

# Length–weight relationships of the French pikes Esox spp. (Teleostei, Esocidae)

Lucas Royer, Fabrice Teletchea, Sophie Delavergne, Frédéric Lafitte, Marion Escarpit, Quentin Molina, Emilie Breugnot, Eddy Cosson, Aurélia l'Hostis, Gaël P.J. Denys

### ▶ To cite this version:

Lucas Royer, Fabrice Teletchea, Sophie Delavergne, Frédéric Lafitte, Marion Escarpit, et al.. Length–weight relationships of the French pikes Esox spp. (Teleostei, Esocidae). International Journal of Limnology, 2024, 60, pp.2. 10.1051/limn/2024001 . hal-04496848

## HAL Id: hal-04496848 https://hal.science/hal-04496848v1

Submitted on 8 Mar 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. SHORT NOTE

**OPEN ∂ ACCESS** 

## Length–weight relationships of the French pikes *Esox* spp. (Teleostei, Esocidae)

Lucas Royer<sup>1</sup>, Fabrice Teletchea<sup>1</sup>, Sophie Delavergne<sup>2</sup>, Frédéric Lafitte<sup>2</sup>, Marion Escarpit<sup>3</sup>, Quentin Molina<sup>4</sup>, Emilie Breugnot<sup>5</sup>, Eddy Cosson<sup>6</sup>, Aurélia L'Hostis<sup>7</sup> and Gaël P.J. Denys<sup>8,9,\*</sup>

<sup>1</sup> University of Lorraine, UR AFPA, USC INRAE 340, Vandœuvre-lès-Nancy, F-54506, France

<sup>2</sup> Fédération de la Gironde pour la pêche et la protection du milieu aquatique, 10 ZA du Lapin,

33750 Beychac-et-Caillau, France

<sup>3</sup> Fédération des Landes pour la pêche et la protection du milieu aquatique, 102 allées Marines, 40400 Tartas, France

<sup>4</sup> Fédération du Lot-et-Garonne pour la pêche et la protection du milieu aquatique, 44 cours du 9ème-de-ligne BP 225 47006 Agen cedex, France

<sup>5</sup> Office Français de la Biodiversité, Direction régionale Nouvelle-Aquitaine, 207 cours du Médoc, 33300 Bordeaux, France

<sup>6</sup> Office Français de la Biodiversité, Direction Surveillance Evaluation Données, 5 square Félix NADAR, 94300 Vincennes, France
<sup>7</sup> Union des Fédérations pour la pêche et la protection du milieu aquatique du Bassin Adour-Garonne, 5 chemin de Bramofan,

31120 Roques, France

<sup>8</sup> Unité Patrimoine Naturel – Centre d'expertise et de données (2006 OFB – MNHN – CNRS – IRD), Muséum national d'Histoire naturelle, 36 rue Geoffroy-Saint-Hilaire CP 41, 75005 Paris, France

<sup>9</sup> UMR Biologie des organismes et écosystèmes aquatiques (BOREA 8067), MNHN, CNRS, IRD, SU, UCN, UA, 57 rue Cuvier CP26, 75005 Paris, France

Received: 10 June 2023; Accepted: 9 January 2024

**Abstract** – Length–weight relationships for Pike *Esox aquitanicus* and *Esox lucius* from France are provided. A total of 9070 specimens were collected, measured and weighted from 1981 to 2022 throughout France by Departmental Angling Federations and the French Agency of Biodiversity during their survey by electrofishing. For all species, the values of *b* are 2.960 for *E. aquitanicus* and 2.987 for *Esox lucius*. We hypothetize this difference by the poor environment where live the Aquitanian pike with no abundant available food and small prey fish species which do not contribute to good conditions for the growth. The study provides the first reference of length–weight relationships for *E. aquitanicus*.

