarity between various items. In general, the
similarity between two items i and j should be high if there are a lot of
users that have purchased both of them, and it should be low if there are few
such users (Linden et al., 2003; Deshpande and Karypis, 2004). Some other
criteria to consider when computing similarity between items are specified in
(Deshpande and Karypis, 2004).

The key advantages of Item-based over User-based collaborative filtering
are scalability and performance. The algorithm’s online component scales
independently of the catalog size or of the total number of users. It depends
only on how many items the user has purchased or rated (Linden et al., 2003;
Ekstrand et al., 2011). Item-based algorithms are then faster than User-based
CF even for extremely large datasets.

2.3 Overview and Limitations of Memory-based CF

Memory-based CF algorithms usually rely on neighborhood discovery (for
User-based and Item-based algorithms), and are based the user-item matrix
interactions (ratings, likes, . . .). Computations are made over the entire
interaction matrix (for User-based CF) each time a prediction or a recom-
mendation is needed. With User-based or Item-based CF it is then possible
to predict interactions between users and items, which answers the research
question of Table 1 on ratings predictions. Despite their success, Memory-
based CF algorithms have two major limitations: the first is related to sparsity
and the second is related to scalability (Karypis, 2001).

In general, users of commercial platforms do not interact with the entire
set of items. They usually interact with a very small portion of the items’

12 C. Wenga et al.

Table 3 Overview of Memory-based CF algorithms
Representative Techniques Main Advantages Main Shortcomings

User-based (user-to-user) CF
(Resnick et al., 1994)

– Simplicity: they are easy to
implement; no costly training
phases,

– Scalability (for User-based):
computations grow linearly with
the number of users and items,

– Find k users similar to an active
user u,

– Explainability:
recommendations provided to a
user can easily be justify,

– Cold start problem: unable to
make recommendations for new
items or new users,

– Find and recommend the top N

items purchased by these k users
and not purchased by user u.

– Need not to consider the content
of items or users.

– Depends on interactions
between users and items,

Item-based (item-to-item) CF
(Karypis, 2001; Sarwar et al.,
2001; Linden et al., 2003):

In addition to advantages of
User-based CF:

– Data sparsity (not enough
users/items interactions): users
interact only with a tiny set of
items.

– Find the list of similar items of
an item i, not already purchased
by an active user u and similar to
items already purchased by u,

– Stability: little affected by the
constant addition of new
information,

– Sort the result in decreasing
order to be the top-N
recommendation.

– Scalability: The use of
precomputed item-to-item
similarities can significantly
improve the real-time
recommendation complexity.

set (the amount of historical information for each user and for each item is
often quite limited). In particular, since the correlation coefficient (similarity
score) is only defined between users who have rated at least two products
in common, many pairs of users have no correlation at all (Billsus and
Pazzani, 1998; Karypis, 2001). This problem is known as reduced coverage
(Sarwar et al., 2000), and is due to sparse ratings of users. Accordingly, a
recommendation system based on nearest neighbor algorithms may be unable
to make any item recommendations for a particular user. As a result, the accu-
racy of recommendations may be poor (Karypis, 2001; Sarwar et al., 2001).
Moreover, with millions of users and items, User-based recommendation
systems suffer serious scalability problems that affect real-time performance:
The computational complexity of these methods grows linearly with the
number of customers. Table 3 presents an overview of Memory-based CF
algorithms.

3 Model-Based Collaborative Filtering

Model-based algorithms have been designed to address the limitations of
Memory-based CF. Instead of computing recommendations on the entire
user-item interactions database, a model-based approach builds a generic

A Comprehensive Review on Non-Neural Networks Collaborative 13

model from these interactions, which can be used each time a recommen-
dation is needed (Breese et al., 1998; Parhi et al., 2017). This allows the
system to recognize complex patterns from the training data, and then make
more intuitive predictions for new data based on the learned model (Su and
Khoshgoftaar, 2009). Here, every new piece of information from any user
makes the model obsolete. The model then has to be rebuilt for any new
information (Bobadilla et al., 2013). Several varieties of models have been
investigated, such as Dimensionality reduction models (Billsus and Pazzani,
1998; Koren et al., 2009), Clustering models (Xu and Tian, 2015; Saxena
et al., 2017), Regression models (Vucetic and Obradovic, 2005; Hu and Li,
2018; Steck, 2019), Neural Networks (Feigl and Bogdan, 2017; He et al.,
2017b,a; Zhang et al., 2018) and Deep Learning models (Mu, 2018; Zhang
et al., 2019). Since 2009, due to the success of Matrix Factorization (Koren
et al., 2009) on the Netflix Price,3 a particular attention has been made on
dimensionality reduction techniques. For this reason, this section focuses on
collaborative filtering based on dimensionality reduction.

To address the problem of high-level sparsity, several Dimensionality
Reduction techniques have been used such as Latent Semantic Indexing
(LSI) (Deerwester et al., 1990), Matrix Factorization models (Koren et al.,
2009) and its variants like Singular Value Decomposition (SVD) (Bill-
sus and Pazzani, 1998; Sarwar et al., 2000), Regularized SVD (Paterek,
2007), Non-negative Matrix Factorization (NMF) (Wang and Zhang, 2013;
Hernando et al., 2016), Probabilistic Matrix Factorization (PMF) (Mnih
and Salakhutdinov, 2008), Bayesian Matrix Factorization (BMF) (Lakshmi-
narayanan et al., 2011), Explainable Matrix Factorization (EMF) (Abdollahi
and Nasraoui, 2016, 2017; Wang et al., 2018).

3.1 Singular Value Decomposition (SVD)

Since nearest neighbors-based recommendations do not deal with large and
sparse data, the idea behind matrix factorization models is to reduce the
degree of sparsity by reducing dimension of the data. SVD is a well-known
matrix factorization model that captures latent relationships between users
and items and produces a low-dimensional representation of the original user-
item space that allows the computation of neighborhoods in the reduced space
(Sarwar et al., 2000; Ekstrand et al., 2011). SVD factors the m × n ratings

3The Netflix Price (https://netflixprize.com) sought to substantially improve the accuracy
of predictions about how much someone is going to enjoy a movie based on their movie
preferences.

https://netflixprize.com

14 C. Wenga et al.

Figure 1 (Left) Dimensionality Reduction with Singular Value Decomposition (SVD).
(Right) Dimentionality Reduction with Matrix Factorization (MF) (Sarwar et al., 2000;
Ekstrand et al., 2011).

matrix R as a product of three matrices:

R = PΣQ>, (8)

where P ,Q are two orthogonal matrices of sizem× k̂ and n× k̂ respectively
(where k̂ is the rank of R) and Σ a diagonal matrix of size k̂ × k̂ having
all singular values of the rating matrix R as its diagonal entries (Billsus and
Pazzani, 1998; Sarwar et al., 2000; Ekstrand et al., 2011; Bokde et al., 2015).
It is possible to truncate the k̂ × k̂ matrix Σ by only retaining its k largest
singular values to yield Σk, with k < k̂. By reducing matrices P and Q
accordingly, the reconstructed matrix Rk = PkΣkQ

>
k will be the closest

rank-k matrix to R (see Figure 1.Left) (Sarwar et al., 2000; Ekstrand et al.,
2011).

With the truncated SVD recommendation system, user’s and item’s latent
spaces are defined respectively by Pk ·

√
Σk and

√
Σk · Q>k . In other words,

the uth row of Pk ·
√

Σk (resp. the ith column of
√

Σk · Q>k) represents
the latent factors of user u (resp. the latent factors of item i). The reduced
latent space can then be used to perform rating-predictions as well as top-N
recommendations for users: given user u and item i, the predicted rating of
user u on item i, denoted by R̂u,i is computed with Equation (9):

R̂u,i =
[
Pk ·

√
Σk

]
u

[√
Σk ·Q>k

]
i
. (9)

Applying SVD for CF recommendation often raises difficulties due to the
high portion of missing values caused by sparseness in the user-item ratings
matrix. Therefore, to factor the rating matrix, missing values must be filled
with reasonable default values (this method is called imputation (Su et al.,
2008)). Sarwar et al. (Sarwar et al., 2000) found the item’s mean rating to
be a useful default value. Adding ratings normalization by subtracting the

A Comprehensive Review on Non-Neural Networks Collaborative 15

user mean rating or other baseline predictor can improve accuracy. The SVD
based recommendation algorithm consists of the following steps. Given the
rating matrix R:

1. Find the normalized rating-matrix Rnorm,
2. Factor Rnorm to obtain matrices P , Σ and Q,
3. Reduce Σ to dimension k to obtain Σk,
4. Compute the square-root of Σk to obtain

√
Σk,

5. Compute Pk ·
√

Σk and
√

Σk · Q>k that will be used to compute
recommendation scores for any user and items.