Keywords: Esox aquitanicus / Esox lucius / France / length / weight / endemic species

#### **1** Introduction

Pikes *Esox* spp. (Actinopterygii, Esociformes) are emblematic fishes because of their strong socioeconomic value for both recreational and commercial fishing (Raat, 1988; Mann, 1996). This genus groups eight species occurring throughout North America and Eurasia (Froese and Pauly, 2023). In France, two species are currently listed: the ubiquitous northern pike *Esox lucius* Linnaeus, 1758 (Fig. 1) and the newly described Aquitanian pike *Esox aquitanicus* Denys, Dettai, Persat, Hautecœur, Keith, 2014 (Fig. 2) (Keith *et al.*, 2020). The Aquitanian pike and the allochthonous northern pike co-occur from the Charente to the Adour drainages, because of frequent restocking of the latest

since the second part of the twentieth century (Fig. 3) (Denys et al., 2014). Both pike species can be distinguished morphologically by their coat coloration patterns, their snout length as well as lateral scales and vertebrae numbers (Denys et al., 2014; Jeanroy and Denys, 2019). However, if the northern pike is present in the main rivers and lakes with aquatic vegetation, the endemic species seems to be restricted to small tributaries and coastal catchments qualified as poor environment with sandy substrate and few aquatic vegetation (Fig. 3) (Denys, 2017; Keith et al., 2020). Ê. aquitanicus is currently listed as Vulnerable according to the French IUCN Red List of Threatened Species like E. lucius because of their risk of hybridization (UICN Comité français et al., 2019; Keith et al., 2020). As the Aquitaine pike is then a patrimonial and threatened species, riverine managers need tools to apply a good management and conservation policy (Dudgeon et al., 2005; Maasri et al., 2021).

<sup>\*</sup>Corresponding author: gael.denys@mnhn.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Fig. 1. The northern pike *Esox lucius*: 92 mm from the Vie river at Poiré-sur-Vie (A), 278 mm from the Yser river (B), 770 mm from the Oise river (C); credit photos: Hydrosphere, Fishpass, OFB.

Length-weight relationships (LWRs) constitute primary knowledges used for fish management and stock assessment. They are necessary for estimating fish biomass from sampled length data, as well as fish growth, and are useful for ecological modelling (Froese, 2006). For that, length L and weight W are related with a mathematical formula  $W = aL^b$ including two parameters: a coefficient *a* and the allometric growth parameter b (Keys, 1928). These two parameters are essential to understand the growth of each species. Each pike species has at least one LWR published study (e.g., Kapuscinski et al., 2007; Verreycken et al., 2021; Giannetto et al., 2016; Huo et al., 2017; Parker et al., 2018), except the Aquitanian pike. Irz et al. (2022) published also a LWR of "Esox lucius" from the ASPE database collecting lengths and weights data of French fish species collected by the French Agency of Biodiversity (OFB) since 1980s, but without distinguishing the two species. Working on data from badly identified taxa can induce some bias on their management (Bortolus, 2008).

The aim of this study was to provide the first LWR for *E. aquitanicus* based on an extensive sampling throughout its distribution area, to compare it with data of French *E. lucius* in order to know if there are some differences between both species, and to know if misidentifications in the ASPE database of Irz *et al.* (2022) have repercussions on their results.

#### 2 Material and methods

Data for Aquitanian pike were collected from 1996 to 2022 during the monitoring of the Departmental Angling Federations and the French Agency of Biodiversity which aim to make the diagnosis of the physical, trophic and physicochemical state of the environments in order to best adjust the fish management measures. Specimens were caught by electrofishing inventories campaigns before to be released. Populations previously characterized as hybrids or introgressed by Denys *et al.* (2014, 2018) and Denys (2017) were removed from our dataset as well as the locations already




**Fig. 2.** The Aquitanian pike *Esox aquitanicus*: 111 mm for 9 g from the Ciron stream (A), 480 mm for 816 g from the Courant mort brook (B); 747 mm for 3200 g from the Jalle du Sud stream (C); credit photos: FDAAPPMA47, FDAAPPMA40, FDAAPPMA33.

known to have been restocked. Identifications were based on morphological (Denys *et al.*, 2014; Jeanroy and Denys, 2019) or molecular data (Denys *et al.*, 2014, 2018; Denys, 2017). Thus, our dataset is composed by only populations already characterized as pure Aquitanian pike according to morphological or molecular data from previous studies (Denys *et al.*, 2014, 2018; Denys, 2017). Total length (*L* in cm) was measured to the nearest millimeter and weight (*W* in g) was determined with a digital balance to an accuracy of 0.1 g. Additional data (n=338) from locations already knows to shelter Aquitanian pike without any sympatry with the allochtonous species were added from the ASPE database (Irz *et al.*, 2022). The list of locations and measurements are available in Supplementary data 1 and 2.