3.2 Matrix Factorization

The idea behind Matrix Factorization also known as Regularized SVD
(Paterek, 2007), is the same as that of the standard SVD: represent users and
items in a lower dimensional latent space. The original algorithm4 factorized
the user-item rating-matrix as the product of two lower dimensional matrices
P and Q, representing latent factors of users and items respectively (see
Figure 1.Right). If k defines the number of latent factors for users and items,
the dimension of P andQ are respectivelym×k and n×k. More specifically,
each user u is associated with a vector Pu ∈ Rk and each item i with
Qi ∈ Rk. Qi measure the extent to which item i possesses those factors and
Pu measure the extent of interest user u has in items that have high values on
the corresponding factors (Koren et al., 2009; Bokde et al., 2015). Therefore,
the dot product of Qi and Pu approximates the user u’s rating on item i with
R̂u,i defined by Equation (10):

R̂ui = Q>i Pu. (10)

The major challenge lies in computing the mapping of each item and user
to factor vectors Qi, Pu ∈ Rk. After the recommender system completes
this mapping, it can easily estimate the rating a user will give to any item
(Koren et al., 2009; Parhi et al., 2017). In the training stage, the model
includes a regularizer to avoid overfitting. Therefore, the system minimizes
the regularized squared error on the set of known ratings. The cost function
is defined by Equation (11):

J(P,Q) =
1

2

∑
(u,i)∈κ

(Ru,i − R̂u,i)2 + λP ||Pu||2 + λQ||Qi||2, (11)

4Funk, S (2006). Netflix Update: Try This at Home. https://sifter.org/∼simon/journal/200
61211.html

https://sifter.org/~simon/journal/20061211.html
https://sifter.org/~simon/journal/20061211.html

16 C. Wenga et al.

where κ is the set of the (u, i) pairs for which Ru,i is known (the training set)
(Paterek, 2007; Koren et al., 2009; Bokde et al., 2015; Zheng et al., 2018).
The parameters λP and λQ control the extent of regularization and is usually
determined by cross-validation.

To minimize the cost function J , the matrix factorization algorithm
computes R̂u,i and the associated error eu,i for each training case with the
Mean Absolute Error (MAE) metric (Koren et al., 2009). Parameters Pu,l and
Qi,l are then updated using the stochastic gradient descent algorithm with the
following update rules (Equations 12 and 13):

Pu,l ← Pu,l + η
[
(Ru,i − PuQ>i)Qi,l − λPPu,l

]
, (12)

Qi,l ← Qi,l + η
[
(Ru,i − PuQ>i)Pu,l − λQQi,l

]
, (13)

where η is the learning rate. A probabilistic foundation of Matrix Factor-
ization (Probabilistic Matrix Factorization – PMF) is defined in (Mnih and
Salakhutdinov, 2008).

3.3 Probabilistic Matrix Factorization (PMF)

Probabilistic algorithms aim to build probabilistic models for user behavior
and use those models to predict future behaviors. The core idea of these meth-
ods is to compute either the probability Pr(i|u) that user u will purchase item
i, or the probability Pr(ru,i|u) that user u will rate item i (Hofmann, 1999;
Ekstrand et al., 2011). These algorithms generally decompose the probability
Pr(i|u) by introducing a set Z of latent factors and then, decomposes Pr(i|u)
as follows (Equation (14))

Pr(i|u) =
∑
z∈Z

Pr(i|z) Pr(z|u), (14)

where z is a latent factor (or feature), Pr(z|u) the probability that user u picks
a random feature z and Pr(i|z) the probability to pick a random item i given
a feature z. As illustrated in Figure 2 (left) and detailed in (Hofmann, 1999),
a user selects an item by picking the associated factor z. This model is known
as the Probabilistic Latent Semantic Analysis (PLSA).

The PLSA model has the same form as SVD (Sarwar et al., 2000) or MF
(Koren et al., 2009) (R = PQ>) except that P and Q are stochastic and
not orthogonal. One downside of PLSA is that it’s pretty slow to learn. An
alternative probabilistic model is Probabilistic Matrix Factorization (PMF)

A Comprehensive Review on Non-Neural Networks Collaborative 17

Figure 2 Dimensionality Reduction: Probabilistic Models (Mnih and Salakhutdinov, 2008;
Ekstrand et al., 2011). (Left) Probabilistic Latent Semantic Analysis (PLSA). (Right) Proba-
bilistic Matrix Factorization (PMF).

(Mnih and Salakhutdinov, 2008). With PMF, ratings are drawn from the
normal distributions.

The conditional distribution over the observed ratings R (the likelihood
term) and the prior distributions over the latent variables P and Q are given
by Equations 15, 16 and 17, where the mean for Ru,i is denoted by Q>i Pu
(see Figure 2 right).

Pr(R|P,Q, σ2) =
m∏
u=1

n∏
i=1

[
N (Ru,i|P>u Qi, σ2)

]Iu,i
, (15)

Pr(P |σ2P) =
m∏
u=1

N (Pu|0, σ2P I), (16)

Pr(Q|σ2Q) =
n∏
i=1

N (Qi|0, σ2QI), (17)

where N (x|µ, σ2) is the probability density function of the Gaussian distri-
bution with mean µ and variance σ2, and Iu,i is the indicator function that is
equals to 1 if user u rated item i and equals to zero otherwise. The complexity
of the model is controlled by placing a zero-mean spherical Gaussian priors
on P and Q, ensuring that latent variables do not grow too far from zero.

The learning procedure of the Regularized SVD (Matrix Factorization)
can be applied to PMF by extending the number of regularization parameters.
The goal is to minimize the sum-of-squared-error objective function with

18 C. Wenga et al.

quadratic regularization terms (Equation (18)):

J(P,Q) =
1

2

∑
(u,i)∈κ

(Ru,i − R̂u,i)2 +
λP
2

∑
u

||Pu||2Frob

+
λQ
2

∑
i

||Qi||2Frob, (18)

where λP = σ2/σ2P , λQ = σ2/σ2Q are the regularization parameters and
|| · ||2Frob is Frobenius norm. PMF is faster to train than PLSA and showed
promising results compared to SVD as experimented in (Mnih and Salakhut-
dinov, 2008). Despite the effectiveness of PMF, it also has limitations. The
basic assumption of PMF is that both users and items are completely inde-
pendent, while in the field of recommendation, there may be some correlation
between different features (Zhang et al., 2018).

3.4 Non-negative Matrix Factorization (NMF)

In MF (Paterek, 2007; Koren et al., 2009) and the PMF (Mnih and Salakhut-
dinov, 2008) models, values of P and Q are hard to understand, since their
components can take arbitrary positive and/or negative values. They do not
have any straightforward probabilistic interpretation. Therefore, these models
cannot justify the prediction they make since the components of Pu and Qi
are difficult to interpret (Hernando et al., 2016).

NMF (Non-negative Matrix Factorization) (Lee and Seung, 1999; Pauca
et al., 2006; Cai et al., 2008; Wang and Zhang, 2013; Gillis, 2014; Hernando
et al., 2016) is a particular case of Matrix Factorization models where the
lower-rank matrices P and Q are non-negative matrices (P ∈ Rm×k≥0 and

Q ∈ Rn×k≥0).
In the NMF model, latent factors Pu,l, Qi,l ∈ [0, 1] with l ∈ {1, . . . , k}

(Lee and Seung, 1999; Cai et al., 2008; Hernando et al., 2016). This allows
a probabilistic interpretation: (a) latent factors represent groups of users who
share the same interests, (b) the value of Pu,l represents the probability that
user u belongs to the group l of users and (c) the value Qi,l represents
the probability that users in the group l like item i. These properties allow
the justification of recommendations provided by the NMF model (Lee and
Seung, 1999, 2001; Cai et al., 2008; Luo et al., 2014).

The objective function of NMF is equivalent to Equation (11). However,
to ensure that the values of P and Q will be kept between 0 and 1, NMF

A Comprehensive Review on Non-Neural Networks Collaborative 19

uses multiplicative update rules (equations 21 and 22) (Lee and Seung, 1999,
2001) instead of the additive update rules (Equations 12 and 13). In order
to transform additive update rules of the MF model (Equations 12 and 13)
into multiplicative ones, Luo et al. (Luo et al., 2014) proposed data-adaptive
learning rates ηu,l (Equation (19)) and ηi,l (Equation (20)), respectively for
Pu,l and Qi,l, the idea being to set the learning rate so that any subtraction
disappears from the update rules.

ηu,l =
Pu,l∑

i∈Iu

(
R̂u,iQi,l + λPPu,l

) , (19)

ηi,l =
Qi,l∑

u∈Ui

(
Pu,lR̂u,i + λQQi,l

) . (20)

By replacing η by ηu,l in Equation (12) (respectively by ηi,l in Equa-
tion (13)), they obtained multiplicative update rules in Equations 21 and 22
(Luo et al., 2014).

Pu,l ← Pu,l ·
∑

i∈Iu Qi,l ·Ru,i∑
i∈Iu Qi,l · R̂u,i + λP |Iu|Pu,l

, (21)

Qi,l ← Qi,l ·
∑

u∈Ui
Pu,l ·Ru,i∑

u∈Ui
Pu,l · R̂u,i + λQ|Ui|Qi,l

, (22)

where Iu is the set of items purchased/rated by user u and Ui is the set of
users who purchased/rated item i. λP and λQ are the regularizer parameters.

NMF models are also known to be explainable models (Cai et al., 2008;
Wang and Zhang, 2013; Luo et al., 2014; Hernando et al., 2016). Indeed,
since classical MF models cannot justify their recommendations, justifica-
tions or explanations can be added as input to the model in order to provide
explainable recommendations.

3.5 Explainable Matrix Factorization (EMF)

In (Abdollahi and Nasraoui, 2017), Abdollahi and Nasraoui proposed an
Explainable Matrix Factorization (EMF) model. The proposed model is
a probabilistic formulation of their previous EMF model (Abdollahi and
Nasraoui, 2016), where the explanation is based on the neighborhood.
The neighborhood is either User-based or Item-based (Section 2.2.2). The

20 C. Wenga et al.

explainability score (for User-based neighbors style explanation) of the rating
of user u on item i, denoted by Explu,i is computed with Equation (23)
(Abdollahi and Nasraoui, 2017):

Explu,i = E(Rv,i|Nu) =
∑
x∈X

x · Pr(Rv,i = x|v ∈ Nu), (23)

where

Pr(Rv,i = x|v ∈ Nu) =
|Nu ∩ Ui,x|
|Nu|

(24)

Ui,x is the set of users who have given the same rating x to item i and Nu

is the set of k-nearest neighbors for user u. As you may notice, E(x|N) is
the expectation of rating x given a set of N users. Similarly, for Item-based
neighbor style explanation, the explanation score is given by Equation (25).

Explu,j = E(Ru,j |Ni) =
∑
x∈X

x · Pr(Ru,j = x|j ∈ Nj). (25)

Finally, the explanation weight Wu,i of the rating given by user u on item i is

Wui =

{
Explu,i if Explu,i > θ
0 otherwise

(26)

where θ is an optimal threshold above which item i is considered to be
explainable for user u. Wu,i is therefore the extent to which item i is
explainable for user u. The new objective function (Abdollahi and Nasraoui,
2017) can be formulated as in Equation (27):

min
P,Q

∑
(u,i)∈κ

(Ru,i− R̂u,i)2 +
β

2
(||Pu||2 + ||Qi||2) +

λ

2
(Pu−Qi)2Wui, (27)

where β is the coefficient of the L2 regularization term and λ is an
explainability regularization coefficient.

Similarity-Based EMF (SEMF) and Neighborhood-based EMF (Wang
et al., 2018) are extensions of EMF. In (Wang et al., 2018) the expected value
of the explainability score is obtained more reasonably through the Pearson
Correlation Coefficient of users or items. SEMF is based on the assumption
that if users have a close relationship, the influence of neighbors on users
should be larger. Then the high rating items of users who are similar to an
active user are also more explainable. Therefore, instead of using the empir-
ical conditional probability of rating Wu,i as explanation, SEMF uses the

A Comprehensive Review on Non-Neural Networks Collaborative 21

Pearson Correlation CoefficientWs(u, i) (Resnick et al., 1994). SEMF can be
extended over the entire users or items to produce User-based Neighborhood-
based EMF or Item-based Neighborhood-based EMF (Wang et al., 2018).
Another extension of EMF is Novel and Explainable Matrix Factorization
(NEMF) (Coba et al., 2019). This particular model includes novelty informa-
tion in EMF in order to provide novel and explainable recommendations to
users.

3.6 Overview of Dimensionality Reduction Techniques

Matrix Factorization is widely used in rating predictions and can be used
to populate the user-element matrix such as that in Tables 1 and 2. Despite
the effectiveness of Matrix Factorization models in improving traditional
memory-based CF, they are three general issues that arise with this family of
models (Shenbin et al., 2020). First, the number of parameters in MF models
is huge (m× k+n× k): it linearly depends on both the number of users and
items, which slows down model learning and may lead to overfitting. Second,
making predictions for new users/items based on their ratings implies running
optimization procedures in order to find the corresponding user/item embed-
ding. Third, high data sparsity could also lead to overfitting. Moreover, MF
models use linear transformations to learn these latent features (Zhang et al.,
2019; Shenbin et al., 2020). However, linear models are not complex enough
to capture nonlinear patterns from user-item interactions. The learned features
are then not sufficiently effective, especially when the rating matrix is highly
sparse. Table 4 presents an overview of matrix factorization algorithms.

All of the models explored above (user-based, item-based, and matrix
factorization algorithms) are used to predict future interactions between users
and products. Using these predictions, it is then possible to populate the score
matrices in (for example) Tables 1 and 2 with the missing values and then
make recommendations for all users.

4 Evaluation Metrics for CF Algorithms

Before applying a recommendation system in real life applications, it is
important to measure its aptitude to capture the interest of a particular user
in order to provide acceptable recommendations (Bobadilla et al., 2011).
The effectiveness of a recommendation system then depends on its ability
to measure its own performance and fine-tune the system to do better on test
and real data (Breese et al., 1998; Cacheda et al., 2011). However, evaluating

22 C. Wenga et al.

Table 4 Overview of Dimensionality Reduction techniques

Models Rules

Singular Value Decomposition (SVD)
(Billsus and Pazzani, 1998; Sarwar et al.,
2000)

Decomposes the rating matrix R into three
low dimensional matrices P , Σ and Q of
dimensions m× k̂, k̂ × k̂ and n× k̂
respectively, where k̂ is the rank of the
rating matrix, then takes the k largest
singular values of Σ to yield Σk and
reduces P and Q accordingly to obtain Pk

and Qk. SVD cannot be applied on a
matrix that contains missing values.

Regularized SVD (Matrix Factorization)
(Paterek, 2007; Koren et al., 2009)

Decomposes R into two orthogonal
matrices P and Q. It is not necessary to
fill missing values before applying
Regularized SVD. The learning procedure
can be done with gradient descent over all
observed ratings.

Probabilistic Matrix Factorization (PMF)
(Mnih and Salakhutdinov, 2008)

Decomposes R into two stochastic
matrices P and Q. It assumes that users
and items are completely independent and
ratings are drawn from the normal
distributions.

Non-negative Matrix Factorization (NMF)
(Lee and Seung, 1999; Cai et al., 2008;
Hernando et al., 2016)

Values of P and Q in the MF model are
non-interpretable (they can be either
positive or negative). NMF restrict values
of P and Q between 0 and 1 that allows a
probabilistic interpretation of latent
factors.

Explainable Matrix Factorization (EMF)
(Abdollahi and Nasraoui, 2016, 2017;
Wang et al., 2018; Coba et al., 2019)

Addresses the explainability of MF in a
different way compared to NMF. Here, an
item i is considered to be explainable for
user u if a considerable number of user
u’s neighbors rated item i.

recommendation systems and their algorithms is inherently difficult for sev-
eral reasons: first, different algorithms may be better or worse on different
data sets; second, the goals for which an evaluation is performed may differ
(Herlocker et al., 2004; Cacheda et al., 2011).

During the two last decades, dozens of metrics have been proposed in
order to evaluate the behavior of recommendation systems, from how accu-
rate the system is to how satisfactory recommendations could be. Evaluation

A Comprehensive Review on Non-Neural Networks Collaborative 23

metrics can be categorized in four main groups (Herlocker et al., 2004;
Cacheda et al., 2011; Bobadilla et al., 2013; Seyednezhad et al., 2018): (a)
prediction metrics, such as accuracy (b) set of recommendation metrics, such
as precision and recall (c) rank of recommendations metrics like half-life and
(d) diversity and novelty.

4.1 Prediction Accuracy

Prediction accuracy measures the difference between the rating the system
predicts and the real rating (Cacheda et al., 2011). This evaluation metric
is most suitable for the task of rating prediction. Assuming that observed
ratings are splitted into train and test sets, prediction accuracy evaluates the
ability of the system to behave accurately on the test set. The most popular
of these kinds of metrics are Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE) and Normalized Mean
Absolute Error (NMAE) (Herlocker et al., 2004; Willmott and Matsuura,
2005; Bobadilla et al., 2011, 2013).

Let us define U as the set of users in the recommendation system, I as the
set of items,Ru,i the rating of user u on item i,� the lack of rating (Ru,i = �
means user has not rated item), R̂u,i the prediction of user u on item i.

If Ou = {i ∈ I|R̂u,i 6= � ∧ Ru,i 6= �} is the set of items rated by user
u and having prediction values, we can define the MAE (Equation (28)) and
RMSE (Equation (29)) of the system as the average of the user’s MAE and
RMSE (Bobadilla et al., 2011, 2013). The prediction’s error is then defined
by the absolute difference between prediction and real value |R̂u,i −Ru,i|.

MAE =
1

#U

∑
u∈U

(
1

#Ou

∑
i∈Ou

|R̂u,i −Ru,i|), (28)

RMSE =
1

#U

∑
u∈U

√
1

#Ou

∑
i∈Ou

(R̂u,i −Ru,i)2. (29)

Despite their limitations when evaluating systems focused on recom-
mending a certain number of items, the simplicity of their calculations and
statistical properties have made MAE and RMSE metrics the most popular
when evaluating rating predictions for recommendation systems (Herlocker
et al., 2004; Cacheda et al., 2011).