For northern pike, data were extracted from the ASPE database excluding those from the Adour-Garonne drainages (location codes beginning by "05") in order to exclude any data corresponding to the Aquitanian pike, and during the period between 1981 to 2017. Only individual measurements were considered. A map synthetizing the sampling is given in Figure 4.

In both datasets, records with weights lower or equal to 1 g were removed considering weighing scales used were not sufficiently accurate to have reliable data for these young offsprings.



**Fig. 3.** Distribution area of the two pike species in France (*Esox aquitanicus* in red, *Esox lucius* in its native area in blue and introduced in green) (modified and adapted from Keith *et al.*, 2020; Denys, 2017), with examples of typical habitats of both species: the Sèvre nantaise (A) as a large river with many aquatic vegetation and the Ciron stream (B) as watershed with a poor environment (sandy substrate and no aquatic vegetation except stumps); credit photos: G. Denys.

Length and weight averages were compared using a U test of Mann–Whitney after having checked a non-normal distribution with a Shapiro–Wilk test (p-value < 2.2 e<sup>-16</sup>). Length–weight relationships were calculated following the method of Kuriakose (2014) using the equation  $\log_{10}W=$  $\log_{10}a + b \log_{10}L$ , where a is the intercept on the Y-axis of the regression curve and b is the regression coefficient (Ricker, 1975). LWRs were calculated for unsexed individuals, as the sex determination is not done by the angling federations nor the French Agency of Biodiversity, because it is not included in their protocol of surveys. The 95% confidence limits of a and b (CL 95%) were also computed (Froese, 2006) for both equations.

Linear regressions and all statistic tests were performed using the R package (R core team, 2022) using lmtest, stats and dplyr packages following Irz (2022). In order to validate the regression model for each dataset, a Rainbow-test was done in order to verify if the residuals mean was equal to 0 (Utts, 1982). Their *p*-value=1 and 0.147 for respectively *E. aquitanicus* and *E. lucius* indicated a leverage effect. So, the Cook's *D* distances were then calculated and data exceeding 4/N (*N* being the number of observations) were removed from the dataset (Bollen and Jackman, 1990).

#### **3 Results**

Data on lengths and weights are provided for a total of 3657 Aquitanian pikes and 5413 northern pikes. The average sizes and weights are respectively 10.7 cm for 20.2 g and 30.2 cm for 339.8 g. Both u-tests of Mann-Whitney on lengths and weights indicates that the average data for *E. aquitanicus* is lower than those of *E. lucius* ( $W_{\text{lengths}} = 1$  341 292;  $W_{\text{weights}} = 1$  413 738; *p*-value < 2.2 e<sup>-16</sup> for both datasets). The number of specimens, TL range, parameters *a* and *b* with their 95% CL and the correlation coefficient ( $R^2$ ) are reported in Table 1.

The  $R^2$  values are respectively equal to 0.982 and 0.988 demonstrating a strong correlation between lengths and weights for both species (Fig. 5).

*E. aquitanicus* has a lower *b* parameter than *E. lucius* (2.960 vs. 2.987) as their range do not overlap (Tab. 1).