Another important and commonly used metric is coverage, which mea-
sures the percentage of items for which the system is able to provide

24 C. Wenga et al.

predictions for (Herlocker et al., 2004). The coverage of an algorithm is
especially important when the system must find all the good items and not
be limited to recommending just a few. According to (Bobadilla et al., 2011,
2013), coverage represents the percentage of situations in which at least one
k-neighbor of each active user can rate an item that has not been rated yet by
that active user. If Ku,i defines the set of neighbors of user u who have rated
item i, then the coverage Cu of user u is defined by Equation (30):

cu = 100× #Cu
#Du

, with

{
Cu = {i ∈ I|Ru,i = � ∧Ku,i 6= ∅}
Du = {i ∈ I|Ru,i = �}

, (30)

where Cu is the set of items not rated by user u but rated by at least one of
his k-neighbors and Du the set of items not rated user u. The total coverage
(Equation (31)) is then defined as the mean of all cu by:

coverage =
1

#U

∑
u∈U

cu. (31)

A high prediction accuracy in a recommendation system doesn’t guar-
antee the system will provide good recommendations. The confidence of
users (or his satisfaction) for a certain recommendation system does not
depend directly on the accuracy for the set of possible predictions. A user
rather gains confidence on the recommendation system when he agrees with
a reduced set of recommendations made by the system (Bobadilla et al., 2011,
2013). Therefore, the most important thing in recommendation systems is not
the performance of the system on existing data (products already purchased
by users), but rather the performance for future user interactions (products
unknown to the user). Moreover, prediction accuracy is suitable when a large
number of observed ratings is available, ratings without which training and
validation cannot be done effectively. When only a list of items rated by a
user is known, it will be preferable to combine prediction accuracy with other
evaluation metrics such as Quality of set of recommendations.

4.2 Quality of Set of Recommendations

Quality of set of recommendations is appropriate when a small number of
observed ratings is known, and it is used to evaluate the relevance of a
set of recommended items (Deshpande and Karypis, 2004). The quality of
set of recommendations is usually computed by the following three most
popular metrics: (1) Precision, which indicates the proportion of relevant

A Comprehensive Review on Non-Neural Networks Collaborative 25

recommended items from the total number of recommended items, (2) Recall,
which indicates the proportion of relevant recommended items from the num-
ber of relevant items, and (3) F1-score, which is a combination of Precision
and Recall (Sarwar et al., 2000; Herlocker et al., 2004; Bobadilla et al., 2011,
2013; Seyednezhad et al., 2018).

Let consider Zu, the set of n recommended items to user u, ru ∈ Zu
the set of relevant items recommended to u and its opposite rcu the set of
relevant items not recommended to u. We consider that an item i is relevant
for recommendation to user u if Ru,i ≥ θ, where θ is a threshold.

Assuming that all users accept n test recommendations, the evaluations of
precision (Equation (32)), recall (Equation (33)) and F1-score (Equation (34))
are obtained by making n tests recommendations to the user u as follow:

precision =
1

#U

∑
u∈U

#ru
n
, with ru = {i ∈ Zu|Ru,i ≥ θ}, (32)

recall =
1

#U

∑
u∈U

#ru
#ru + #rcu

, with rcu = {i /∈ Zu|Ru,i ≥ θ}, (33)

F1 =
2× precision× recall
precision+ recall

. (34)

One important drawback of this evaluation metric is that all items in a
recommendation list are considered equally interesting to a particular user
(Desrosiers and Karypis, 2011). However, items in a list of recommenda-
tions should be ranked according to the preference of the user. The rank of
recommended items is evaluated with the quality of list of recommendations.

4.3 Quality of List of Recommendations

Recommendation systems usually produce lists of items to users. These items
are ranked according to their relevance, as users pay more attention to the
first recommended items in the list. Errors made on these items are then more
serious than those of the last items in the list. The ranking measures consider
this situation. The most used metrics for ranking measures are (1) Mean
Average Precision (MAP) (Caragea et al., 2009) which is just the mean of the
average precision (Equation (32)) over all users, (2) Half-life (Equation (35))
(Breese et al., 1998), which assumes an exponential decrease in the interest
of users as they move away from the recommendations at the top and (3)
Discounted Cumulative Gain (Equation (36)) (Baltrunas et al., 2010), where

26 C. Wenga et al.

the decay is logarithmic:

Hl =
1

#U

∑
u∈U

N∑
i=1

max(Ru,pi − d, 0)

2(i−1)/(α−1)
, (35)

DCG =
1

#U

∑
u∈U

(Ru,p1 +
k∑
i=2

Ru,pi
log2(i)

), (36)

where p1, . . . , pn represent the recommended list, Ru,pi the true rating of the
user u for item pi, k the rank of the evaluated item, d the default rating, and
α the number of the item in the list such that there is a 50% chance the user
will review that item.

4.4 Novelty and Diversity

In many applications such as e-commerce, recommendation systems must
recommend novel items to users, because companies want to sell their new
items as well and keep their clients satisfied. Further, some users may want to
explore a new type of item. Therefore, a metric to evaluate recommendation
systems based on this criterion would be useful. In this case, we must evaluate
the extent to which a recommendation system can produce diverse items.
Novelty and diversity are two main metrics that provide such evaluations
(Zhang, 2013; Seyednezhad et al., 2018).

The novelty metric evaluates the degree of difference between the items
recommended to and known by the user. The novelty of an item i (Equa-
tion (37)) is measured according to three major criteria: (a) Unknown: i
is unknown to the user, (b) Satisfactory: i is of interest for the user, (c)
Dissimilarity: i is dissimilar to items in the user’s profile (Zhang, 2013).

noveltyi =
1

#Zu − 1

∑
j∈Zu

(1− sim(i, j)), i ∈ Zu (37)

where sim(i, j) indicates item to item memory-based CF similarity measures
and Zu represents the set of recommendations to user u.

Novelty is central for recommendation systems, because there are some
items which most of the users do not buy frequently (like refrigerators). Thus,
if a user buys one of them, most likely he or she will not buy it again in
the near future. Then, the recommendation system should not continue to
recommend it to the user. However, if the user tries to buy them again, the

A Comprehensive Review on Non-Neural Networks Collaborative 27

system should learn that and include them in the set of recommended items
(Zhang, 2013; Seyednezhad et al., 2018).

The diversity of a set of recommended items (for example Zu), indicates
the degree of differentiation among recommended items (Bobadilla et al.,
2013). It is computed by summing over the similarity between pairs of
recommended items and normalizing it (Equation (38)):

diversityZu =
1

#Zu(#Zu − 1)

∑
i∈Zu

∑
j∈Zu,j 6=i

(1− sim(i, j)) (38)

Evaluating the diversity and the novelty of a recommendation system ensures
that the system will not recommend the same items over and over.

4.5 Overview of Evaluation Metrics

The current main evaluation metrics (detailed previously) are summarized in
Table 5.

5 Comparative Experimentation

In this section, we compare performances of all the models previously pre-
sented (Sections 2 and 3). We use the MovieLens5 benchmark datasets and
evaluate these recommendation algorithms with the MAE evaluation metric
(Section 4).

5.1 MovieLens Datasets

The GroupLens Research team6 provides datasets that consist of user ratings
(from 1 to 5) on movies. They are various sizes of the MovieLens datasets:

• ML-100K: 100,000 ratings from 1000 users on 1700 movies, released
in April 1998,

• ML-1M: 1 million ratings from 6000 users on 4000 movies, released in
February 2003,

5MovieLens (https://movielens.org/) is a web-based recommendation system and virtual
community that recommends movies to its users, based on their past preferences using
collaborative filtering.

6GroupLens Research (https://grouplens.org/) is a research laboratory from the University
of Minnesota, that advances the theory and practice of social computing by building and
understanding systems used by real people.

https://movielens.org/
https://grouplens.org/

28 C. Wenga et al.

Table 5 Overview of recommendation system evaluation metrics
Evaluation Metrics Measures Observations

Accuracy: useful when a
large range of ratings is
available. Appropriate for
the rating prediction’s task.

– Mean Absolute Error
(MEA).
– Root Mean Square
Error (RMSE). –
Coverage: percentage of
items that can be
recommended.

– Evaluate performances of
recommendations over
items already purchased (or
rated) by users. But we need
to know how they will
behave on items the user
has not purchased yet,
– A recommendation
system can be highly
accurate, but provide poor
recommendations.

Quality of set of
recommendation: users
purchased or rated only a
few items; Only a small
range of ratings is available.
Appropriate to recommend
good items

– Precision: proportion of
relevant recommended
items from the total number
of recommended items.
– Recall: proportion of
relevant recommended
items from the number of
relevant items.
– F1-score: combination of
precision and recall.

Note: an item i is relevant to
a user u if Ru,i > θ Where
is a threshold – Evaluate the
relevance of a set of
recommendations provided
to a set of users, – Items in
the same recommendation
list are considered equally
interesting to the user.

Quality of list of
recommendation: rank
measure of a list of
recommended items. Users
give greater importance to
the first items recommended
to them. This metric
Evaluates the utility of a
ranked list to the user.

– Half-life (Hl) assume that
the interest of a user on the
list of recommendations
decreases exponentially as
we go deeper in the list, –
Discounted Cumulative
Gain (DCG) the decay here
is logarithmic.

Ranking evaluation of the
top-N recommendations
provided to the user.

Novelty and Diversity – Novelty: evaluate the
ability of the system to
recommend items not
already purchased by users.
– Diversity: measure the
degree of differentiation
among recommended items.

– The goal of a
recommendation system is
to suggest to a user a set of
items that he has not
purchased yet. It would be
inappropriate to constantly
recommend items that the
user has already seen. –
Diversity is quite important
because it ensures that the
system won’t recommend
all the time the same type of
items.

A Comprehensive Review on Non-Neural Networks Collaborative 29

• ML latest: at the moment we are writing this article, the latest version
of the MovieLens dataset contains 27 million ratings applied to 58,000
movies by 280,000 users. The small version of this dataset (Movie-
Lens latest Small) contains 100,000 ratings applied to 9723 movies by
610 users. The latest MovieLens data set changes over time with the
same permalink. Therefore, experimental results on this dataset may
also change because the distribution of the dataset may change as new
versions are released. Therefore, it is not recommended to use the latest
small MovieLens dataset for research results. For this reason, we will
use only the ML-100K and the ML-1M datasets in our experiments.

In this study we present the experimental testing of the previous models
on the ML-100K and the ML-1M datasets and we compare their perfor-
mances using various evaluation metrics.

5.2 Experimental Results and Performances Comparison

Table 6 presents a performance comparison of User-based and Item-based
CF. We use two different datasets and compare the results over the Euclidean
and the Cosine-based similarities. The experimental errors of the User-based
algorithm with the Cosine distance, 0.75 for ML-100k and 0.73 for ML-1M,
is lower than those with the Euclidean distance, 0.81 for both ML-100k and
ML-1M. Similarly, the MAEs of the Item-based algorithm with the Cosine
distance, 0.51 for ML-100k and 0.42 for ML-1M, is lower than those with
the Euclidean distance, 0.83 for ML-100k and 0.82 for ML-1M. Either on
the ML-100k dataset or the ML-1M dataset, the Cosine Similarity allows the
model to reduce the MAE. This is why the Cosine similarity is generally
preferred as a similarity measure compared to the Euclidean distance.

As stated in Section 2.2.2, Item-based collaborative filtering scales well
for online recommendations and globally offer better performances compared
to the User-based ones. As described is (Sarwar et al., 2001; Ekstrand et al.,
2011), this is due to the fact that items similarities can be calculated in
advance, allowing better scaling for online recommendations compared to
the User-based algorithm.

Table 6 User-based vs Item-based performances (MAE) across MovieLens datasets with
different similarity-based metrics

Metric Dataset User-based Item-based

Euclidean distance
ML-100k 0.81 0.83
ML-1M 0.81 0.82

Cosine distance
ML-100k 0.75 0.51
ML-1M 0.73 0.42

30 C. Wenga et al.

5.3 Importance of Ratings Normalization

This section shows the importance of data normalization when training rec-
ommendation models. It provides a comparison of the performance of Matrix
Factorization models on raw vs normalized ratings. Tables 7 and 8 present
results of MF, NMF and EMF with the same number of latent factors k = 10
and for 10 and 20 epochs respectively.

The MAEs of the MF model on the raw and normalized scores are 1.48
and 0.82, respectively. Normalizing the scores led to an error reduction of
45% from the initial error (on the raw data). To measure the difference
between these two values, we performed a t-test with 50 degrees of freedom
and obtained a t-value of 3.48 and a p-value of 0.00077 which is far below
the classical threshold of 0.05 below which the gap, between 1.48 and 0.82,
can be considered significant. This simply means that we have less than a 77
in 100,000 chance of being wrong in stating that this difference is significant.

In the case of EMF, there are no great differences between the MAE errors
on raw and normalized ratings (0.78 vs 0.77). This is due to the positive
impact of explainable scores that allow the model to reduce biases in the
raw ratings leading to better results. The NMF model can only be trained on
raw data (it cannot be trained on normalized data). Indeed, normalized data
may contain negative values which are not compatible with the non-negativity
constraint of the NMF model, reason why we do not have NMF results on

Table 7 MAE of MF vs. NMF vs. EMF on MovieLens dataset (ML-100k and ML-1M)
trained on raw vs. normalized ratings with k=10 over 10 epochs. (a) The introduction of
explainable scores leads to better results for the EMF model on each dataset. (b) Due to the
non-negativity constraint of the NMF model, it cannot be trained on normalized ratings. (c)
Normalization of the data leads to a significant improvement of the MEA

Metric Dataset MF NMF EMF

Use raw ratings
ML-100k 1.497 0.9510 0.797
ML-1M 1.482 0.9567 0.76

Normalized ratings
ML-100k 0.828 — 0.783
ML-1M 0.825 — 0.758

Table 8 MAE of MF vs NMF vs EMF on MovieLens dataset trained on raw vs normalized
ratings with k=10 on 20 epochs. Compare to Table 7

Metric Dataset MF NMF EMF

Use raw ratings
ML-100k 1.488 0.868 0.784
ML-1M 1.482 0.859 0.755

Normalized ratings
ML-100k 0.828 — 0.78
ML-1M 0.825 — 0.757

A Comprehensive Review on Non-Neural Networks Collaborative 31

normalized data. However, the experimental results in Tables 7 and 8 show
the improvement of NMF over MF on raw data.

Based on the results of Tables 7 and 8, we can therefore conclude that
normalizing the scores before training MF models leads to a significant
reduction of the MAE. Indeed, some users would tend to give higher ratings
than others, making their rating scales different and thus incorporating bias
into the data (see Section 2.1.2).

Regarding the MAE on raw ratings, we can easily conclude that the EMF
model offers better performances (on every dataset) compared to NMF which
in turn is better than MF. The performance of EMF over MF and NMF is
due to the introduction of explainable scores (Abdollahi and Nasraoui, 2016,
2017; Wang et al., 2018; Coba et al., 2019). Similarly, the performance of
NMF over MF is due to the introduction of non-negativity that allows a
probabilistic interpretation of latent factors (Lee and Seung, 1999; Cai et al.,
2008; Wang and Zhang, 2013; Hernando et al., 2016).

6 Conclusion

In this article, we presented a review on collaborative filtering recommenda-
tion systems, with its two majors types: Memory-based CF and Model-based
CF. On one hand, Memory-based CF (Section 2), consisting of two main
types of algorithms (User-based and Item-based), is highly efficient when rat-
ings are not sparse. However, it cannot handle hight sparsity in user-item data.
Moreover, it suffers from scalability concerns due to online computations on
huge amounts of data each time a recommendation is needed.

On the other hand, Model-based recommendation systems (Section 3)
have been designed to address the limitations of their memory-based coun-
terparts. In this article we focused essentially on Dimensionality Reduction
models. Several such methods have been covered: Matrix Factorization
(MF), Non-negative Matrix Factorization (NMF) and Explainable Matrix
Factorization (EMF). These models appear as the most important ones in
Dimensionality Reduction, due to their ability to capture user’s preferences
through latent factors. To complete further our analysis, our experimentation
on the MovieLens benchmark dataset (Section 4) illustrates that due to its
non-negativity, the NMF model offers better performance that MF. On the
other hand, EMF offers better performance that MF and NMF due to the
introduction of explainable score. We did our experimentation on the ML-
100K benchmark dataset. The source code of our experimentation is available
on github (Section 7).

32 C. Wenga et al.

Future Works

We have reviewed that in the EMF model, the explainable scores are included
in the MF model, which leads to better results (see Table 7) compared to MF
and NMF. However, due to the use of the additive update rules, the latent
factors P and Q of the EMF model may still contain negative values that are
not interpretable. We also reviewed that applying non-negativity to the MF
model, to produce the NMF model, yields higher performances of recom-
mendations due to the probability interpretation of the latent factors. We have
therefore formulated the following hypotheses: Since applying non-negativity
to the MF model led to better results, introducing non-negativity to the EMF
model will further improve the recommendation performance compare to
MF, NMF and EMF. The resultant model will be a two-stage explainable
model: (a) the probabilistic interpretation of latent factors and (b) the fur-
ther explainability with explainable weights. Designing such a Non-negative
Explainable Matrix Factorization (NEMF) is a research direction we are
exploring.

Due to space limitation, we have not included the deep learning recom-
mendation systems in this paper. A thorough study of these models is the
subject of our future work.

7 Resources

All experiments have been made with Python 3.7 on the Jupyter notebook
with Intel Core i5, 7th gen (2.5GHz) and 8Go RAM.