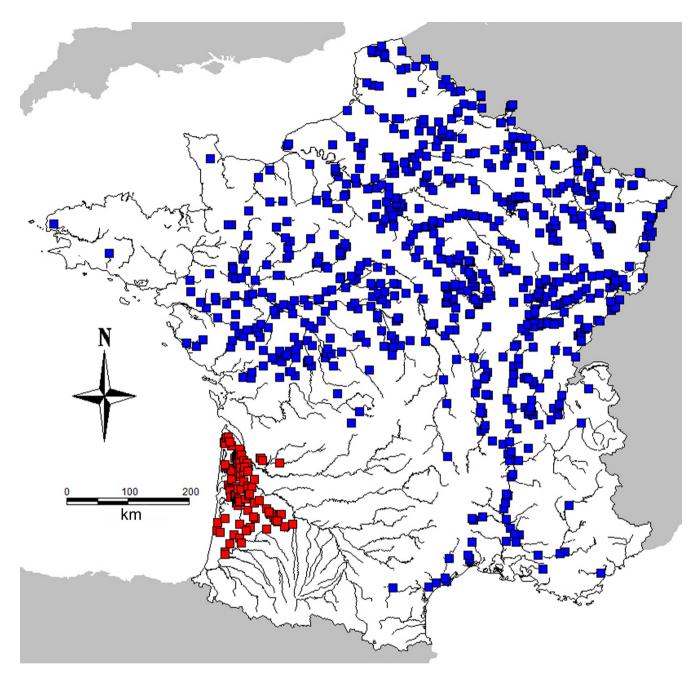



Fig. 4. Locations of both pike species (Esox aquitanicus in red and Esox lucius in blue) from where lengths and weights data came.

#### **4** Discussion

LWR of *E. aquitanicus* and French *E. lucius* were established from the analysis of 9070 fish.

Aquitanian pike are smaller than northern pike with a maximum size conserved in our dataset of 72 cm for 2.5 kg. Fish sizes are positively correlated with the surface area of habitat and negatively with the temperature (Denys *et al.*, 2016; Kennedy and Rennie, 2023). But Aquitanian pike lives in small tributaries and little coastal basins (Keith *et al.*, 2020), and in southwestern France which is one of the warmer regions in the country (*e.g.*, Parey *et al.*, 2007). However, anglers accounts and data from bibliographical archives described larger specimens: 85 cm for 5 kg (Lagardère, 2020), 107 cm for

9 kg (Glize, 1993) and large fish from 12 to 15 kg (Cahuzac, 2001). So, when the environmental conditions are favourable, Aquitanian pike can reach comparable sizes than northern pike.

The *a* parameter for the Aquitanian pike is significantly smaller than the one of *E. lucius* (Tab. 1). Whereas the *b* parameters are respectively 2.960 and 2.987 in accordance with Carlander (1969) assuming that *b* normally falls between 2.5 and 3.5. Values of *b* lower than 3, meaning a "negative" growth, so both pike species become slimmer with increasing length. Comparing both *b* values, the one *E. aquitanicus* is lower than *E. lucius* (Tab. 1). The hypothesis that *E. aquitanicus* would be more elongated than *E. lucius* would be false because of its shorter snout and the fewer number of

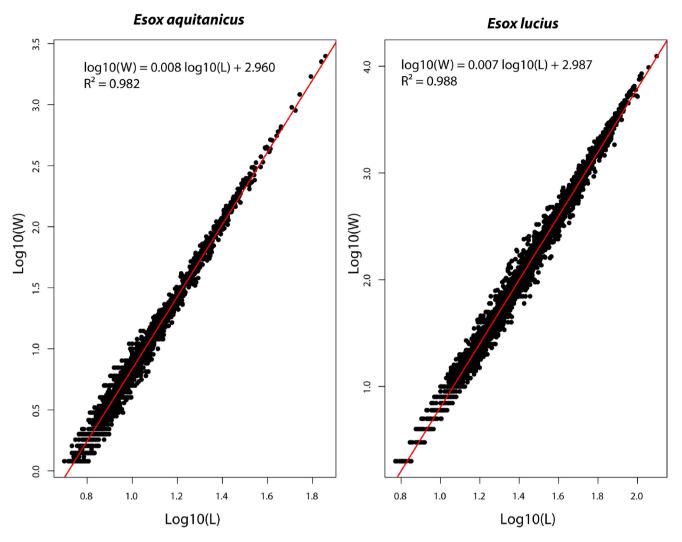



Fig. 5. Lengths (L)-weights (W) regressions of Esox aquitanicus and Esox lucius. Data were log<sub>10</sub> transformed.

**Table 1.** Descriptive statistics and parameters of total length (TL, in cm) – weight (W, in g) regression for the Aquitanian pike (South West ofFrance) and Northern pike from France; SD means standard deviation.

| Species          | Sex | п    | TL range (SD)         | W range (SD)            | а     | Range a (95% CL) | b     | Range <i>b</i> (95% CL) | $R^2$ |
|------------------|-----|------|-----------------------|-------------------------|-------|------------------|-------|-------------------------|-------|
| Esox aquitanicus | All | 3657 | 5.0–72.0<br>(5.834)   | 1.2–2500<br>(85.060)    | 0.008 | 0.007–0.008      | 2.960 | 2.947-2.973             | 0.982 |
| Esox lucius      | All | 5413 | 5.9–125.0<br>(15.355) | 2.0–12 450<br>(708.559) | 0.007 | 0.006-0.007      | 2.987 | 2.978-2.995             | 0.988 |

vertebrae (Denys *et al.*, 2014). So, the northern pike would be heavier than the Aquitanian pike for the same given size. Differences between *a* and *b* values may be explained by the poor environments where it lives (sandy substrates, few aquatic vegetation, low biomass) conferring a lower primary productivity (Tales *et al.*, 2004). The specific richness is also low (about 5 to 8 co-occurring fish species) (see CGA hydroregion from Santoul *et al.* (2004) and assemblage type 1 from Park *et al.* (2006)), and closed to the historical native ichthyofauna community in the Adour-Garonne basin (Keith *et al.*, 2020) with little sized species such as minnows *Phoxinus* spp, stone loaches *Barbatula* spp and gudgeons *Gobio* spp which are not in elevated densities considering the particular habitat (Tales *et al.*, 2004). However within pikes, the growth rate is correlated with the size of the eaten preys (Hart and Connellan, 1984) and the quantity of available food (Kozłowski *et al.*, 2012; Kennedy and Rennie, 2023).

A study on ecological traits of the Aquitanian pike is sorely needed to support this hypothesis.

Our *a* and *b* parameters for *Esox lucius* are exactly the same as given by Irz *et al.* (2022), as well as the  $R^2$  (0.987). Their huge dataset (n=9535) in the ASPE database and removing data after the Cook's *D* distances calculations has certainly drowned the signal of *E. aquitanicus* in the dataset. The addition of data from angling federations as well as working on populations correctly identified has allowed to bring new knowledges on the endemic species. Angling federations have useful data and naturalist observations which deserve to be known and used in monitoring, ecological studies and conservations programs (Maasri *et al.*, 2021). Their datasets are then complementary with the database ASPE. However, the data centralization from each departmental angling federation and the access is still a huge challenge.

Managers are encouraged to integrate in their protocol the sex determination. This kind of data would allow to highlight a potential sexual size dimorphism already known within pike species (*e.g.*, Craig, 1996) with female growing faster than males. Nevertheless, these cases are correlated with the availability of food resources and cool temperatures (Kennedy and Rennie, 2023). But the geographical context does not fulfil these conditions.

Finally, our study provides then the first data of LWR for Aquitanian pike which could be implemented in FishBase (Froese and Pauly, 2023). This LWR could be useful for managers for estimating weights from measurements and to know if the environment of a location brings ideal conditions for growth, as well as for other disciplines in biology.

#### **Acknowledgements**

This work was supported by the Muséum national d'Histoire naturelle (MNHN), the Unit PatriNat 2006, the UMR BOREA 8067, the Lorraine University, the French Agency of Biodiversity and the Union of Angling Federations of the Adour-Garonne Basin (UFBAG). This study is included within a global project about the Aquitanian pike BIOESOX funded by the UFBAG and the French Federation of Angling in France (FNPF). We thank all people from the Angling departmental federations and the OFB for providing data.

#### **Supplementary Material**

**Supplementary data 1.** List of locations of *Esox aquitanicus* used in this study.

**Supplementary data 2.** Measurements of *Esox aquitanicus* used in this study.

The Supplementary Material is available at https://www. limnology-journal.org/10.1051/limn/2024001/olm.