Requirements

Matplotlib==3.2.2; Numpy == 1.19.2; Pandas == 1.0.5; Scikit-learn ==
0.24.1; Scikit-surprise == 1.1.1; Scipy == 1.6.2

Github Repository

Our experiments are available on the following github repository: https://gi
thub.com/nzhinusoftcm/review-on-collaborative-filtering/. The repository
contains the following notebooks:

– User-based Collaborative Filtering: implements the User-based recom-
mendation system. https://github.com/nzhinusoftcm/review-on-collab
orative-filtering/blob/master/2.User-basedCollaborativeFiltering.ipynb

https://github.com/nzhinusoftcm/review-on-collaborative-filtering/
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/2.User-basedCollaborativeFiltering.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/2.User-basedCollaborativeFiltering.ipynb

A Comprehensive Review on Non-Neural Networks Collaborative 33

– Item-based Collaborative Filtering: implements the Item-based recom-
mendation system. https://github.com/nzhinusoftcm/review-on-collab
orative-filtering/blob/master/3.Item-basedCollaborativeFiltering.ipnb

– Matrix Factorization: implements the Matrix Factorization Model: https:
//github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/mast
er/5.MatrixFactorization.ipynb

– Non-negative Matrix Factorization: implements the Non-negative
Matrix Factorization model. https://github.com/nzhinusoftcm/revi
ew-on-collaborative-filtering/blob/master/6.NonNegativeMatrixFactor
ization.ipynb

– Explainable Matrix Factorization: implements the Explainable Matrix
Factorization model: https://github.com/nzhinusoftcm/review-on-coll
aborative-filtering/blob/master/7.ExplainableMatrixFactorization.ipynb

– Performance measure: https://github.com/nzhinusoftcm/review-on-coll
aborative-filtering/blob/master/8.PerformancesMeasure.ipynb

Notebooks with Google Collaboratory

To run these notebooks with Google Collaboratory, we provide the following
link. https://colab.research.google.com/github/nzhinusoftcm/review-on-coll
aborative-filtering/

References

Abdollahi, B., and O. Nasraoui, 2016: Explainable matrix factorization for
collaborative filtering. Proceedings of the 25th International Conference
Companion on World Wide Web, International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, CHE, 5–6,
WWW ’16 Companion, URL https://doi.org/10.1145/2872518.2889405.

Abdollahi, B., and O. Nasraoui, 2017: Using explainability for constrained
matrix factorization. Proceedings of the Eleventh ACM Conference on
Recommender Systems, ACM, New York, NY, USA, URL https://doi.or
g/10.1145/3109859.3109913.

Ali, S. I. M., and S. S. Majeed, 2021: A review of collaborative filtering
recommendation system. Almuthanna Journal of Pure Science (MJPS), 8,
120–131, .

Ansari, A., S. Essegaier, and R. Kohli, 2000: Internet recommendation sys-
tems. J. Mark. Res., 37 (3), 363–375, URL http://dx.doi.org/10.1509/jmkr.
37.3.363.18779.

https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/3.Item-basedCollaborativeFiltering.ipnb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/3.Item-basedCollaborativeFiltering.ipnb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/5.MatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/5.MatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/5.MatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/6.NonNegativeMatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/6.NonNegativeMatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/6.NonNegativeMatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/7.ExplainableMatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/7.ExplainableMatrixFactorization.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/8.PerformancesMeasure.ipynb
https://github.com/nzhinusoftcm/review-on-collaborative-filtering/blob/master/8.PerformancesMeasure.ipynb
https://colab.research.google.com/github/nzhinusoftcm/review-on-collaborative-filtering/
https://colab.research.google.com/github/nzhinusoftcm/review-on-collaborative-filtering/
https://doi.org/10.1145/2872518.2889405
https://doi.org/10.1145/3109859.3109913
https://doi.org/10.1145/3109859.3109913
http://dx.doi.org/10.1509/jmkr.37.3.363.18779
http://dx.doi.org/10.1509/jmkr.37.3.363.18779

34 C. Wenga et al.

Baltrunas, L., T. Makcinskas, and F. Ricci, 2010: Group recommendations
with rank aggregation and collaborative filtering. Proceedings of the fourth
ACM conference on Recommender systems, Association for Computing
Machinery, New York, NY, USA, 119–126, RecSys ’10, URL https:
//doi.org/10.1145/1864708.1864733.

Billsus, D., and M. J. Pazzani, 1998: Learning collaborative information
filters. Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998, J. W.
Shavlik, Ed., Morgan Kaufmann, 46–54.

Bobadilla, J., A. Hernando, F. Ortega, and J. Bernal, 2011: A framework for
collaborative filtering recommender systems. Expert Syst. Appl., 38 (12),
14 609–14 623, URL https://doi.org/10.1016/j.eswa.2011.05.021.

Bobadilla, J., F. Ortega, A. Hernando, and A. Gutiérrez, 2013: Recommender
systems survey. Knowledge-Based Systems, 46, 109–132, URL https://doi.
org/10.1016/j.knosys.2013.03.012.

Bokde, D., S. Girase, and D. Mukhopadhyay, 2015: Matrix factorization
model in collaborative filtering algorithms: A survey. Procedia Comput.
Sci., 49, 136–146, URL https://doi.org/10.1016/j.procs.2015.04.237.

Breese, J. S., D. Heckerman, and C. Kadie, 1998: Empirical analysis of pre-
dictive algorithms for collaborative filtering. Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 43–52, UAI’98, URL https:
//arxiv.org/abs/1301.7363.

Cacheda, F., V. Carneiro, D. Fernández, and V. Formoso, 2011: Comparison
of collaborative filtering algorithms: Limitations of current techniques
and proposals for scalable, high-performance recommender systems. ACM
Trans. Web, 5 (1), 1–33, URL https://doi.org/10.1145/1921591.1921593.

Cai, D., X. He, X. Wu, and J. Han, 2008: Non-negative matrix factorization
on manifold. Proceedings – 8th IEEE International Conference on Data
Mining, ICDM 2008, 63–72, Proceedings – IEEE International Conference
on Data Mining, ICDM, , URL https://doi.org/10.1109/ICDM.2008.57,
copyright: Copyright 2012 Elsevier B.V., All rights reserved.; 8th IEEE
International Conference on Data Mining, ICDM 2008 ; Conference date:
15-12-2008 Through 19-12-2008.

Caragea, C., and Coauthors, 2009: Mean average precision. Encyclopedia of
Database Systems.

Chee, S. H. S., J. Han, and K. Wang, 2001: RecTree: An efficient collab-
orative filtering method. Data Warehousing and Knowledge Discovery,

https://doi.org/10.1145/1864708.1864733
https://doi.org/10.1145/1864708.1864733
https://doi.org/10.1016/j.eswa.2011.05.021
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1016/j.procs.2015.04.237
https://arxiv.org/abs/1301.7363
https://arxiv.org/abs/1301.7363
https://doi.org/10.1145/1921591.1921593
https://doi.org/10.1109/ICDM.2008.57

A Comprehensive Review on Non-Neural Networks Collaborative 35

Lecture notes in computer science, Springer Berlin Heidelberg, Berlin,
Heidelberg, 141–151, URL https://doi.org/10.1007/3-540-44801-2 15.

Coba, L., P. Symeonidis, and M. Zanker, 2019: Personalised novel and
explainable matrix factorisation. Data Knowl. Eng., 122, 142–158, URL
https://doi.org/10.1016/j.datak.2019.06.003.

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, 1990: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci.,
41 (6), 391–407.

Deshpande, M., and G. Karypis, 2004: Item-based top- N recommendation
algorithms. ACM Trans. Inf. Syst. Secur., 22 (1), 143–177, URL https:
//doi.org/10.1145/963770.963776.

Desrosiers, C., and G. Karypis, 2011: A comprehensive survey of
neighborhood-based recommendation methods. Recommender Systems
Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds.,
Springer US, Boston, MA, 107–144, , URL http://dx.doi.org/10.1007
/978-0-387-85820-3 4.

Dillon, M., 1983: Introduction to modern information retrieval. Inf. Process.
Manag., 19 (6), 402–403.

Ekstrand, M. D., J. T. Riedl, and J. A. Konstan, 2011: Collaborative filtering
recommender systems. Foundations and Trends® in Human–Computer
Interaction, 4 (2), 81–173, URL https://doi.org/10.1561/1100000009.

Feigl, J., and M. Bogdan, 2017: Collaborative filtering with neural networks.
ESANN, URL http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es
2017-23.pdf.

Gillis, N., 2014: The why and how of nonnegative matrix factorization.
Regularization, Optimization, Kernels, and Support Vector Machines, URL
http://arxiv.org/abs/1401.5226.

Goldberg, D., D. Nichols, B. M. Oki, and D. Terry, 1992: Using collaborative
filtering to weave an information tapestry. Commun. ACM, 35 (12), 61–70,
URL https://doi.org/10.1145/138859.138867.

Goldberg, K., T. Roeder, D. Gupta, and C. Perkins, 2001: Eigentaste: A con-
stant time collaborative filtering algorithm. Inf. Retr. Boston., 4, 133–151,
URL https://doi.org/10.1023/A:1011419012209.

He, X., X. Du, X. Wang, F. Tian, J. Tang, and T. Chua, 2018: Outer product-
based neural collaborative filtering. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, J. Lang, Ed., ijcai.org, 2227–2233, , URL
https://doi.org/10.24963/ijcai.2018/308.

https://doi.org/10.1007/3-540-44801-2_15
https://doi.org/10.1016/j.datak.2019.06.003
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
http://dx.doi.org/10.1007/978-0-387-85820-3_4
http://dx.doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1561/1100000009
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-23.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-23.pdf
http://arxiv.org/abs/1401.5226
https://doi.org/10.1145/138859.138867
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.24963/ijcai.2018/308

36 C. Wenga et al.

He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, 2017a: Neural col-
laborative filtering. Proceedings of the 26th International Conference on
World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, R. Barrett,
R. Cummings, E. Agichtein, and E. Gabrilovich, Eds., ACM, 173–182, ,
URL https://doi.org/10.1145/3038912.3052569.

He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, 2017b: Neural
collaborative filtering. Proceedings of the 26th International Conference
on World Wide Web, International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 173–182, WWW ’17,
URL https://doi.org/10.1145/3038912.3052569.

Herlocker, J. L., J. A. Konstan, A. Borchers, and J. Riedl, 1999: An algorith-
mic framework for performing collaborative filtering. Proceedings of the
22nd annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, Association for Computing Machinery,
New York, NY, USA, 230–237, SIGIR ’99, URL https://doi.org/10.1145/
312624.312682.

Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl, 2004: Evalu-
ating collaborative filtering recommender systems. ACM Trans. Inf. Syst.
Secur., 22 (1), 5–53, URL https://doi.org/10.1145/963770.963772.

Hernando, A., J. Bobadilla, and F. Ortega, 2016: A non negative matrix
factorization for collaborative filtering recommender systems based on
a bayesian probabilistic model. Knowledge-Based Systems, 97, 188–202,
URL https://doi.org/10.1016/j.knosys.2015.12.018.

Hofmann, T., 1999: Probabilistic latent semantic indexing. Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval – SIGIR ’99, ACM Press, New York,
New York, USA, URL https://doi.org/10.1145/312624.312649.

Hu, J., and P. Li, 2018: Collaborative filtering via additive ordinal regression.
Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, Association for Computing Machinery, New York,
NY, USA, 243–251, WSDM ’18, URL https://doi.org/10.1145/315965
2.3159723.

Karypis, G., 2001: Evaluation of Item-Based Top-N recommendation algo-
rithms. Proceedings of the tenth international conference on Information
and knowledge management, Association for Computing Machinery, New
York, NY, USA, 247–254, CIKM ’01, URL https://doi.org/10.1145/5025
85.502627.

Khalifeh, S., and A. A. Al-Mousa, 2021: A book recommender system
using collaborative filtering method. DATA’21: International Conference

https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/963770.963772
https://doi.org/10.1016/j.knosys.2015.12.018
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/3159652.3159723
https://doi.org/10.1145/3159652.3159723
https://doi.org/10.1145/502585.502627
https://doi.org/10.1145/502585.502627

A Comprehensive Review on Non-Neural Networks Collaborative 37

on Data Science, E-learning and Information Systems 2021, Petra, Jordan,
5-7 April, 2021, J. A. L. Torralbo, S. A. Aljawarneh, V. Radhakrishna,
and A. N., Eds., ACM, 131–135, , URL https://doi.org/10.1145/3460620.
3460744.

Koren, Y., R. Bell, and C. Volinsky, 2009: Matrix factorization techniques for
recommender systems. Computer, 42 (8), 30–37, URL https://doi.org/10.1
109/MC.2009.263.

Kunegis, J., and S. Albayrak, 2007: Adapting ratings in Memory-Based
collaborative filtering using linear regression. 2007 IEEE International
Conference on Information Reuse and Integration, 49–54, URL https:
//doi.org/10.1109/IRI.2007.4296596.

Lakshminarayanan, B., G. Bouchard, and C. Archambeau, 2011: Robust
bayesian matrix factorisation. Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, 425–433, URL http:
//proceedings.mlr.press/v15/lakshminarayanan11a/lakshminarayanan11a.
pdf.

Lee, D., and H. Seung, 2001: Algorithms for non-negative matrix fac-
torization. Advances in Neural Information Processing Systems 13 –
Proceedings of the 2000 Conference, NIPS 2000, 13.

Lee, D. D., and H. S. Seung, 1999: Learning the parts of objects by non-
negative matrix factorization. Nature, 401, 788–791, , URL https://doi.or
g/10.1038/44565.

Linden, G., B. Smith, and J. York, 2003: Amazon.com recommendations:
item-to-item collaborative filtering. IEEE Internet Comput., 7 (1), 76–80,
URL https://doi.org/10.1109/MIC.2003.1167344.

Luo, X., M. Zhou, Y. Xia, and Q. Zhu, 2014: An efficient non-negative
matrix-factorization-based approach to collaborative filtering for recom-
mender systems. IEEE Trans. Ind. Informatics, 10 (2), 1273–1284, , URL
https://doi.org/10.1109/TII.2014.2308433.

Mild, A., and M. Natter, 2002: Collaborative filtering or regression models
for internet recommendation systems? Journal of Targeting, Measurement
and Analysis for Marketing, 10 (4), 304–313, URL http://dx.doi.org/10.10
57/palgrave.jt.5740055.

Mnih, A., and R. R. Salakhutdinov, 2008: Probabilistic matrix factor-
ization. Advances in Neural Information Processing Systems, J. Platt,
D. Koller, Y. Singer, and S. Roweis, Eds., Curran Associates, Inc., Vol. 20,
1257–1264.

https://doi.org/10.1145/3460620.3460744
https://doi.org/10.1145/3460620.3460744
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/IRI.2007.4296596
https://doi.org/10.1109/IRI.2007.4296596
http://proceedings.mlr.press/v15/lakshminarayanan11a/lakshminarayanan11a.pdf
http://proceedings.mlr.press/v15/lakshminarayanan11a/lakshminarayanan11a.pdf
http://proceedings.mlr.press/v15/lakshminarayanan11a/lakshminarayanan11a.pdf
https://doi.org/10.1038/44565
https://doi.org/10.1038/44565
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1057/palgrave.jt.5740055
http://dx.doi.org/10.1057/palgrave.jt.5740055

38 C. Wenga et al.

Mu, R., 2018: A survey of recommender systems based on deep learning.
IEEE Access, 6, 69 009–69 022, URL https://doi.org/10.1109/ACCESS.2
018.2880197.

Parhi, P., A. Pal, and M. Aggarwal, 2017: A survey of methods of collab-
orative filtering techniques. 2017 International Conference on Inventive
Systems and Control (ICISC), 1–7, URL http://dx.doi.org/10.1109/ICISC
.2017.8068603.

Paterek, A., 2007: Improving regularized singular value decomposition for
collaborative filtering. Proceedings of KDD cup and workshop, Vol. 2007,
5–8, URL https://www.cs.uic.edu/∼liub/KDD-cup-2007/proceedings/Reg
ular-Paterek.pdf.

Pauca, V. P., J. Piper, and R. J. Plemmons, 2006: Nonnegative matrix fac-
torization for spectral data analysis. Linear Algebra and its Applications,
416 (1), 29–47, URL https://doi.org/10.1016/j.laa.2005.06.025, special
Issue devoted to the Haifa 2005 conference on matrix theory.

Pazzani, M. J., and D. Billsus, 2007: Content-Based recommendation sys-
tems. The Adaptive Web: Methods and Strategies of Web Personalization,
P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds., Springer Berlin Heidelberg,
Berlin, Heidelberg, 325–341.

Rawat, W., and Z. Wang, 2017: Deep convolutional neural networks
for image classification: A comprehensive review. Neural Computation,
29 (9), 2352–2449, URL https://doi.org/10.1162/NECO a 00990.

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, 1994:
GroupLens: an open architecture for collaborative filtering of netnews.
Proceedings of the 1994 ACM conference on Computer supported cooper-
ative work, Association for Computing Machinery, New York, NY, USA,
175–186, CSCW ’94, URL https://doi.org/10.1145/192844.192905.

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 2000: Application of
dimensionality reduction in recommender system: A case study. Computer
Science and Engineering (CS E) Technical Reports, URL https://hdl.hand
le.net/11299/215429.

Sarwar, B. M., G. Karypis, J. A. Konstan, and J. Riedl, 2001: Item-based col-
laborative filtering recommendation algorithms. Proceedings of the Tenth
International World Wide Web Conference, WWW 10, Hong Kong, China,
May 1-5, 2001, V. Y. Shen, N. Saito, M. R. Lyu, and M. E. Zurko, Eds.,
ACM, 285–295, , URL https://doi.org/10.1145/371920.372071.