#### References

Bollen KA, Jackman RW. 1990. Regression diagnostics: an expository treatment of outliers and influential cases, in Fox J. Scott L.J. (eds.), Modern Methods of Data Analysis. Newbury Park: Sage, pp. 257–291.

- Bortolus A. 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. *AMBIO* 37 : 114–118.
- Cahuzac B. 2001. Un intéressant témoignage du début du XIXe siècle, le manuscrit d'ichtyologie landaise de Jean Thore, écrit en 1811. *Bull. Soc. Borda* 462:287–344.
- Carlander KD. 1969. Handbook of Freshwater Biology Vol. 1. Ames, IA: The Iowa State University Press, 752 p.
- Craig JF. 1996. Population dynamics, predation and role in the community, in Craig J.F. (ed.), Pike: Biology and Exploitation. London: Chapman & Hall, pp. 202–217.
- Denys GPJ. 2017. Cartographie des espèces de brochet récemment recensées en France: le brochet aquitain *Esox aquitanicus* et le brochet italien *Esox cisalpinus*: projet ATLASESOX. *MNHN FNPF report, Paris*, 134 p.
- Denys GPJ, Dettai A, Persat H, Hautecœur M, Keith P. 2014. Morphological and molecular evidence of three species of pikes Esox spp. (Actinopterygii, Esocidae) in France, including the description of a new species. *C R Biol* 337:521–534.
- Denys GPJ, Tedesco PA, Oberdorff T, Gaubert P. 2016. Environmental correlates of body size distribution in Cyprinidae (Actinopterygians) depend on phylogenetic scale. *Ecol Freshw Fish* 25: 125–132.
- Denys GPJ, Lauga T, Delmastro GB, Dettai A. 2018. S7 characterization of Western European pikes *Esox* spp. (Actinopterygii, Esociformes). *Cybium* 42: 221–228.
- Dudgeon D, Arthington A, Gessner M, Kawabata Z, Knowler D, Lévêque C, Naiman R, Prieur-Richard A, Soto D, Stiassny M, Sullivan C. 2005. Freshwater biodiversity: importance, threats, status and conservation challenges. *BiolRev* 81:163–182.
- Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. *J Appl Ichthyol* 22: 241–253.
- Froese R, Pauly D. 2023. FishBase. World Wide Web electronic publication. Retrieved from www.fishbase.org, version (02/2023). Accessed on 16 May 2023.
- Giannetto D, Pompei L, Carosi A, Dolciami R, Ghetti L, Lorenzoni M. 2016. Length-weight relationships of three fish species from Trasimeno Lake, Italy. J Appl Ichthyol 32:1273–1275.
- Glize E. 1993. La vie autour des lagunes de la Grande Lande (Fin du XIXe s. et début du XXe s.). *Bull Soc Borda* 430:165–175.
- Hart PJB, Connellan B. 1984. Cost of prey capture, growth rate and ration size in pike, Esox lucius L., as functions of prey weight. *J Fish Biol* 25:279–292.
- Huo TB, Yuan MY, Wang JL, Li PL, Liu W, Wu XC. 2017. Lengthweight relationships of nine fish species from the Tongjiang section of the Songhua River, China. *J Appl Ichthyol* 33: 848–850.
- Irz P. 2022. ASPE Construire des relations taille-poids. *RPubs by RStudio*. https://rpubs.com/kamoke/729779.
- Irz P, Vigneron T, Poulet N, Cosson E, Point T, Baglinière E, Porcher J-P. 2022. A long-term monitoring database on fish and crayfish species in French rivers. *Knowl Manag Aquat Ecosyst* 423: 25.
- Jeanroy C, Denys GPJ. 2019. Morphological traits allow distinguishing their hybrids from the Northern pike, *Esox lucius*, and the Aquitanian pike *Esox aquitanicus* (Actinopterygii, Esociformes). *Cybium* 43:227–232.
- Kapuscinski KL, Belonger BJ, Fajfer BJ, Lychwick TJ, 2007. Population dynamics of muskellunge in Wisconsin waters of Green Bay, Lake Michigan, 1989–2005. *Environ Biol Fish* 79:27–36.
- Keith P, Poulet N, Denys G, Changeux T, Feunteun E, Persat H. 2020.Les Poissons d'eau douce de France, 2nd edn, Mèze and Paris: Biotope Editions, Publications scientifiques du Muséum, 704 p.