Saxena, A., and Coauthors, 2017: A review of clustering techniques and
developments. Neurocomputing, 267, 664–681, URL https://doi.org/10
.1016/j.neucom.2017.06.053.

https://doi.org/10.1109/ACCESS.2018.2880197
https://doi.org/10.1109/ACCESS.2018.2880197
http://dx.doi.org/10.1109/ICISC.2017.8068603
http://dx.doi.org/10.1109/ICISC.2017.8068603
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
https://doi.org/10.1016/j.laa.2005.06.025
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1145/192844.192905
https://hdl.handle.net/11299/215429
https://hdl.handle.net/11299/215429
https://doi.org/10.1145/371920.372071
https://doi.org/10.1016/j.neucom.2017.06.053
https://doi.org/10.1016/j.neucom.2017.06.053

A Comprehensive Review on Non-Neural Networks Collaborative 39

Sedhain, S., A. K. Menon, S. Sanner, and L. Xie, 2015: AutoRec: Autoen-
coders meet collaborative filtering. Proceedings of the 24th International
Conference on World Wide Web, Association for Computing Machinery,
New York, NY, USA, 111–112, WWW ’15 Companion, URL https:
//doi.org/10.1145/2740908.2742726.

Seyednezhad, S. M. M., K. N. Cozart, J. A. Bowllan, and A. O. Smith,
2018: A review on recommendation systems: Context-aware to social-
based. CoRR, abs/1811.11866, URL http://arxiv.org/abs/1811.11866,
1811.11866.

Shenbin, I., A. Alekseev, E. Tutubalina, V. Malykh, and S. I. Nikolenko, 2020:
RecVAE: A new variational autoencoder for Top-N recommendations with
implicit feedback. Proceedings of the 13th International Conference on
Web Search and Data Mining, Association for Computing Machinery, New
York, NY, USA, 528–536, WSDM ’20, URL https://doi.org/10.1145/3336
191.3371831.

Srifi, M., A. Oussous, A. Ait Lahcen, and S. Mouline, 2020: Recommender
systems based on collaborative filtering using review texts—a survey.
Information, 11 (6), , URL https://www.mdpi.com/2078-2489/11/6/317.

Steck, H., 2019: Collaborative filtering via High-Dimensional regression.
ArXiv, abs/1904.13033, URL http://arxiv.org/abs/1904.13033, 1904.1
3033.

Su, X., and T. M. Khoshgoftaar, 2009: A survey of collaborative filtering
techniques. Advances in Artificial Intelligence, 2009, URL https://doi.org/
10.1155/2009/421425.

Su, X., T. M. Khoshgoftaar, X. Zhu, and R. Greiner, 2008: Imputation-
boosted collaborative filtering using machine learning classifiers. Proceed-
ings of the 2008 ACM symposium on Applied computing, Association for
Computing Machinery, New York, NY, USA, 949–950, SAC ’08, URL
https://doi.org/10.1145/1363686.1363903.

Ungar, L. H., and D. P. Foster, 1998: Clustering methods for collaborative
filtering. AAAI workshop on recommendation systems, Vol. 1, 114–129,
URL https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-
029.pdf.

Vucetic, S., and Z. Obradovic, 2005: Collaborative filtering using a
Regression-Based approach. Knowl. Inf. Syst., 7 (1), 1–22, URL https:
//doi.org/10.1007/s10115-003-0123-8.

Wang, S., H. Tian, X. Zhu, and Z. Wu, 2018: Explainable matrix factoriza-
tion with constraints on neighborhood in the latent space. Data Mining
and Big Data, Lecture notes in computer science, Springer International

https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
http://arxiv.org/abs/1811.11866
1811.11866
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3336191.3371831
https://www.mdpi.com/2078-2489/11/6/317
http://arxiv.org/abs/1904.13033
1904.13033
1904.13033
https://doi.org/10.1155/2009/421425
https://doi.org/10.1155/2009/421425
https://doi.org/10.1145/1363686.1363903
https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-029.pdf
https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-029.pdf
https://doi.org/10.1007/s10115-003-0123-8
https://doi.org/10.1007/s10115-003-0123-8

40 C. Wenga et al.

Publishing, Cham, 102–113, URL http://dx.doi.org/10.1007/978-3-319-9
3803-5 10.

Wang, Y., and Y. Zhang, 2013: Nonnegative matrix factorization: A compre-
hensive review. IEEE Trans. Knowl. Data Eng., 25 (6), 1336–1353, URL
https://doi.org/10.1109/TKDE.2012.51.

Willmott, C., and K. Matsuura, 2005: Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance. Climate Research, 30, 79, , URL https://doi.org/10.3354/cr
030079.

Xu, D., and Y. Tian, 2015: A comprehensive survey of clustering algorithms.
Annals of Data Science, 2 (2), 165–193, URL https://doi.org/10.1007/s4
0745-015-0040-1.

Yu, Y., X. Si, C. Hu, and J. Zhang, 2019: A review of recurrent neural net-
works: LSTM cells and network architectures. Neural Compution, 31 (7),
1235–1270, URL https://doi.org/10.1162/neco a 01199.

Zhang, L., 2013: The definition of novelty in recommendation system. J. Eng.
Sci. Technol. Rev., 6 (3), 141–145, URL http://dx.doi.org/10.25103/jestr.
063.25.

Zhang, L., T. Luo, F. Zhang, and Y. Wu, 2018: A recommendation model
based on deep neural network. IEEE Access, 6, 9454–9463, URL https:
//doi.org/10.1109/ACCESS.2018.2789866.

Zhang, S., L. Yao, A. Sun, and Y. Tay, 2019: Deep learning based rec-
ommender system: A survey and new perspectives. ACM Comput. Surv.,
52 (1), 1–38, URL https://doi.org/10.1145/3285029.

Zheng, S., C. Ding, and F. Nie, 2018: Regularized singular value decomposi-
tion and application to recommender system. ArXiv, URL http://arxiv.org/
abs/1804.05090, 1804.05090.

http://dx.doi.org/10.1007/978-3-319-93803-5_10
http://dx.doi.org/10.1007/978-3-319-93803-5_10
https://doi.org/10.1109/TKDE.2012.51
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.25103/jestr.063.25
http://dx.doi.org/10.25103/jestr.063.25
https://doi.org/10.1109/ACCESS.2018.2789866
https://doi.org/10.1109/ACCESS.2018.2789866
https://doi.org/10.1145/3285029
http://arxiv.org/abs/1804.05090
http://arxiv.org/abs/1804.05090
1804.05090

A Comprehensive Review on Non-Neural Networks Collaborative 41

Biographies

Carmel Wenga is a PhD student at the University of French Polynesia.
He obtained his master’s degree in Networks and Distributed Systems, his
main field is machine learning applied to recommender systems. He is an
active member of the NzhinuSoft research team and is actively involved in the
development of the recommendation system of ShoppingList, an e-commerce
application of NzhinuSoft and deployed in Cameroon. He also works as a
Data Engineering & Middleware Developer Consultant for NzhinuSoft.

Majirus Fansi is Software Architect and CEO at NzhinSoft. He Holds a
PhD in computer science from Université de Pau et des Pays de l’Adour and
a MBA degree from Stockholm Business School. He has founded Nzhinu-
Soft, on the promise of valorizing enterprise data through data engineering,
Data Science, data Visualization, and Application development. His current
research interest is recommender systems based on images. First results are
implemented on shoppinglist.cm, a market place developed by NzhinuSoft.

42 C. Wenga et al.

Sébastien Chabrier is Associate Professor in Computer Science at the
University of French Polynesia working on image processing and machine
learning. In year 2003 he received his PhD in image processing and machine
learning and in 2021 his French “Habilitation to Lead Research” (HDR) from
the University of French Polynesia.

Jean-Martial Mari is Associate Professor in Computer Science at the Uni-
versity of French Polynesia working on signal and image processing. In year
2000 he received the Electrical Engineering diploma of the INSA Lyon,
France, with a specialization in Signal Processing, and a Master degree
(DEA) in signal and image processing. In 2004 he received his PhD in
Acoustics and in 2012 his French “Habilitation to Lead Research” (HDR)
from the Université Claude Bernard Lyon 1 (France).

A Comprehensive Review on Non-Neural Networks Collaborative 43

Alban Gabillon is a full Professor of computer science at the University of
French Polynesia. His main research interests are in computer security since
his PhD thesis in 1995. He has more recently diversified his activities in the
field of machine learning. He is the author or co-author of more than 100
research papers.

	Introduction
	Memory-based Collaborative Filtering
	Similarity Computation
	Pearson correlation similarity
	Cosine-based similarity

	Prediction and Recommendation
	Prediction with weighted sum
	Top-N recommendation

	Overview and Limitations of Memory-based CF

	Model-Based Collaborative Filtering
	Singular Value Decomposition (SVD)
	Matrix Factorization
	Probabilistic Matrix Factorization (PMF)
	Non-negative Matrix Factorization (NMF)
	Explainable Matrix Factorization (EMF)
	Overview of Dimensionality Reduction Techniques

	Evaluation Metrics for CF Algorithms
	Prediction Accuracy
	Quality of Set of Recommendations
	Quality of List of Recommendations
	Novelty and Diversity
	Overview of Evaluation Metrics

	Comparative Experimentation
	MovieLens Datasets
	Experimental Results and Performances Comparison
	Importance of Ratings Normalization

	Conclusion
	Resources