- Kennedy PJ, Rennie MD. 2023. Variation in female-biases sexual size dimorphism of Northern Pike (*Esox lucius*) associated with environment and life history. *bioRxiv*, 2023. 03.06. 531313.
- Keys AB. 1928. The weight-length relationship in fishes. *Proc Natl Acad Sci* 14:922–925.
- Kozłowski M, Szczepkowski M, Piotrowska I, Wunderlich K, Szczepkowska B. 2012. Impact of feed ration on growth, feed conversion, and variation in body weights of juvenile pike, *Esox lucius* L., reared in recirculating aquaculture system. *Arch Pol Fish* 20: 145–152.
- Kuriakose S. 2014. Estimation of length weight relationship in fishes: training manual on fish stock assessment and management. *CMFRI, FRAD* 50: 215–220.
- Lagardère J-P. 2020. La pêche occasionnelle et libre de la Grande Lande. *Bull Soc Borda* 538: 207–228.
- Maasri A, Jähnig S, Adamescu M, et al. 2021. A global agenda for advancing freshwater biodiversity research. Ecol Lett 25:255–263.
- Mann RHK, 1996. Fisheries and economics in Craig J.F. (ed.), Pike: Biology and Exploitation. New York: Chapman & Hall, 1; pp. 219– 241.
- Parey S, Malek F, Laurent C, Dacunha-Castelle D. 2007. Trends climate evolution: statistical approach for very high temperatures in France. *Clim Change* 81:331–352.
- Park Y-S, Grenouillet G, Esperance B, Lek S. 2006. Stream fish assemblages and basin land cover in a river network. *Sci Total Environ* 365:140–153.

- Parker J, Fritts M, Deboer J. 2018. Length-weight relationships for small Midwestern US fishes. J Appl Ichthyol 34: 1081–1083.
- R Core Team. 2022. R: a language and environment for statistical computing. Vienna, *Austria: R Foundation for Statistical Computing*. https://www.R-project.org/.
- Raat AJP. 1988. Synopsis of biological data on the northern pike Esox lucius Linnaeus, 1758, FAO Fisheries Synopsis, No 30. Rome: Food and Agriculture Organization of the United Nations, 179 p.
- Ricker WE. 1975. Computation and interpretation of biological statistics of fish populations. J Fish Res Board Can 191: 1–382.
- Santoul F, Soulard A, Figuerola J, Céréghino R, Mastrorillo S. 2004. Environmental factors influencing local fish species richness and differences between hydroregions in South-Western France. *Int Rev Hydrobiol* 89:79–87.
- Tales E, Keith P, Oberdorff T. 2004. Density-range size relationships in French riverine fishes. *Oecologia* 138: 360–370.
- UICN Comité français, MNHN, SFI and AFB, 2019. La Liste rouge des espèces menacées en France Chapitre Poissons d'eau douce de France métropolitaine, *UICN France, MNHN, SFI & AFB, Paris*, 16 p.
- Utts JM. 1982. The rainbow test for lack of fit in regression. *Commun. Stat. Theory Methods* 11: 2801–2815.
- Verreycken H, Van Thuyne G, Belpaire C. 2011. Length-weight relationships of 40 freshwater fish species from two decades of monitoring in Flanders (Belgium). J Appl Ichthyol 27: 1416–1421.

**Cite this article as:** Royer L, Teletchea F, Delavergne S, Lafitte F, Escarpit M, Molina Q, Breugnot E, Cosson E, L'Hostis A, Denys GPJ. 2024. Length-weight relationships of the French pikes *Esox* spp. (Teleostei, Esocidae). *Int. J. Lim.* 60: 2: